
1

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating systems

Operating System Structures
and Virtual Machines

[SGG7/8] Chapter 2.7-2.8
[SGG9] Chapter 2.7, 1.11.6

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

10.2TDIU11, C. Kessler, IDA, Linköpings universitet.

NON SCHOLAE, SED VITAE
* Free translation: Not mandatory for the exam, but good to know anyway ...

10.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Operating System Structures
n How to manage OS complexity?
l Divide-and-conquer!
l Decompose into smaller components

with well-defined interfaces and dependences
4Layered Approach
4Microkernels
4Modules
4Virtual Machines

10.4TDIU11, C. Kessler, IDA, Linköpings universitet.

Simple Structure
n MS-DOS – written to provide the most functionality in the least

space
l Not divided into

modules
l Although MS-DOS

has some structure,
its interfaces and levels
of functionality are
not well separated

2

10.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Layered Approach

Layer i+1

Layer i

Layer i-1

n The operating system is
divided into a number of
layers (levels, rings),
each built on top of lower layers.
l Bottom layer (0) = hardware
l Top layer (N) = user interface
l Functions in layer i call only

functions/services in layers < i
(strict layering: only in i or i-1)

n Modularity
l Interface of a layer:

upwards-exposed services +
downwards-required services

may
call

10.6TDIU11, C. Kessler, IDA, Linköpings universitet.

UNIX System Structure: 3 Layers

S
ys

te
m

 a
nd

 a
pp

li-
ca

tio
n

pr
og

ra
m

s

Users and application programs

shells and commands
compilers, interpreters, system libraries, ...

10.7TDIU11, C. Kessler, IDA, Linköpings universitet.

THE OS: 6 Layers
n A layered design was first used in the THE operating system

[Dijkstra’68, Technische Hogeschool at Eindhoven, NL]

layer 5: user programs

layer 4: buffering for input and output
layer 3: operator-console device driver

layer 2: memory management
layer 1: CPU scheduling
layer 0: hardware

see SGG7 Ch. 23.4, p. 847

may
call

10.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Problems of the layered approach
n Cyclic dependences between different OS components

Example:
l Backing store driver for swapping

should be able to call CPU scheduler to release the CPU
while waiting for I/O

l CPU scheduler needs to know about memory needs of all
active processes, on a large system this information
resides in memory that is possibly swapped out...

n Less efficient
l Long call chains (e.g. I/O) down to system calls, possibly

with parameter copying/modification at several levels

n Compromise solution: Have few layers à less structured

3

10.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Microkernel System Structure
n “Lean kernel”: Moves as much service functionality as

possible from the kernel into “user” space
l Kernel: Minimal process and memory management; IPC

n Communication between user modules by message passing
n Example: Mach kernel, used e.g. in Tru64 Unix or Mac OS-X
n Benefits:
l Easier to extend a microkernel
l Easier to port the operating system to new architectures
l More reliable (less code is running in kernel mode)
l More secure (-”-)

n Detriments:
l Performance overhead of user space to kernel space

communication
10.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Modules

n Most modern operating systems implement kernel modules
n Component-based approach:
l Each core component is separate
l Each talks to the others over known interfaces
l Each is loadable as needed within the kernel

n Example: Solaris
loadable kernel modules,
Linux,
Mac-OS X

n Overall, similar to layers
but more flexible

10.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Example: Mac-OS X ”Darwin”

n Hybrid structure: Layering + Microkernel + Modules

Mach Microkernel:
Memory mgmt, thread scheduling, IPC, RPC

BSD Unix kernel:
Command-line interface, networking,
file system support, POSIX implem.

Application environments,
common services, GUI services

Kernel
extensions:
device drivers,
dynamically
loadable modules

10.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual Machines
n A virtual machine provides an interface identical to the underlying bare

hardware (or to some other real or fictive machine).
l Example: Multitasking OS creates the illusion that each process

executes on its own (virtual) processor with its own (virtual) memory.
l Example: qemu (used in Pintos labs) simulates x86 hardware
l Example: The Java VM simulates an abstract computer that executes

Java bytecode.
n Virtual machine implementation (VM monitor, hypervisor)

intercepts operations and interprets them.
n Several virtual machines may share the resources of a physical computer:

l CPU scheduling: create illusion that users have their own processor
l Virtual disks with virtual file systems on physical disk / file system
l A normal user time-sharing terminal serves as the virtual machine

operator’s console
n Can run multiple and different OS’s on the same physical computer

l Examples: VMware, Xen

4

10.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) Virtual machines

Non-virtual Machine Virtual Machine
Virtual Machine
Monitor (VMM),

Hypervisor

guest
OS

10.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual Machines – Advantages, Drawbacks

n Complete protection of system resources
since each virtual machine is isolated from all other virtual machines.
l however, permits no direct sharing of resources.

n Perfect vehicle for operating-systems research, development, teaching
l System development is done on the virtual machine,

instead of on a physical machine
and so does not disrupt normal system operation.

n Portability across multiple platforms (host OS, hardware)
l Java VM
l Legacy binary codes for obsolete hardware still operational

n Saves appl.-server hardware costs if clients demand a private system
l ”Most servers today run at <15% utilization, TCO ~10k$/yr/server” [Xen]

n Difficult to implement
l to provide an exact duplicate to the underlying machine

n Old idea!
l 1972 by IBM on System/360

10.15TDIU11, C. Kessler, IDA, Linköpings universitet.

VMware Architecture

10.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtualization technology overview
Traditional virtualization: Virt.
machine/Emulation

Lightweight virtualization:
Paravirtualization

Lightweight virtualization:
OS-level virtualization

Emulates real or fictitious
hardware
+ guest HW != host HW

possible
+ diff. guest OSs possible
+ guest OS is not aware

of the host OS beneath
- VMM needed to dis-
patch virtual kernel
mode privileged
instructions

- translation overhead

”Almost” same hardware
(barring speed and size)
+ different host and guest

OSs possible
- VMM needed
- guest OS to be rewritten
to be VMM-aware
(fix privileged
instructions)

- still overhead
à # of VMs limited

Virtualization done by the host
OS
No VMM
Guest OS = Host OS
(and same HW)
+ Multiple instances of

same OS possible
+ Low overhead
+ Can scale up to

hundreds of VMs
e.g. for virtual private servers

VM/370 (IBM), VMware,
Bochs, QEMU, Parallels,
Microsoft Virtual Server,
Java JVM, C#/.NET CLR

Xen
UML (User-mode Linux)
Denali

Docker for Linux
Solaris 10 ”Zones”
(Containers),
OpenVZ, Virtuozzo, Linux-
VServer,
FreeBSD-Jails

5

10.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Paravirtualization Example: Xen

User
software

User
software

User
software

Control
Plane

Software

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Guest OS
(XenoBSD)

Guest OS
(XenoXP)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

interface

Virtual
network

Virtual
physical
memory

Virtual
x86
CPU

Virtual
blockdevices

XEN
hyper
visor

Hardware (SMP x86, MMU, physical memory, network access, SCSI/IDE)

Virtual
MMU

Adapted from: P. Barham et al.: Xen and the Art
of Virtualization. Proc. SOSP 2003 10.18TDIU11, C. Kessler, IDA, Linköpings universitet.

OS-Level Virtualization Example:
Solaris 10 Containers (”Zones”)

Solaris Kernel

Network addresses

User programs
System programs
CPU resources

Memory resources

Global zone

Devices

Virtual platform
Device management

User programs
System programs

Network addresses
Device access
CPU resources

Memory resources

Zone 1

User programs
System programs

Network addresses
Device access
CPU resources

Memory resources

Zone 2

Zone Management

vi
rtu

al
iz

ed

10.19TDIU11, C. Kessler, IDA, Linköpings universitet.

The Java Virtual Machine

All accesses to
system resources
mediated by JVM
à ”Sandbox”

JVM

Possibly untrusted
applets from internet

10.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Hardware support for virtualization
n Simulate mode bit, system call effects, … in software???
n Second hardware mode bit in status register
l Physical mode bit used only by VMM / host kernel

4Virtual machine incl. guest OS
runs in physical user mode

l Virtual mode bit used by guest OS
4Virtual kernel mode vs virtual user mode

n AMD: host mode vs guest mode
l Virtual machines run in guest mode

4Completely unaware of the virtualization
4Access to virtualized devices traps to VMM/host OS

l VMM / virtualizing kernel can switch to host mode

6

10.21TDIU11, C. Kessler, IDA, Linköpings universitet.

Summary: Operating System Structures
n How to manage OS complexity?
l Divide-and-conquer!
l Decompose into smaller components

with well-defined interfaces and dependences
4Layered Approach
4Microkernels
4Modules
4Virtual Machines

– Traditional Virtualization
– Light-Weight Virtualization

(Paravirtualization, OS-level virtualization)

10.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Literature: Virtual Machines, Virtualization
n IEEE Computer May 2005 special issue on Virtual Machines

e.g.
R. Uhlig et al.: Intel Virtualization Technology.
IEEE Computer, May 2005, pp. 48-56.

n XenSource: XenTM: Enterprise Grade Open Source
Virtualization: Inside XenTM 3.0. White Paper V06012006,
www.xensource.com

n P. Barham et al.: Xen and the Art of Virtualization.
Proc. of SOSP 2003, pp. 164-177, ACM press.

n S. Bellovin: Virtual Machines, Virtual Security?
Communications of the ACM 49(10): 104, Oct. 2006

n M. Price: The Paradox of Security in Virtual Environments.
IEEE Computer Nov. 2008, pp. 22-28.

n And many others...

