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Virtual Memory

[SGG7/8/9]    Chapter 9
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Overview:  Virtual Memory

n Background
n Demand Paging
n Page Replacement
n Allocation of Frames 
n Thrashing and Data Access Locality

n Appendix: Additional Slides on Virtual Memory
l Process Creation: Copy-on-Write
l I/O Interlock
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Virtual address space of a process

Sparse address space:
”Holes” should be allocated pages 
only when the stack/heap grows

Not all functionality provided in 
the program text will be executed 
in every run of the program
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Virtual Memory

n Previously achieved: 
Separation of user logical memory from physical memory   
l ++ protection, reuse
l Still, the whole program and data must be loaded in memory

n Virtual memory
Idea: Only part of the program needs to be in memory for execution.
l Throw out pages currently not used   (to secondary memory)
l Logical address space can therefore be much larger 

than physical address space.
l Allows address spaces to be shared by several processes.
l Allows for more efficient process creation.

n Virtual memory can be implemented via:
l Demand paging 
l Demand segmentation



2

5.5TDIU11,  C. Kessler, IDA, Linköpings universitet.

Virtual Memory That is Larger Than Physical Memory

⇒
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Demand Paging
n Bring a page into memory only when it is needed
l Less I/O needed
l Less memory needed 
l Faster response
l More users

n Page is needed if referenced (load/store, data/instructions)
l invalid reference ⇒ abort
l not-in-memory ⇒ bring to memory

[Kilburn et al. 1961]
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Demand paging  (“lazy paging”, “lazy swapping”):
Transfer of a Paged Memory to Contiguous Disk Space

Rather than swapping entire processes (cf. swapping), 
we page their pages from/to disk only when first referenced.

5.8TDIU11,  C. Kessler, IDA, Linköpings universitet.

Valid-Invalid Bit

n With each page table entry, a valid–invalid bit is associated
(1 ⇒ page in memory,  0 ⇒ not-in-memory)

n Initially, valid–invalid bit is set to 0 on all entries
n Example of a page table snapshot:

n During address translation, 
if valid–invalid bit in page table entry is 0  ⇒ page fault

1
1
1
1
0

0
0

Μ

Frame # valid-invalid bit

page table
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Page Table When Some Pages Are Not in Main Memory
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Steps in Handling a Page Fault 
(Case: a free frame exists)

”Busy waiting” for slow disk?
Better allocate the CPU to 
some other ready process in 
the meanwhile…
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What happens if there is no free frame?

n Page replacement –
find some page in memory, but not really in use, 
swap it out
l Write-back only necessary if victim page was modified
l Same page may be brought into memory several times
l Various algorithms
l Performance 

4want an algorithm that minimizes number of page faults
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Performance of Demand Paging

n Page Fault Rate p        0 ≤ p ≤ 1.0
l if p = 0: no page faults 
l if p = 1, every reference is a fault

n Memory access time t

n Effective Access Time (EAT)
EAT  =  (1 – p) t

+  p . (    page fault overhead
+ time to swap page out, if modified
+ time to swap new page in
+ restart overhead
+ t   )
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Demand Paging Example
n Write-back rate w          0 <= w <= 1

% of page faults where page replacement is needed and the 
victim page has been modified so it needs to be swapped out

n Example:
l Memory access time  =  1 microsecond (µs)
l Time for swapping a page  =  10 ms = 10,000 µs
l Write-back rate  w = 0.5 = 50%
à expected swap time per page fault = (1+w) * 10,000 µs

à EAT = (1 – p) . 1µs + p (15,000 µs)
= 1 µs  +  p . 14999 µs
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Example: Need For Page Replacement

kernel

...

...

0
1
2
3

0
1
2
3 all frames 

currently in use...

page fault for 
page 3
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Page Replacement
n Prevent over-allocation of memory by modifying page-fault 

service routine to include page replacement

n Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

n Page replacement completes separation between logical 
memory and physical memory – large virtual memory can be 
provided on a smaller physical memory
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Basic Page Replacement
Extended page-fault service routine:

n Find the location of the desired page on disk

n Find a free frame:
- If there is a free frame, 

use it
- If there is no free frame, 

use a page replacement algorithm
to select a victim frame 
and, if dirty, write its page to disk (1,2)

n Read the desired page into the (newly) free frame (3) 
Update the page table (4)

n Restart the process



5

5.17TDIU11,  C. Kessler, IDA, Linköpings universitet.

How to compare algorithms
for page replacement?

n Goal: find algorithm with lowest page-fault rate.

n Method: Simulation. 
l Assume initially empty page table
l Run algorithm on a particular string of memory references 

(reference string – page numbers only)
l Count number of page faults on that string.

n In all our examples, the reference string is 
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
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First-In-First-Out (FIFO) Algorithm

n Use a time stamp or a queue
n Victim is the ”oldest page”

n Assume   table size  =  3 frames / process
(3 pages can be in memory at a time per process)
and reference string:

1, 2, 3,  4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3
3 3 3 2 2 2 2 2 4 4

After page 3 is loaded, 
page 1 is the oldest of
them all (gray box)

The fact that we re-use an existing
page does not alter who has been
in there the longest...

A total
of 9 page

faults
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Expected Graph of 
Page Faults Versus Number of Frames

Generally,  more frames  =>  Less page faults  ?
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Same FIFO:  More frames = better ?
n 4 frames/process

(4 pages can be in memory at a time per process)
n Reference string:

1, 2, 3,  4, 1, 2, 5, 1, 2, 3, 4, 5

n FIFO Replacement – Belady’s Anomaly
l more frames with more page faults  – possible!

1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 3 3 3

A total
of 10 page

faults
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FIFO illustrating Belady’s Anomaly

more frames but more page faults
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An Optimal Algorithm            [Belady 1966]

n ”optimal”:
l has the lowest possible page-fault rate  (NB: still ignoring dirty-ness) 
l does not suffer from Belady’s anomaly

n Belady’s Algorithm:  Farthest-First, MIN, OPT
l Replace page that will not be used for the longest period of time....
l How do you know this?

n Example:   1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
1 1 1 1 1 1 1 1 1 1 4 1

2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

A total
of 6 page

faults

We will need frames 1, 2 and 3 
before we need frame 4 again,
thus throw it out!

Theoretical algorithm! Used for measuring
how well your algorithm performs, e.g.,
”is it within 12% from the optimal?”

Remark: Belady’s algorithm 
is only optimal if there are no
dirty write-backs.  Otherwise
it is just a heuristic algorithm.
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Least Recently Used (LRU) Algorithm

n Optimal algorithm not feasible?
....try using recent history as approximation of the future!

n LRU Algorithm:
l Replace the page that has not been used for the longest period of time

n Example:           1, 2, 3, 4, 1, 2, 5, 1, 2,  3, 4,  5

1 1 1 1 1 1 1 1 1 1 1 5
2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 5 5 5 5 4 4
4 4 4 4 4 4 3 3 3

Out of pages 1,2,3 and 4, 
page 3 is the one not used for 
the longest time...

A total
of 8 page

faults
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LRU Algorithm Implementations
n Timestamp implementation

l The process maintains a logical clock 
(counter for number of memory accesses made)

l Every page entry has a timestamp field
l Every time a page is referenced, 

copy the logical clock into the timestamp field
l When a page needs to be replaced, search for oldest timestamp

n Stack implementation
l keep a stack of page numbers

in doubly linked form:
l page referenced:

4 move it to the top
4 requires 6 pointers 

to be changed
l No search for replacement

Overhead!

Linear search!
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LRU Approximation Algorithms
n Reference bit for each page

l Initially = 0  (by OS)
l When page is referenced,

bit set to 1
l Replace a page whose bit is 0 

(if one exists).  
l We do not know the access order, 

however.
l May improve precision by

using several bits.

n Second chance algorithm
l Clockwise replacement
l If page to be replaced (in clock order) has reference bit = 1 then:

4 set reference bit 0
4 leave page in memory
4 replace next page (in clock order), subject to same rules
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Counting Algorithms

n Keep a counter of the number of references that have been 
made to each page

n LFU Algorithm:  replaces page with smallest count

n MFU Algorithm: based on the argument that the page with 
the smallest count was probably just brought in and has yet 
to be used

n Not common in today’s operating systems

5.27TDIU11,  C. Kessler, IDA, Linköpings universitet.

Allocation of Frames

n Each process needs a minimum number of pages
l Example:  

IBM 370 – 6 pages to handle SS MOVE instruction:
4instruction is 6 bytes, might span 2 pages
42 pages to handle from
42 pages to handle to

n Two major allocation schemes
l fixed allocation
l priority allocation
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Fixed Allocation

n Equal allocation
l Example: if there are 100 frames and 5 processes, 

give each process 20 frames.

n Proportional allocation
l Allocate according to the size of process
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Priority Allocation

n Use a proportional allocation scheme 
using priorities rather than size

n If process Pi generates a page fault,
l select for replacement one of its frames
l select for replacement a frame from a process with lower 

priority
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Global vs. Local Allocation

n Global replacement
l process selects a replacement frame 

from the set of all frames; 
l one process can take a frame from another

n Local replacement
l each process selects from only its own set of allocated 

frames
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Thrashing

n If a process does not have “enough” pages, 
the page-fault rate is very high.  This leads to:
l low CPU utilization
l operating system thinks that it needs to increase the 

degree of multiprogramming
l another process added to the system

n Thrashing ≡ a process is busy swapping pages in and out
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Demand Paging and Thrashing 

n Why does demand paging work?

Locality model
l Locality = set of pages that 

are actively used together
l Process migrates from

one locality to another
l Localities may overlap

n Why does thrashing occur?
Σ sizes of localities

>   total memory size
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Working-Set Model                 [Denning, 1968]
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Working-Set Model                 [Denning, 1968]

n ∆ ≡ working-set window ≡ a fixed number of page references
n WSi = WSi (t) = working set of process Pi at current time t

= set of pages referenced in the most recent ∆ accesses
l if ∆ too small, WS will not encompass entire locality
l if ∆ too large, WS will encompass several localities
l if ∆ = ∞ ⇒ WS will encompass entire program

n WSSi =  |WSi|  =  working set size of process Pi at current time
= total number of pages referenced in the most recent ∆ accesses

n D = Σi WSSi ≡ total demand frames 
l if  D > m ⇒ Thrashing
l Policy:  if  D > m,  then suspend one of the processes

WS can be derived 
e.g. by simulation, 

by sampling or 
tracing (with hard-

ware support).
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Program Structure Matters!
n Example:  Matrix initialization

l int data [128][128];
4 Each row is stored in one page

l Assume page size = 128 ints
l Assume < 128 frames available, LRU repl.

n Program 1: for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)      // traverse column-wise

data[i][j] = 0;

-> 128 x 128 = 16,384 page faults

n Program 2: for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)      // traverse row-wise

data[i][j] = 0;

-> 128 page faults
....

j

i

Data access 
locality is an important 
issue for programmers 

and optimizing compilers
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on Virtual Memory
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Process Creation:  Copy-on-Write
n fork(): 

Child process
gets a copy of
parent process’
address space

n Lazy copying

copy of C

process2 writes 
to page C
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Copy-on-Write
n Copy-on-Write (COW) allows both parent and child processes 

to initially share the same pages in memory
l If either process modifies a shared page, 

only then the page is copied
l Free pages are allocated from a pool of zeroed-out pages
l More efficient process creation 

as only modified pages are copied
l No improvement if child process does exec (overwrites 

all)

n Alternatively:  vfork() in Unix, Solaris, Linux:
l Light-weight fork variant: 

sleeping parent and immediate exec() by child process
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I/O interlock

(Physical) address of buffer gets 
stale if any of its pages is 

evicted: risk for overwriting 
(unrelated) data

DMA / 
interrupt-
driven I/O

n I/O Interlock
– Pages must sometimes be locked in memory

n Consider I/O. 
Pages that are used for 
copying a file from a device 
must be locked from being 
selected for eviction by a 
page replacement algorithm.

Uses physical
mem. addresses
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Data used by
Page Replacement Algorithms

n All algorithms need extra data in the page table, 
e.g., one or several of the following:
l A reference bit to mark if the page has been used
l a modify (dirty) bit to mark if a page has been written to 

(changed) since last fetched from SM
l Additional mark bits
l Counters or time stamps (used for theoretical algorithms –

must often be converted into use of mark bits)
l A queue or stack of page numbers...
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Page-Fault Frequency Scheme

n Establish “acceptable” page-fault rate
l If actual rate too low, process loses frame
l If actual rate too high, process gains frame
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