TDIU11
Operating Systems

File-System Implementation

[SGG7/8/9] Chapter 11

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9™ edition, 2013 by Silberschatz, Galvin and Gagne.

Christoph Kessler, IDA,

Linkdpings universitet.

Iz
File System Implementation

m File-System Structure

m File-System Implementation
m Directory Implementation

m Allocation Methods

m Free-Space Management

m Recovery

m Log-Structured File Systems

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.2

| [T
File-System Structure

application programs

m File system resides on File APE
secondary storage (disks) filenames, directories,
. . . attributes, access...
m File system organized into layers: ogical tile system

m File control block (FCB) —
(at the logical FS layer)
storage structure consisting of
information about a file

file-organization modulg

Logical block addresses
(1D array of blocks)

basic file system
file permissions
read/write block l
file dates (create, access, write) commands
I/O control

file owner, group, ACL Physical block addresses
on disk (cylinder, sector,...)

file size devices

file data blocks or pointers to file data blocks

Layered File System

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.3

| [T
File-System Structure

application programs
®m File organization module -
implements the File system interface: File API:

o understands files/directories, knows filenames, directories,
logical addresses, and physical blocks. attributes, access...
e Translates logical block # to physical block #. ogical file system
Manages free space, disk allocation
m Basic file system

e issues generic commands to the appropriate file-organization modulg
device driver.

e Manages memory buffers and caches ‘ Logical block addresses %J;L
(allocation, freeing, replacement) (1D array of blocks)

® Device drivers manage /O devices at the 1/0 basic file system

control layer. read/write block
e Given “retrieve block 123, outputs low-level commands

commands to hardware controller
I/O control

m Disk provides in-place rewrite and random -
access. 1/O transfers performed in blocks of | Physical block addresses
sectors (usually 512 bytes) on disk (cylinder, sector,...)

devices
Layering is useful for reducing complexity and
redundancy (e.g. several FSs), but adds overhead

and can decrease performance. Layered File System
TDIU11, C. Kessler, IDA, Linképings universitet. 7.4

LINKOPING
| [T

In-Memory File System Structures

open (file name) —

I

L]

[
L]
irector

L]

o

structure

<

directory structure

file-control block

user space kernel memory secondary storage
(a) Opening an existing file
AN]
=E .
/ data blocks
read (index) —— \\D
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

(b) Reading an open

TDIU11, C. Kessler, IDA, Linkdpings universitet.

file

75

Directory Implementation — Details

m Linear list of file names with pointer to the data blocks

e Simple to program

e Time-consuming

» Linear search

» Could keep ordered alphabetically via linked list

or use B+ tree

m Hash Table — linear list with hash data structure

to execute

time

e Decreases directory search time

e Collisions — situations where two file names hash to the same

location

e Only good if entries are of fixed size, or use a chained-overflow

method

TDIU11, C. Kessler, IDA, Linkdpings universitet.

L7

LINKOPING
| [T

LINKOPING
| [T

Directory Implementation

Directo
Name File pointer
File1 F1
File2 F2

m Directories contain pointers to files
m Linear list of file names with pointer to the data blocks.
e simple to program
e time-consuming to execute
m Possible ways to speed up lookups
e Caching lookups
e Sorting directory entries
e Hash table structure

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.6

hw
Partitions and Mounting

m Partition can be a volume containing a file system (“cooked”)

or raw — just a sequence of blocks with no file system

m Boot block can point to boot volume or boot loader set of
blocks that contain enough code to know how to load the
kernel from the file system.

e At boot time, the system does not know FS code yet.

B Root partition contains the OS, other partitions can hold
other OSes, other file systems, or be raw

e Mounted at boot time
e Other partitions can mount automatically or manually
m At mount time, file system reads device directory and
consistency is checked

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.8

LINKOPING
UNIVERSITY

LINKOPING
| [T

File Allocation Methods

® An allocation method refers to
how disk blocks are allocated for files

e Contiguous allocation
e Linked allocation
e Indexed allocation

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.9

LINKOPING
| [T

Extent-Based Systems

® Many newer file systems (e.g., the Veritas File System)
use a modified contiguous allocation scheme

m Extent-based file systems allocate disk blocks in extents
B An extent is a contiguous block of disks

e Extents are allocated for file allocation
e A file consists of one or more extents.

TDIU11, C. Kessler, IDA, Linkpings universitet. 711

next-pointer

m Simple =

B Free-space management
m No external fragmentation

o, NOFFNAOM,-3CCLSS

need only starting address 2052125235

o] 1] 21 31
4 5161 701

Iz
Contiguous Allocation
m Each file occupies a set of
contiguous blocks on the d}k, e— directory
. N A :
® Simple — need P fle start length
only starting location o 1 201 3] count 0 2
(block index) 20 50 60 70 voom s
length f block .
and length (# of blocks) JEpp— lfm ZZ ;
® Random access voCJ130 a1 50]
m Wasteful of space 160J17011800190]
(dynamic storage- 200121 Ts2Ta]
allocation problem)
24[J2s[126127
m Files cannot grow easily | s JaorlooTs10]
o Works well on GD-ROM ~— _—~
| [T
Linked Allocation
m Each file is a linked list of disk blocks: .
blocks may be scattered directory

file start end
jeep 9 25

17018119

24[25[H[26[127[]

28[129130131
‘\\ /

712

LINKOPING
| [T

File-Allocation Table (FAT)

File-allocation table (FAT) — disk-space allocation used by MS-DOS and OS/2.

directory entry

[test [eee T 217
name start block
in FAT 0

Variant of linked allocation:

FAT resides in reserved section

. . 217 618
at beginning of each disk volume
One entry for each disk block,
indexed by block number, points to successor. 339
Entry for last block in a chain has table value -1
Unused blocks have table value 0
- Finding free blocks is easy 618339

Does not scale well to large disks
or small block sizes

no. of disk blocks -1

FAT

TDIU11, C. Kessler, IDA, Linkpings _universitet. 713

e
Indexed Allocation

m Brings all pointers together into an index block

PN directory
~— fle index block

o] 1[\25 3] Jeep 1;’
41 s 70

20[J21[J22[A23[]
2412526 J27[]
28[J29[130[J31[]

| T
Indexed Allocation (Cont.)
m Direct access once index block is loaded

e without external fragmentation,
e but overhead of index block.

m All block pointers of a file must fit into the index block
e How large should an index block be?
» Small — Limits file size
» Large — Wastes space for small files
e Solution: Multi-level indexed allocation >

N 14/

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.

TDIU11, C. Kessler, IDA, Linkpings_universitet. 715

. . . | [T
Multilevel-indexed allocation
Example: Two-level indexed allocation
/"
. —
Directory |——| — gi
entry
\\
N
M
\\
\\
outer-index
(1 block)
index table file data blocks
With 4K-blocks, could store up to 1,024 four-byte pointers in the outer-index block
- up to 1024 inner-index blocks
- up to 1,048,567 data blocks and file size of up to 4GB
TDIU11, C. Kessler, IDA, Linképings universitet. 7.16

LINKOPING
| [T

Combined Scheme: UNIX inode

Block size 4 KB
- With 12 direct block pointers kept in the inode, 48 KB can be addressed directly.

mode
owners (2)
timestamps (3)
size block count
[data |
.
direct blocks 7 .
(12 pointers) o
.
© Small overhead single indirect _A,E e [f——{data_
for small files & data | -
© siil al double indirect E 1=—{ data_
till allows 5
S — —_—
large files triple indirect > ; data
o [data’
TDIU11, C. Kessler, IDA, Linképings universitet. 7.17 _ data
| [T

Free-Space Management (2)

free-space list head ——

m Linked free space list on disk

e Only need to store the pointer
to the first free block 20[]21[]22F 123[]

e Finding k free blocks means
reading in k blocks from disk

28[129[130[J31[]
N . 4

e No waste of space

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.19

| [T
Free-Space Management (1)

m Bit vector (of size n for n blocks) o 1 2 n-1

) { 1 = block[] free
bit[i] =

0 = block[i] occupied

Number of first free block =
(number of bits per word) * (number of 0-value words) + offset of first 1 bit
m Easy to get contiguous files
m Bit map requires extra space
e Example: block size = 1 KB = 210 bytes
disk size = 68 GB ~ 2% bytes
n = 236/210 = 226 bits (or 67 MB)
m Inefficient unless entire bit vector is kept in main memory

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.18

| TR

Free-Space Management (3)
® Grouping

Free-list organized a really free block

using chained index

blocks

First "free” V
(T TTTTTTT T T

m Counting

e Often, multiple subsequent blocks are allocated/freed
together

e For sequences of free blocks located subsequently on disk,
keep only reference to first one and length of sequence

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.20

. . | [T
Efficiency and Performance

Efficiency dependent on:

m File allocation method and directory implementation

m Types of data kept in file’s directory entry: e.g., last access

m Pre-allocation (Unix inodes) or as-needed metadata allocation
m Varying-size data structures: e.g., clusters of varying sizes

Performance:

m Keeping data and metadata close together to reduce seek time

m Buffer cache — in main memory for frequently used blocks

m Synchronous writes sometimes requested by apps or needed by OS
o No buffering / caching — writes must hit disk before acknowledgement
e Asynchronous writes more common, buffer-able, faster

Free-behind and read-ahead — techniques to optimize sequential access

Reads frequently slower than writes

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.21

| [T
Recovery

m Consistency checking — compares data in directory

structure with data blocks on disk, and tries to fix
inconsistencies

e Can be slow and sometimes fails

m Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical)

m Recover lost file or disk by restoring data from backup

TDIU11, C. Kessler, IDA, Linkpings _universitet. 7.22

| [TREE
File System Consistency

® We know: Which blocks are used by each file and which blocks are
free

m [f a partition was not cleanly unmounted (crash, power failure)
these can become inconsistent

m We can try to repair (fsck, scandisk)
e For each block
» Find which files use the block
» Check if the block is marked as free
e The block is used by 1 file xor is free — OK

e Two files use the same block — BAD: duplicate the block and
give one to each file

e The block is both used and is marked free — BAD: remove from
free list

e The block is neither free nor used — Wasted block: mark as free

TDIU11, C. Kessler, IDA, Linkpings universitet. 7.23

LINKOPING
| [T

Log Structured File Systems

®m Log structured (or journaling) file systems record each metadata
update to the file system as a transaction

m All transactions are written to a log

e A transaction is considered committed
once it is written to the log (sequentially)

e Sometimes to a separate device or section of disk
e However, the file system may not yet be updated

®m The transactions in the log are asynchronously written to the file
system structures

e When the file system structures are modified,
the transaction is removed from the log

m [f the file system crashes, all remaining transactions in the log must
still be performed

© Faster recovery from crash,
© removes risk of inconsistency of metadata

TDIU11, C. Kessler, IDA, Linkdpings universitet. 7.24

