

COTEST meeting

Paris March, 4th 2002

Outline

- Experiment description
- Results
- Conclusions.

Past Activities

- Different versions of the adopted benchmarks have been developed (using Behavioral Compiler)
- Prototypical environment supporting:
 - semi-automated fault list generation (supporting different fault models)
 - high-level fault simulation
 - gate-level fault simulation (using faultsim).

Goal

- The correlation between several highlevel fault models with the gate-level stuck-at has been evaluated
- Different benchmark descriptions with different implementations have been considered.

Assumptions

- Behavioral-compiler (BC) like model:
 - One entity
 - One process
 - Explicit clocking strategy via (multiple) wait
 - Global synchronous reset
- BC+DC Synopsys synthesis flow
- Simple gate-level library (and, or, ffd...).

Benchmarks

Benchmark	Scheduling	VHDL lines	Gates	FFs
BIQUAD 1	Fixed IO speed optimized	93	6,043	125
BIQUAD 2	Fixed IO area optimized	93	3,252	257
FIR	Fixed IO	53	5,553	141
FIR	Superstate	53	2,909	263
TLC	Fixed IO	168	241	23

Input vectors

- Randomly generated
- Vector timing depends on adopted scheduling.

Metrics

- Behavioral level:
 - Statement coverage: SC
 - Bit coverage: BC
 - Condition coverage: CC
- Gate level (GL):
 - Single permanent stuck-at: GL stuck-at

Statement coverage

 Percent number of executed statements.

```
W1: wait on clock
  B <= f(A)
W2: wait on clock
  if B > 0 then
        C <= g(B)
  else
        C <= h(B)</pre>
```

W3: wait on clock

Bit coverage

- Bit stuck-at: a bit in a variable/signal is stuck-at 1/0
- Percent number of detected bit stuck-at faults.

Condition coverage

- Condition stuck-at: a condition is stuck-at true or false
- Percent number of detected condition stuck-at faults.

```
W1: wait on clock
  B <= f(A)
W2: wait on clock
  if B > 0 then
        C <= g(B)
  else
        C <= h(B)
W3: wait on clock</pre>
```


Conclusions (I)

- Data-path oriented benchmarks (BIQUAD, FIR):
 - SC is useless
 - CC is not applicable (due to the benchmark nature)
 - Good correlation between BC and GL stuck-at.
 - Predictions about the testability are implementation-independent: same trends no matter the scheduling mode and the optimization constraints.

Conclusions (II)

- Control-oriented benchmark (TLC):
 - SC is somewhat useful
 - BC has poor correlation with GL stuck-at
 - BC+CC has good correlation with GL stuckat.

Publications

 O. Goloubeva, M. Sonza Reorda, M. Violante, "Experimental analysis of fault models for behavioral-level test generation", IEEE DDECS 2002, Design and Diagnostics of Electronic Circuits and Systems Workshop

Open questions

- Is it possible to further improve the correlation between high and gate levels?
- What happen when pipelining is used?
- Transition faults...
- More complex benchmarks...