

Performance of Demand Paging	
■ Page Fault Rate p	0 ≤ <i>p</i> ≤ 1.0
 if p = 0: no page fa 	aults
if p = 1, every refe	rence is a fault
Memory access time	t
■ Effective Access Tin EAT = (1 - p)	me (EAT) t
+ p	(page fault overhead
	+ time to swap page out, if modified
	+ time to swap new page in
	+ restart overhead
	+t)
DII 111 C Kossler IDA Linkönings universitet	5 12

Page Replacement

01011. C. Kessler, IDA. Linköpings universitet.

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory

Data used by page Replacement Algorithms All algorithms need extra data in the page table, e.g., one or several of the following: A reference bit to mark if the page has been used a modify (dirty) bit to mark if a page has been written to (changed) since last fetched from SM Additional mark bits Counters or time stamps (used for theoretical algorithms – must often be converted into use of mark bits) A queue or stack of page numbers...

