
Optimized on-chip-pipelined mergesort on the
Cell/B.E.?

Rikard Hult́en1, Christoph W. Kessler1, and J̈org Keller2

1 Linköpings Universitet, Dept. of Computer and Inf. Science, 58183 Linköping, Sweden
2 FernUniversiẗat in Hagen, Dept. of Math. and Computer Science, 58084 Hagen, Germany

Abstract. Limited bandwidth to off-chip main memory is a performance bot-
tleneck in chip multiprocessors for streaming computations, such as Cell/B.E.,
and this will become even more problematic with an increasing number of cores.
Especially for streaming computations where the ratio between computational
work and memory transfer is low, transforming the program into more memory-
efficient code is an important program optimization. In earlier work, we have
proposed such a transformation technique: on-chip pipelining.
On-chip pipelining reorganizes the computation so that partial results of subtasks
are forwarded immediately between the cores over the high-bandwidth internal
network, in order to reduce the volume of main memory accesses, and thereby
improves the throughput for memory-intensive computations. At the same time,
throughput is also constrained by the limited amount of on-chip memory avail-
able for buffering forwarded data. By optimizing the mapping of tasks to cores,
balancing a trade-off between load balancing, buffer memory consumption, and
communication load on the on-chip bus, a larger buffer size can be applied, re-
sulting in less DMA communication and scheduling overhead.
In this paper, we consider parallel mergesort on Cell/B.E. as a representative
memory-intensive application in detail, and focus on the global merging phase,
which is dominating the overall sorting time for larger data sets. We work out the
technical issues of applying the on-chip pipelining technique for the Cell proces-
sor, describe our implementation, evaluate experimentally the influence of buffer
sizes and mapping optimizations, and show that optimized on-chip pipelining in-
deed reduces, for realistic problem sizes, merging times by up to 70% on QS20
and 143% on PS3 compared to the merge phase of CellSort, which was by now
the fastest merge sort implementation on Cell.

1 Introduction

The new generation of multiprocessors-on-chip derives its raw power from parallelism,
and explicit parallel programming with platform-specific tuning is needed to turn this
power into performance. A prominent example is the Cell Broadband Engine [1] with
a PowerPC core and 8 parallel slave processors called SPEs. Yet, many applications
use the Cell BE like a dancehall architecture: the SPEs use their small on-chip local
memories (256 KB for both code and data) as explicitly-managed caches, and they all
load and store data from/to the external (off-chip) main memory. The bandwidth to the
external memory is much smaller than the SPEs’ aggregate bandwidth to the on-chip
interconnect bus (EIB). This limits performance and prevents scalability.

? This is the authors’ final manuscript. It appeared in: P. D’Ambra, M. Guarracino, and D. Talia
(Eds.): Euro-Par 2010, Part II, LNCS 6272, pp. 187–198, Springer-Verlag, 2010. The original
publication is available at www.springerlink.com, DOI: 10.1007/978-3-642-15291-719.



External memory is also a bottleneck in other multiprocessors-on-chip. This prob-
lem will become more severe as the core count per chip is expected to increase consid-
erably in the foreseeable future. Scalable parallelization on such architectures therefore
must use direct communication between the SPEs to reduce communication with off-
chip main memory.

In this paper, we consider the important domain of memory-intensive computations
and consider the global merging phase of pipelined mergesort on Cell as a challenging
case study, for the following reasons:

– The ratio of computation to data movement is low.
– The computational load of tasks varies widely (by a factor of2k for a binary merge

tree withk levels).
– The computational load of a merge task is not fixed but only averaged.
– Memory consumption is not proportional to computational load but constant among

tasks.
– Communication always occurs between tasks of different computational load.

These factors complicate the mapping of tasks to SPEs. In total, pipelining a merge
tree is much more difficult than task graphs of regular problems such as matrix vector
multiplication.

The task graph of the global merging phase consists of a tree of merge tasks that
should contain, in the lowest layer, at least as many merger tasks as there are SPEs
available. Previous solutions like CellSort [2] and AAsort [3] process the tasks of the
merge tree layer-wise bottom-up in serial rounds, distributing the tasks of a layer equally
over SPEs (there is no need to have more than one task per SPE). Each layer of the tree
is then processed in adancehallfashion, where each task operates on (buffered) operand
and result arrays residing in off-chip main memory. This organization leads to relatively
simple code but puts a high access load on the off-chip-memory interface.

On-chip pipeliningreorganizes the overall computation in a pipelined fashion such
that intermediate results (i.e., temporary stream packets of sorted elements) are not
written back to main memory where they wait for being reloaded in the next layer
processing round, but instead are forwarded immediately to a consuming successor task
that possibly runs on a different core. This will of course require some buffering in on-
chip memory and on-chip communication of intermediate results where producer and
consumer task are mapped to different SPEs, but multi-buffering is necessary anyway
in processors like Cell in order to overlap computation with (DMA) communication.
It also requires that all merger tasks of the algorithm be active simultaneously; usually
there are several tasks mapped to a SPE, which are dynamically scheduled by a user-
level round-robin scheduler as data is available for processing.

However, as we would like to guarantee fast context switching on SPEs, the limited
size of Cell’s local on-chip memory then puts a limit on the number of buffers and
thus tasks that can be mapped to an SPE, or correspondingly a limit on the size of
data packets that can be buffered, which also affects performance. Moreover, the total
volume of intermediate data forwarded on-chip should be low and, in particular, must
not exceed the capacity of the on-chip bus. Hence, we obtain a constrained optimization
problem for mapping the tasks of streaming computations to the SPEs of Cell such that
the resulting throughput is maximized.



In previous work we developed mappings for merge trees [4,5]. In particular, we
have developed various optimal, approximative and heuristic mapping algorithms for
optimized on-chip pipelining of merge trees. Theoretically, a tremendous reduction of
required memory bandwidth could be achieved, and our simulations for an idealized
Cell architecture indicated that considerable speedup over previous implementations
are possible. But an implementation on the real processor is very tricky if it should
overcome the overhead related to dynamic scheduling, buffer management, synchro-
nization and communication delays. Here, we detail our implementation that actually
achieves notable speedup of up to 61% over the best previous implementation, which
supports our earlier theoretical estimations by experimental evidence. Also, the results
support the hypothesis that on-chip pipelining as an algorithmic engineering option is
worthwhile in general because simpler applications might profit even more.

The remainder of this article is organized as follows. In Section 2, we give a short
overview of the Cell processor, as far as needed for this article. Section 3 develops the
on-chip pipelined merging algorithm, Section 4 gives details of the implementation, and
Section 5 reports on the experimental results. Further details will soon be available in a
forthcoming master thesis [6]. Section 6 concludes and identifies issues for future work.

2 Cell/B.E. Overview

The Cell/B.E. (Broadband Engine) processor [1] is a heterogeneous multi-core proces-
sor consisting of 8 SIMD processors called SPE and a dual-threaded PowerPC core
(PPE), which differ in architecture and instruction set. In earlier versions of the Sony
PlayStation-3TM (PS3), up to 6 SPEs of its Cell processor could be used under Linux.
On IBMs Cell blade servers such as QS20 and later models, two Cells with a total of
16 SPEs are available. Cell blades are used, for instance, in the nodes of RoadRunner,
which was the world’s fastest supercomputer in 2008–2009.

While the PPE is a full-fledged superscalar processor with direct access to off-chip
memory via L1 and L2 cache, the SPEs are optimized for doing SIMD-parallel compu-
tations at a significantly higher rate and lower power consumption than the PPE. The
SPE datapaths and registers are 128 bits wide, and the SPU vector instructions operate
on them as on vector registers, holding 2 doubles, 4 floats or ints, 8 shorts or 16 bytes,
respectively. For instance, four parallel float comparisons between the corresponding
sections of two vector registers can be done in a single instruction. However, branch
instructions can tremendously slow down data throughput of an SPE. The PPE should
mainly be used for coordinating SPE execution, providing OS service and running con-
trol intensive code.

Each SPE has a small local on-chip memory of 256 KBytes. Thislocal storeis the
only memory that the SPE’s processing unit (the SPU) can access directly, and therefore
it needs to accommodate both SPU code and data. There is no cache and no virtual
memory on the SPE. Access to off-chip memory is only possible by asynchronous DMA
put andget operations that can communicate blocks of up to 16KB size at a time to
and from off-chip main memory. DMA operations are executed asynchronously by the
SPE’s memory flow controller (MFC) unit in parallel with the local SPU; the SPU



can initiate a DMA transfer and synchronize with a DMA transfer’s completion. DMA
transfer is also possible between an SPE and another SPE’s local store.

There is no operating system or runtime system on the SPE except what is linked to
the application code in the local store. This is what necessitates user-level scheduling if
multiple tasks are to run concurrently on the same SPE.

SPEs, PPE and the memory interface are interconnected by the Element Intercon-
nect Bus (EIB) [1]. The EIB is implemented by four uni-directional rings with an aggre-
gate bandwidth of 204 GByte/s (peak). The bandwidth of each unit on the ring to send
data over or receive data from the ring is only 25.6 GB/s. Hence, the off-chip memory
tends to become the performance bottleneck if heavily accessed by multiple SPEs.

Programming the Cell processor efficiently is a challenging task. The programmer
should partition an application suitably across the SPEs and coordinate SPE execution
with the main PPE program, use the SPE’s SIMD architecture efficiently, and take care
of proper communication and synchronization at fairly low level, overlapping DMA
communication with local computation where possible. All these different kinds of par-
allelism are to be orchestrated properly in order to come close to the theoretical peak
performance of about 220 GFlops (for single precision).

To allow for overlapping DMA handling of packet forwarding (both off-chip and
on-chip) with computation on Cell, there should be at least buffer space for 2 input
packets per input stream and 2 output packets per output stream of each streaming task
to be executed on an SPE. While the SPU is processing operands from one buffer, the
other one in the same buffer pair can be simultaneously filled or drained by a DMA
operation. Then the two buffers are switched for each operand and result stream for
processing the next packet of data. (Multi-buffering extends this concept from 2 to
an arbitrary number of buffers per operand array, ordered in a circular queue.) This
amounts to at least 6 packet buffers for an ordinary binary streaming operation, which
need to be accommodated in the size-limited local store of the SPE. Hence, the size of
the local store part used for buffers puts an upper bound on the buffer size and thereby
on the size of packets that can be communicated.

On Cell, the DMA packet size cannot be made arbitrarily small: the absolute min-
imum is 16 bytes, and in order to be not too inefficient, at least 128 bytes should be
shipped at a time. Reasonable packet sizes are a few KB in size (the upper limit is
16KB). As the size of SPE local storage is severely limited (256KB for both code and
data) and the packet size is the same for all SPEs and throughout the computation, this
means that the maximum number of packet buffers of the tasks assigned to any SPE
should be as small as possible. Another reason to keep packet size large is the overhead
due to switching buffers and user-level runtime scheduling between different computa-
tional tasks mapped to the same SPE. Figure 1 shows the sensitivity of the execution
time of our pipelined mergesort application (see later) to the buffer size.

3 On-chip pipelined mergesort

Parallel sorting is needed on every modern platform and hence heavily investigated.
Several sorting algorithms have been adapted and implemented on Cell BE. The highest



Fig. 1.Merge times (here for a 7-level merger tree pipeline), shown for various input sizes (num-
ber of 128bit-vectors per SPE), strongly depend on the buffer size used in multi-buffering.

performance is achieved by Cellsort [2] and AAsort [3]. Both sort data sets that fit into
off-chip main memory but not into local store. Both implementations have similarities.

They work in two phases to sort a data set of sizeN with local memories of sizeN ′.
In the first phase, blocks of data of size8N ′ that fit into the combined local memories
of the 8 SPEs are sorted. In the second phase, those sorted blocks of data are combined
to a fully sorted data set. We concentrate on the second phase as the majority of mem-
ory accesses occurs there and as it accounts for the largest share of sorting time for
larger input sizes. In CellSort [2], this phase is realized by a bitonic sort because this
avoids data dependent control flow and thus fully exploits SPE’s SIMD architecture.
Yet,O(N log2 N) memory accesses are needed and the reported speedups are small. In
AAsort [3], mergesort with 4-to-1-mergers is used in the second phase. The data flow
graph of the merge procedures thus forms a fully balanced merge quadtree. The nodes
of the tree are executed on the SPEs layer by layer, starting with the leaf nodes. As each
merge procedure on each SPE reads from main memory and writes to main memory, all
N words are read from and written to main memory in each merge round, resulting in
N log4(N/(8N ′)) = O(N log4 N) data being read from and written to main memory.
While this improves the situation, speedup still is limited.

In order to decrease the bandwidth requirements to off-chip main memory and thus
increase speedup, we use on-chip pipelining. This means that all merge nodes of all
tree levels are active from the beginning, and that results from one merge node are
forwarded in packets of fixed size to the follow-up merge node directly without usage
of main memory as intermediate store. Withb-to-1 merger nodes and ak-level merge
tree, we realizebk-to-1 merging with respect to main memory traffic and thus reduce
main memory traffic by a factor ofk · log4(b).

The decision to forward merged data streams in packets of fixed size allows to use
buffers of this fixed size for all merge tasks, and also enables follow-up merge tasks



to start work before predecessor mergers have handled their input streams completely,
thus keeping as many merge tasks busy as possible, and allowing pipeline depths in-
dependent of the lengths of data streams. Note that already the mergers in the AAsort
algorithm [3] must work with buffering and fixed size packets.

The requirement to keep all tasks busy is complicated by the fact that the processing
of data streams is not completely uniform over all tasks but depends on the data val-
ues in the streams. A merger node may consume only data from one input stream for
some time, if those data values are much smaller than the data values in the other input
streams. Hence, if all input buffers for those streams are filled, and the output buffers
of the respective predecessor merge tasks are filled as well, those merge tasks will be
stalled. Moreover, after some time the throughput of the merger node under consider-
ation will be reduced to the output rate of the predecessor merger producing the input
stream with small data values, so that follow-up mergers might also be stalled as a con-
sequence. Larger buffers might alleviate this problem, but are not possible if too many
tasks are mapped to one SPE.

Finally, the merger nodes should be distributed over the SPEs such that two merger
nodes that communicate data should be placed onto the same SPE whenever possible,
to reduce communication load on the EIB. As a secondary goal, if they cannot be placed
onto the same SPE, they might be placed such that their distance on the EIB is small,
so that different parts of the EIB might be used in parallel.

(a) (b)

Fig. 2.Two Pareto-optimal solutions for mapping a 5-level merge tree onto 5 SPEs, computed by
the ILP solver [4]. (a) The maximum memory load is 22 communication buffers (SPE4 has 10
nodes with 2 input buffers each, and 2 of these have output buffers for cross-SPE forwarding) and
communication load 1.75 (times the root merger’s data output rate); (b) max. memory load 18
and communication load 2.5. The (expected) computational load is perfectly balanced (1.0 times
the root merger’s load on each SPE) in both cases.



In our previous work [4], we have formulated the above problem of mapping of
tasks to SPEs as an integer linear programming (ILP) optimization problem with the
constraints given. An ILP solver (we use CPLEX 10.2 [7]) can find optimal mappings
for small tree sizes (usually fork ≤ 6) within reasonable time; fork = 7, it can still
produce an approximative solution. For larger tree sizes, we used an approximation
algorithm [4].

The ILP based mapping optimizer can be configured by a parameterε ∈ (0, 1)
that controls the priority of different secondary optimization goals, for memory load or
communication load; computational load balance is always the primary optimization
goal. Example mappings computed with differentε for a 5-level tree are visualized in
Fig. 2.

4 Implementation details

Merging kernelSIMD instructions are being used as much as possible in the innermost
loops of the merger node. Merging two (quad-word) vectors is completely done with
SIMD instructions as in CellSort [2]. In principle, it is possible to use only SIMD in-
structions in the entire merge loop, but we found that it did not reduce time because the
elimination of an if-statement required too many comparisons and moving data around
redundantly.

Mapping optimizerThe mapping of merger task nodes to SPEs is read in by the PPE
from a text file generated by the mapping optimizer. The PPE generates the task de-
scriptors for each SPE at runtime, so that our code in not constrained to a particular
merge-tree, but still optimized to the merge-tree currently used. Due to the complexity
of the optimization problem, optimal mappings can be (pre-)computed only for smaller
tree sizes up tok = 6. For larger trees, we use the approximative mapping algorithm
DC-map [4] that computes mappings by recursively composing mappings for smaller
trees, using the available optimal mappings as base cases.

SPE task schedulerTasks mapped to the same SPE are scheduled by a user-level sched-
uler in a round-robin order. A task is ready to run if it has sufficient input and an output
buffer is free. A task runs as long as it has both input data and space in the output
buffer, and then initiates the transfer of its result packet to its parent node and returns
control to the scheduler loop. If there are enough other tasks to run afterwards, DMA
time for flushing the output buffer is masked and hence only one output buffer per task
is necessary (see below). Tasks that are not data-ready are skipped.

As the root merger is always alone on its SPE, no scheduler is needed there and
many buffers are available; its code is optimized for this special case.

Buffer managementBecause nodes (except for the root) are scheduled round-robin, the
DMA latency can, in general, be masked completely by the execution of other tasks,
and hence double-buffering of input or output streams is not necessary at all, which
reduces buffer requirements considerably. An output stream buffer is only used for tasks
whose parents/successors reside on a different SPE. Each SPE has a fixed sized pool of



memory for buffers that gets equally shared by the nodes. This means that nodes on
less populated SPEs, for instance the root merger that has a single SPE on its own,
can get larger buffers (yet multiples of the packet size). Also, a SPE with high locality
(few edges to tasks on other SPEs) needs fewer output buffers and thus may use larger
buffers than another SPE with equally many nodes but where more output buffers are
needed. A larger buffering capacity for certain tasks (compared to applying the worst-
case size for all) reduces the likelihood of an SPE sitting idle as none of its merger tasks
is data-ready.

CommunicationData is pushed upwards the tree (i.e., producers/child nodes control
cross-SPE data transfer and consumers/parent nodes acknowledge receipt) except for
the leaf nodes which pull their input data from main memory.

The communication looks different depending on whether the parent (consumer)
node being pushed to is located on the same SPE or not. If the parent is local, the
memory flow controller cannot be used because it demands that the receiving address is
outside the sender’s local store. Instead, the child’s output buffer and its parent’s input
buffer can simply be the same. This eliminates the need for an extra output buffer and
makes more efficient use of the limited amount of memory in the local store.

The (system-global) addresses of buffers in the local store on the opposite side of
cross-SPE DMA communications are exchanged between the SPEs in the beginning.

SynchronizationEach buffer is organized as cyclic buffer with a head and a tail pointer.
A task only reads from its input buffers and thus only updates the tail pointers and

never writes to the head pointers. A child node only writes to its parent’s input buffers,
which means it only writes to the head pointer and only reads from the tail position.

The parent task updates the tail pointer of the input buffer for the corresponding
child task; the child knows how large the parent’s buffer is and how much it has written
itself to the parent’s input buffer so far, and thus knows how much space is left for writ-
ing data into the buffer. In particular, when a child reads the tail position of its parent’s
input buffer, the value is pessimistic so it is safe to use even if the parent is currently
using its buffer and is updating the tail position simultaneously. The reverse is true for
the head position, the child writes to the parent’s head position of the corresponding
input buffer and the parent only reads. This means that no locks are needed for the
synchronization between nodes.

DMA tag managementA SPE can have up to 32 DMA transfers in flight simultaneously
and uses tags in{0, ..., 31} to distinguish between these when polling the DMA status.
The Cell SDK offers an automatic tag manager for dynamic tag allocation and release.
However, if an SPE has many buffers used for remote communication, it may run out
of tags. If that happens, the tag-requesting task gives up, steps back into the task queue
and tries to initiate that DMA transfer again when it gets scheduled next.

5 Experimental results

We used a Sony PlayStation-3 (PS3) with IBM Cell SDK 3.0 and an IBM blade server
QS20 with SDK 3.1 for the measurements. We evaluated for as large data sets as could



fit into RAM on each system, which means up to 32Mi integers on PS3 (6 SPEs, 256
MiB RAM) and up to 128Mi integers on QS20 (16 SPEs, 1GiB RAM). The code was
compiled using gcc version 4.1.1 and run on Linux kernel version 2.6.18-128.e15.

A number of blocks equal to the number of leaf nodes in the tree to be tested were
filled with random data and sorted. This corresponds to the state of the data after the
local sorting phase (phase 1) of CellSort [2]. Ideally, each such block would be of the
size of the aggregated local storage available for buffering on the processor. CellSort
sorts 32Ki (32,768) integers per SPE, blocks would thus be 4× 128KiB = 512KiB on
the PS3 and 16× 128KiB = 2MiB on the QS20. For example, a 6-level tree has 64
leaf nodes, hence the optimal data size on the QS20 would be 64× 512KiB = 32MiB.
However, block sizes of other sizes were used when testing in order to magnify the
differences between mappings.

Different mappings (usually forε = 0.1, 0.5 and 0.9) were tested.

5.1 On-chip-pipelined merging times

The resulting times with on-chip pipelining for 5-level and 6-level trees on PS3 are
shown in Fig. 3. For QS20, mappings generated withε = 0.1, 0.5 and 0.9 were tested on
different data sizes and merger tree sizes fromk = 5 to k = 8, see Fig 4. We see that the
choice of the mapping can have a major impact on merging time, as even mappings that
are optimal for different optimization goals exhibit timing differences of up to 25%.

Fig. 3.Merge times fork = 5 (left) andk = 6 (right) for different mappings (ε) on PS3.

5.2 Results of DC-map

Using the DC-map algorithm [4], mappings for trees fork = 8, 7 and 6 were con-
structed by recursive composition using optimal mappings (computed with the ILP al-
gorithm withε = 0.5) as base cases for smaller trees. Fig. 5 shows the result for merging
64Mi integers on QS20.

5.3 Comparison to CellSort

Table 1 shows the direct comparison between the global merging phase of CellSort
(which is dominating overall sorting time for large data sets like these) and on-chip-



k = 5 k = 6

k = 7 k = 8

Fig. 4.Merge times fork = 5, 6, 7, 8 and different input sizes and mappings (ε) on QS20.

Fig. 5.Merge times (64 Mi integers)
for trees (k = 8, 7, 6) constructed
from smaller trees using DC-map.

Table 1.Timings for the CellSort global merging phase vs. Optimized on-chip-pipelined merging
for global merging of integers on QS20

k #ints CellSort Global Merging On-Chip-Pipelined Merging Speedup
5 16Mi 219 ms 174 ms 1.26
6 32Mi 565 ms 350 ms 1.61
7 64Mi 1316 ms 772 ms 1.70

pipelined merging with the best mapping chosen. We achieve significant speedups for



Fig. 6.Merge
times on
QS20 for
k = 7,
further
mappings.

on-chip-pipelining in all cases; the best speedup of 70% can be obtained with 7 SPEs
(64Mi elements) on QS20, using the mapping withε = 0.01 in Fig. 6; the correspond-
ing speedup figure for the PS3 is 143% atk = 5, 16Mi elements. This is due to less
communication with off-chip memory.

5.4 Discussion

Different mappings gives some variation in execution times, it seems like the cost model
used in the mapping optimizer is more important than the priority parameters in it.

Also with on-chip pipelining, using deeper tree pipelines (to fully utilize more
SPEs) is not always beneficial beyond a certain depthk, here fork = 6 for PS3 and
k = 8 for QS20, as a too large number of tasks increases the overhead of on-chip
pipelining (smaller buffers, scheduling overhead, tag administration, synchronization,
communication overhead). The overall pipeline fill/drain overhead is more significant
for lower workloads but negligible for the larger ones.

From Fig. 1 it is clear that, with optimized mappings, buffer size may be lowered
without losing much performance, which frees more space in the local store of the SPEs,
e.g. for accommodating the code for all phases of CellSort, saving the time overhead
for loading in a different SPE program segment for the merge phase.

6 Conclusion and Future Work

With an implementation of the global merging phase of parallel mergesort as a case
study of a memory-intensive computation, we have demonstrated how to lower memory
bandwidth requirements in code for the Cell BE by optimized on-chip pipelining. We
obtained speedups of up to 70% on QS20 and 143% on PS3 over the global merging
phase of CellSort, which dominates the sorting time for larger input sizes.

On-chip pipelining is made possible by several architectural features of Cell that
may not be available in other multicore processors. For instance, the possibility to for-
ward data by DMA between individual on-chip memory units is not available on current
GPUs where communication is only to and from off-chip global memory. The possi-
bility to lay out buffers in on-chip memory and move data explicitly is not available on



cache-based multicore architectures. Nevertheless, on-chip pipelining will be applica-
ble in upcoming heterogeneous architectures for the DSP and multimedia domain with
a design similar to Cell, such as ePUMA [9]. Intels forthcoming 48-coresingle-chip
cloud computer[8] will support on-chip forwarding between tiles of two cores, with
16KB buffer space per tile, to save off-chip memory accesses.

On-chip pipelining is also applicable to other streaming computations such as gen-
eral data-parallel computations or FFT. In [10] we have described optimal and heuristic
methods for optimizing mappings for general pipelined task graphs.

The downside of on-chip pipelining is complex code that is hard to debug. We are
currently working on an approach togeneric on-chip pipeliningwhere, given an ar-
bitrary acyclic pipeline task graph, an (optimized) on-chip-pipelined implementation
will be generated for Cell. This feature is intended to extend our BlockLib skeleton
programming library for Cell [11].

AcknowledgementsC. Kessler acknowledges partial funding from EU FP7 (projectPEPPHER,
#248481), VR (Integr. Softw. Pipelining), SSF (ePUMA), Vinnova, and CUGS. We thank Niklas
Dahl and his colleagues from IBM Sweden for giving us access to their QS20 blade server.

References

1. Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell Broadband Engine Architecture and its
first implementation—a performance view. IBM J. Res. Devel.51(5) (Sept. 2007) 559–572

2. Gedik, B., Bordawekar, R., Yu, P.S.: Cellsort: High performance sorting on the Cell proces-
sor. In: Proc. 33rd Int.l Conf. on Very Large Data Bases. (2007) 1286–1207

3. Inoue, H., Moriyama, T., Komatsu, H., Nakatani, T.: AA-sort: A new parallel sorting algo-
rithm for multi-core SIMD processors. In: Proc. 16th Int.l Conf. on Parallel Architecture and
Compilation Techniques (PACT), IEEE Computer Society (2007) 189–198

4. Keller, J., Kessler, C.W.: Optimized pipelined parallel merge sort on the Cell BE. In: Proc.
2nd Workshop on Highly Parallel Processing on a Chip (HPPC-2008) at Euro-Par 2008, Gran
Canaria, Spain. (2008)

5. Kessler, C.W., Keller, J.: Optimized on-chip pipelining of memory-intensive computations
on the Cell BE. In: Proc. 1st Swedish Workshop on Multicore Computing (MCC-2008),
Ronneby, Sweden. (2008)

6. Hultén, R.: On-chip pipelining on Cell BE. Forthcoming master thesis, Dept. of Computer
and Information Science, Linköping University, Sweden (2010)

7. ILOG Inc.: Cplex version 10.2. www.ilog.com (2007)
8. Howard, J.,et al.: A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS.

Proc. IEEE International Solid-State Circuits Conference, pp. 19–21 (February 2010)
9. Liu, D., et al.: ePUMA parallel computing architecture with unique memory access.

www.da.isy.liu.se/research/scratchpad/ (2009)
10. Kessler, C.W., Keller, J.: Optimized mapping of pipelined task graphs on the Cell BE. In:

Proc. 14th Int. Worksh. on Compilers for Par. Computing Zürich, Switzerland. (Jan. 2009)
11. Ålind, M., Eriksson, M., Kessler, C.: Blocklib: A skeleton library for Cell Broadband Engine.

In: Proc. ACM Int. Workshop on Multicore Software Engineering (IWMSE-2008) at ICSE-
2008, Leipzig, Germany. (May 2008)


