
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating Systems

File-System Implementation

[SGG7/8/9] Chapter 11

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

7.2TDIU11, C. Kessler, IDA, Linköpings universitet.

File System Implementation

n File-System Structure
n File-System Implementation
n Directory Implementation
n Allocation Methods
n Free-Space Management
n Recovery
n Log-Structured File Systems

7.3TDIU11, C. Kessler, IDA, Linköpings universitet.

File-System Structure
n File system resides on

secondary storage (disks)
n File system organized into layers:
n File control block (FCB) –

(at the logical FS layer)
storage structure consisting of
information about a file

Layered File System

File API:
filenames, directories,
attributes, access...

Logical block addresses
(1D array of blocks)

Physical block addresses
on disk (cylinder, sector,...)

read/write block
commands

7.4TDIU11, C. Kessler, IDA, Linköpings universitet.

File-System Structure
n File organization module

implements the File system interface:
l understands files/directories, knows

logical addresses, and physical blocks.
l Translates logical block # to physical block #.

Manages free space, disk allocation
n Basic file system

l issues generic commands to the appropriate
device driver.

l Manages memory buffers and caches
(allocation, freeing, replacement)

n Device drivers manage I/O devices at the I/O
control layer.
l Given “retrieve block 123”, outputs low-level

commands to hardware controller
n Disk provides in-place rewrite and random

access. I/O transfers performed in blocks of
sectors (usually 512 bytes)

Layering is useful for reducing complexity and
redundancy (e.g. several FSs), but adds overhead
and can decrease performance. Layered File System

File API:
filenames, directories,
attributes, access...

Logical block addresses
(1D array of blocks)

Physical block addresses
on disk (cylinder, sector,...)

read/write block
commands

2

7.5TDIU11, C. Kessler, IDA, Linköpings universitet.

In-Memory File System Structures

(a) Opening an existing file

(b) Reading an open file
7.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Directory Implementation

n Directories contain pointers to files
n Linear list of file names with pointer to the data blocks.
l simple to program
l time-consuming to execute

n Possible ways to speed up lookups
l Caching lookups
l Sorting directory entries
l Hash table structure

F1 F2 F3 F4
Fn

Directory

Files

Name File pointer
File1 F1
File2 F2
File3 F3
… …

7.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Directory Implementation – Details

n Linear list of file names with pointer to the data blocks

l Simple to program

l Time-consuming to execute

4Linear search time

4Could keep ordered alphabetically via linked list
or use B+ tree

n Hash Table – linear list with hash data structure

l Decreases directory search time

l Collisions – situations where two file names hash to the same
location

l Only good if entries are of fixed size, or use a chained-overflow
method

7.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Partitions and Mounting

n Partition can be a volume containing a file system (“cooked”)
or raw – just a sequence of blocks with no file system

n Boot block can point to boot volume or boot loader set of
blocks that contain enough code to know how to load the
kernel from the file system.
l At boot time, the system does not know FS code yet.

n Root partition contains the OS, other partitions can hold
other OSes, other file systems, or be raw
l Mounted at boot time
l Other partitions can mount automatically or manually

n At mount time, file system reads device directory and
consistency is checked

3

7.9TDIU11, C. Kessler, IDA, Linköpings universitet.

File Allocation Methods
n An allocation method refers to

how disk blocks are allocated for files
l Contiguous allocation
l Linked allocation
l Indexed allocation

7.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Contiguous Allocation
n Each file occupies a set of

contiguous blocks on the disk

n Simple – need
only starting location
(block index)
and length (# of blocks)

n Random access

n Wasteful of space
(dynamic storage-
allocation problem)

n Files cannot grow easily
n Works well on CD-ROM

7.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Extent-Based Systems

n Many newer file systems (e.g., the Veritas File System)
use a modified contiguous allocation scheme

n Extent-based file systems allocate disk blocks in extents

n An extent is a contiguous block of disks
l Extents are allocated for file allocation
l A file consists of one or more extents.

7.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Linked Allocation
n Each file is a linked list of disk blocks:

blocks may be scattered

next-pointerblock =

n Simple –
need only starting address

n Free-space management
n No external fragmentation
n No random access

4

7.13TDIU11, C. Kessler, IDA, Linköpings universitet.

File-Allocation Table (FAT)
File-allocation table (FAT) – disk-space allocation used by MS-DOS and OS/2.

Variant of linked allocation:

FAT resides in reserved section
at beginning of each disk volume

One entry for each disk block,
indexed by block number, points to successor.
Entry for last block in a chain has table value -1

Unused blocks have table value 0
à Finding free blocks is easy

Does not scale well to large disks
or small block sizes

in FAT

7.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Indexed Allocation
n Brings all pointers together into an index block

7.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Indexed Allocation (Cont.)

n Direct access once index block is loaded
l without external fragmentation,
l but overhead of index block.

n All block pointers of a file must fit into the index block
l How large should an index block be?

4Small – Limits file size
4Large – Wastes space for small files

l Solution: Multi-level indexed allocation à

7.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Multilevel-indexed allocation
Example: Two-level indexed allocation

Directory
entry

Μ

outer-index

index table file data blocks

With 4K-blocks, could store up to 1,024 four-byte pointers in the outer-index block
à up to 1024 inner-index blocks
à up to 1,048,567 data blocks and file size of up to 4GB

(1 block)

5

7.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Combined Scheme: UNIX inode
Block size 4 KB
à With 12 direct block pointers kept in the inode, 48 KB can be addressed directly.

☺ Small overhead
for small files

☺ Still allows
large files

(12 pointers)

7.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Free-Space Management (1)

n Bit vector (of size n for n blocks)
…

0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupiedn Number of first free block =
(number of bits per word) * (number of 0-value words) + offset of first 1 bit

n Easy to get contiguous files
n Bit map requires extra space
l Example: block size = 1 KB = 210 bytes

disk size = 68 GB ~ 236 bytes
n = 236/210 = 226 bits (or 67 MB)

n Inefficient unless entire bit vector is kept in main memory

7.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Free-Space Management (2)

n Linked free space list on disk
l Only need to store the pointer

to the first free block
l Finding k free blocks means

reading in k blocks from disk
l No waste of space

7.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Free-Space Management (3)
n Grouping

n Counting
l Often, multiple subsequent blocks are allocated/freed

together
l For sequences of free blocks located subsequently on disk,

keep only reference to first one and length of sequence

(n-1 references to free blocks)

…

a really free block

First ”free” block

Free-list organized
using chained index
blocks

6

7.21TDIU11, C. Kessler, IDA, Linköpings universitet.

Efficiency and Performance
Efficiency dependent on:
n File allocation method and directory implementation
n Types of data kept in file’s directory entry: e.g., last access
n Pre-allocation (Unix inodes) or as-needed metadata allocation
n Varying-size data structures: e.g., clusters of varying sizes

Performance:
n Keeping data and metadata close together to reduce seek time
n Buffer cache – in main memory for frequently used blocks
n Synchronous writes sometimes requested by apps or needed by OS

l No buffering / caching – writes must hit disk before acknowledgement
l Asynchronous writes more common, buffer-able, faster

n Free-behind and read-ahead – techniques to optimize sequential access
n Reads frequently slower than writes

7.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Recovery

n Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies
l Can be slow and sometimes fails

n Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical)

n Recover lost file or disk by restoring data from backup

7.23TDIU11, C. Kessler, IDA, Linköpings universitet.

File System Consistency
n We know: Which blocks are used by each file and which blocks are

free
n If a partition was not cleanly unmounted (crash, power failure)

these can become inconsistent
n We can try to repair (fsck, scandisk)

l For each block
4Find which files use the block
4Check if the block is marked as free

l The block is used by 1 file xor is free – OK
l Two files use the same block – BAD: duplicate the block and

give one to each file
l The block is both used and is marked free – BAD: remove from

free list
l The block is neither free nor used – Wasted block: mark as free

7.24TDIU11, C. Kessler, IDA, Linköpings universitet.

Log Structured File Systems
n Log structured (or journaling) file systems record each metadata

update to the file system as a transaction
n All transactions are written to a log

l A transaction is considered committed
once it is written to the log (sequentially)

l Sometimes to a separate device or section of disk
l However, the file system may not yet be updated

n The transactions in the log are asynchronously written to the file
system structures
l When the file system structures are modified,

the transaction is removed from the log
n If the file system crashes, all remaining transactions in the log must

still be performed

☺ Faster recovery from crash,
☺ removes risk of inconsistency of metadata

