
1

A Grid-like
Infrastructure for
Sensor-Networks

J. Andersson
M. Ericsson
M. Karlsson
Welf Löwe Växjö University

2Växjö University – Sensor-GRIDs

www.LOIS-Space.net Project
Multi-purpose radio research facility,
Primarily intended for radio signal based astrophysics

to study transient phenomena Earth’s space environment
to discover and monitor long-term trends

13,500 digital radio receiver units, together working like a
huge parabolic antenna

each producing data at a rate of 2 Gbits/s

Receivers are equipped with custom processors together
working like a supercomputer

~40 Tflops computational power distributed across the stations

Additionally: network of workstations, supercomputers
Needs high-performance computing

2

3Växjö University – Sensor-GRIDs

Additionally:
• IBM JS 20
• Connected via Sunet - 10 Gbit/s (not point-to-point)

4Växjö University – Sensor-GRIDs

Change Happens
Hardware configuration:

Receivers are added/removed/changed
New computers are added/removed/changed
Network changes

Deployed software:
Applications can be added / removed
QoS of these applications may change:
precision, data rate, response time

Needs flexibility

3

5Växjö University – Sensor-GRIDs

Users
Users / programmers are scientists
No trained software engineers
Think in terms of their problem solution, in
numerical algorithms (in the best case)
Needs right level of abstraction for good
programmability

6Växjö University – Sensor-GRIDs

This is a Problem
High performance
High flexibility
Good programmability

Cannot expect the optimum of all qualities

4

7Växjö University – Sensor-GRIDs

The Sensor GRID
A sensor-network (hardware)

Set of sensors with synchronization hardware
generating a stream of input values (three 16bit complex numbers)
Set of (heterogeneous) computational nodes
for processing sensor-stream applications
Interconnection network

An stream application (software)
Filter: a set of stream filters with data-dependencies
Service: a stream sinks, data-services
Components thereof
QoS parameters

A stream processing infrastructure (runtime environment)
Communication
Optimization, load balancing
(un-)deployment

8Växjö University – Sensor-GRIDs

Outline
How to get performance?
How to add flexibility?
How to add programmability?
Open issues

5

9Växjö University – Sensor-GRIDs

Outline
How to get performance?
How to add flexibility?
How to add programmability?
Open issues

10Växjö University – Sensor-GRIDs

Static View
One non-changing high-performance application
Antennas send streams of time-stamped values

Beam forming: integration of values with same time stamp to a
stream of signals
Buffering: collecting subsequent signals to window (or split)
Processing streams values

Then applications consist of
Stream filters

Pipe filter architecture with input stream data as source
Push driven communication between filters
Optimization goal data rate (sometimes completion time)

Stream services
Sinks of the filter architecture
Pull driven communication between services
Requires that the streams have integrated sufficiently - not time critical

6

11Växjö University – Sensor-GRIDs

Stream filters
Data-parallel program

Input and output: stream window with time stamp
Notion of synchronism since signals come with time stamps
Virtual shared memory:

2D array Sensor x Time
Contain sensor values over time

Fixed input size
Fixed number of sensors
Fixed size of windows splitting values over time

Stream program:
Iteration over data-parallel programs
Possibly different input and output data rates

12Växjö University – Sensor-GRIDs

Stream filter (schema)

Data-parallel
program

Input stream window

Output stream window

Stream
program

7

13Växjö University – Sensor-GRIDs

Optimization
Series of Transformations

Data-parallel stream filters
Task graph for the data-parallel program

Asynchronous
Distributed memory

Cyclic schedule for the task graph
Objective function: usually data rate
Heterogeneous computational nodes in the sensor
network

Deployment to the sensor network

14Växjö University – Sensor-GRIDs

Example: FFT
fun fft(v:stream array[n] of complex):

stream array[n] of complex
//r(i) denotes the value of the reversed bit representation of i.
for i=0…n-1 do in parallel

v[i] :=v[r(i)];
end;
for j=0…log n-1 do

for k:=0…n/2j+1-1; i:=0…2j-1 do in parallel
v[k*2j+1+i] := v[k*2j+1+i] + ωi*n/2j+1* v[(2k + 1)*2j+i];
v[(2k + 1)*2j+i] := v[k*2j+1+i] - ωi*n/2j+1* v[(2k + 1)*2j+i];

end;
od;

8

15Växjö University – Sensor-GRIDs

Task Graph: FFT

Input size 16

16Växjö University – Sensor-GRIDs

Schedule: FFT

Completion time: 16 x comp + 3 x send(1) + 3 x recv(1) + Latency

Data rate: 1 / (16 x comp + 3 x send(1) + 3 x recv(1) + Latency)

9

17Växjö University – Sensor-GRIDs

Schedule: FFT (alternative)

Completion time: 3 x (16 x comp + send(32) + recv(32) + Latency)

Data rate: 1 / (16 x comp + send(32) + recv(32))

18Växjö University – Sensor-GRIDs

Dynamic View
User triggered, GRID portal

Adding or removing components,
Changing QoS requirements

Application triggered
E.g. solar eruption
A probe component recognizes a pattern in the input stream
requiring reconfiguration
Changing QoS enabling a new component

System triggered
Imbalanced load,
Failure of hardware,
Added / changed hardware

10

19Växjö University – Sensor-GRIDs

Outline
How to get performance?
How to add flexibility?
How to add programmability?
Open issues

20Växjö University – Sensor-GRIDs

User Triggered Changes
Sensor-GRID portal: different user groups submit
their applications each aiming at the highest
possible data rate
Several applications reuse primitive, close to
sensor components
Each application can be optimized separately but
what’s the global optimum?

Build a global application and optimize it. Some user
application might have satisfied its a minimum data rate
Campaigns: one application at a time. Some user
groups get a time frame without interesting events.

Approach: Market based optimization

11

21Växjö University – Sensor-GRIDs

Market based optimization
Instantiation of a general optimization framework
The market represents the global interests

Sets an initial price per processor and adjusts it
Computes a global by merging local schedules from user groups
Selects an optimum global schedules satisfying a subset of user
groups

Agents ai represent user groups/applications i
ai compute a set of schedules si,p=1..P with data rate f(si,p)
ai has a utility function mapping data rates to a value $(f(si,p))
ai submits a pair <$, si,p> to the market
ai has a strategy on how to react if a schedule si,p cannot be
satisfied (change $ and/or p)

Then iteration over bidding and market decision until
fixpoint found

22Växjö University – Sensor-GRIDs

Fix point iteration
The following strategy terminates in a fix point
provided there hold some simple condition on

utility functions and bidding strategy of agents
pricing strategies of market

1. Set an initial price per processor
2. Repeat
3. All ai submit bids, i.e. pairs <$, si,p>
4. The market select the global schedule and processor

price optimizing the value of bids satisfied (market
makes surplus per value of bids satisfied)

5. Set new price and communicate global schedule to ai
6. Until no more surplus increment can be found

12

23Växjö University – Sensor-GRIDs

Application Triggered Changes
Changes triggered by application should be effective
immediately (short reaction time)
To achieve final performance, we need to apply static
scheduling algorithms online

Performance of the scheduling determines the reaction time
Long reaction time since complex scheduling

Idea: all application triggered events are known in advance
Approach: look-ahead scheduling, i.e. prepare for possible
changes before they are triggered

24Växjö University – Sensor-GRIDs

Look-Ahead Scheduling
Distinguish between a set of conceptual application
models, A, and their physical implementations, I,
Scheduling, M, maps from a ∈ A to i ∈ I, i = M(a).
An application triggered change event e causes a transition
from a to a´ = t(e, a),
Given a set of such events, E, it is possible to determine all
possible changes to the baseline architecture, and their
implementations

A´(E, a) = { a´ | a´ = t(e, a), e ∈ E }
I´(E, a) = { i´ | i´ = M(a´), a´ ∈ A´ }

This constitutes the Look-Ahead(1) schedule.
Changes triggered by application are effective immediately
Time for static scheduling not on the critical pathe
Only determinates the rate of which events can be accepted.

13

25Växjö University – Sensor-GRIDs

Changes revisited
User triggered

Market based scheduling, then
Deploying the whole new application (easy since stateless
applications),
Eventually more efficient: deploying the changed parts
Changes the application specification in the first place (model of the
application)

Application Triggered
Look-ahead scheduling
Changes the deployed application

System triggered
Load balancing
Changes the deployed application

26Växjö University – Sensor-GRIDs

Consistency Problem
Changes the application specification (model of the
application) trigger changes the deployed application
Changes the deployed application need to be propagated
back to the application specification (model of the
application)

Otherwise, user triggered changes update an outdated model
System and application triggered changes in between two user
triggered changes disappear

Standard problem to get dynamism in a static architecture
Architectural pattern “dynamic architecture”

14

27Växjö University – Sensor-GRIDs

Dynamic Architecture
Model of the Application Deployed Application

Application
Implementation

Application
Model

Probe Component
Implementation

Probe
Component

1
1..*

1
1..*

Controller
Triggers

System and
Application

Events

Maps

Adjusts

Triggers
User Events

28Växjö University – Sensor-GRIDs

Outline
How to get performance?
How to add flexibility?
How to add programmability?
Open issues

15

29Växjö University – Sensor-GRIDs

Service Oriented View
Common SOA description layer on top of stream filters and
stream services

Components and whole application provide services
Basic services provide input data
Request / Respond communication

No clash of architecture when mixing the architectural
styles visible to the programmer
Easy composition
Easy to integrate external services, e.g. data bases
accesses
Meet view of end user expecting a data service rather than
a data stream

30Växjö University – Sensor-GRIDs

Model Driven Architecture – MDA
Service view: UML description where different kinds of
services modeled with new UML stereotypes:

Real service (imported or exported services “real” service)
Source services (encapsulates sensors)
Services (others)

Transformed to refined UML descriptions
Service vs. stream implementation of components

Real services remain services (stream sinks)
Source services become data pumps (stream sources)
Other services can be implemented as either or

Buffers to adapt architectural mismatches, integrators/filters to
adjust different data rates

Transformation to data-parallel stream applications and
further down

16

31Växjö University – Sensor-GRIDs

<<real service>>
fft

+ fft
(a: array[16] complex):
array[16] complex

<<service>>
fft

+ fft
(a: stream array[16] complex):
stream array[16] complex

<<service>>
invfft

+ invfft(stream array[16] complex):
stream array[16] complex

<<service>>
multipler

+ mult
(stream a,b:array[16] complex):
stream array[16] complex

convolution:

a= fft(a);

b= fft(b);

c= •(a,b);
c = invfft(c)

fft:
...

mult:
...

invfft:
...

<<service>>
convolution

+ stream convolution
(a: stream array[16] complex
b:array[16] complex):

stream array[16] complex

SOA View

32Växjö University – Sensor-GRIDs

<<pull-push adapter>>
fft

+ fft_init (a: array16] complex):

+ fft():
stream array[16] complex

<<stream service>>
fft

+ fft
(a: stream array[16] complex):

stream array[16] complex

<<stream service>>
invfft2d

+invfft(stream array[16] complex):

stream array[16] complex

<<push-pull adapter>>
convolution

+ convolution_init
(b:array[16] complex)

+ convolution_next():
array[16] complex

<<stream service>>
multipler

+ mult_init (b:array[16] complex)

+ mult
(a: stream array[16] complex):
stream array[16] complex

<<stream service>>
convolution

+ convolution_init
(b:array[16] complex)

+ stream convolution
(a: stream array[16] complex):
stream array[16] complex

Refined SOA View

17

33Växjö University – Sensor-GRIDs

Portal
Controller1

PIM

Task Graph Generator
Controller2

PSMtask

Scheduler
Controller3

PSMschedule

Compiler
Controller4

Deployed
Application

Probe

SOA View +
Data parallel program

Refined SOA +
Task graph

Local and global
schedules

Dynamic Architecture + MDA

34Växjö University – Sensor-GRIDs

Open issues
Program models above task graphs

Filters to adjust different data rates
Validate programmability

System triggered change events
Integrate load balancing and
Map back load balancing decisions to the models

Scheduling for multiple QoS requirements
Adequate machine models / scheduling techniques for
heterogeneous sensor networks
Performance of scheduling algorithm

Putting the loose strings together
Implementation

18

Växjö University

36Växjö University – Sensor-GRIDs

Software Tech Group
Software Analyses & Visualization
Software Architecture & Composition
10 PhD students
Young group, more than half of them joined
last two years

