Incremental Inductive Verification, Does It Work? Does
It Scale ?

Ahmed Rezine! and Arne Borilv?

! Linkoping Universitet
2 Prover Technology

Description

Powerful Multicore platforms are now widespread and promise to naturally scale per-
formance by running programs in parallel. Except for optimizing one’s code, this be-
came the only way to speed up programs. As a result, a great amount of work focuses
on coming up with clever ways to run programs in parallel. This thesis explores the
applicability and the performance of an incremental verification technique (proposed
by Aaron Bradely in his PhD thesis) that can be naturally run in parallel.

Verification explores all possible scenarios before validating a program or a de-
sign. It typically targets safety critical systems where missed bugs can have catastrophic
consequences (transportation, medical instruments, etc). Schematically, to inductively
show that a safety critical system satisfies a property P, one shows that P holds at the
initial state and that it is preserved at each step of the system to be verified (conse-
cution). Often, showing consecution is the challenging part. The traditional, and well
established, approach is to come up with a property that is both inductive and that im-
plies P. Apart from the fact that this involves a great deal of ingenuity, this approach
is monolithic and is difficult to run in parallel. The incremental approach proposes in-
stead to find series of properties (instead of one) that together imply the property P.
In each such series, the latter properties are inductive if the earlier ones are assumed
(with the first one being inductive without particular assumptions). This incremental
aspect allows to build the series in parallel by loosely sharing the discovered inductive
properties. It is this modularity with the resulting possibility of performing verification
in parallel that is particularly appealing in the approach.

The thesis starts by gaining familiarity and experimenting with the new and promis-
ing incremental verification algorithm. There are already some open source implemen-
tations of the algorithm that may be used in the thesis, otherwise an implementation
is to be carried out. An important part will be to collect existing benchmarks from in-
ternational competitions and from Prover technology and to experiment with different
heuristics (based on combinations with different abstract domains or with user supplied
hints) when generating the intermediary properties. The applicability and the scalability
of the resulting verification programs will then be compared to the existing verification
tools.

Qualification

This 30 hp thesis can be carried by one or two Masters students that:



— Enjoy discrete mathematics and logics (related courses)
— Very good programming skills (for instance in c++)
— Good knowledge in scripting and in functional programming is a plus

Practical considerations

The student(s) will carry the thesis at the Department of Computer and Information
Science in Linkdping in collaboration with Prover Technology-Stockholm.



