
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating systems

Copyright Notice: The lecture notes are modifications of the slides accompanying the course
book “Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

Virtual Memory

[SGG7/8/9] Chapter 9

5.2TDIU11, C. Kessler, IDA, Linköpings universitet.

Overview: Virtual Memory

n Background
n Demand Paging
n Page Replacement
n Allocation of Frames
n Thrashing and Data Access Locality

n Appendix: Additional Slides on Virtual Memory
l Process Creation: Copy-on-Write
l I/O Interlock

5.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual address space of a process

Sparse address space:
”Holes” should be allocated pages
only when the stack/heap grows

Not all functionality provided in
the program text will be executed
in every run of the program

5.4TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual Memory

n Previously achieved:
Separation of user logical memory from physical memory
l ++ protection, reuse
l Still, the whole program and data must be loaded in memory

n Virtual memory
Idea: Only part of the program needs to be in memory for execution.
l Throw out pages currently not used (to secondary memory)
l Logical address space can therefore be much larger

than physical address space.
l Allows address spaces to be shared by several processes.
l Allows for more efficient process creation.

n Virtual memory can be implemented via:
l Demand paging
l Demand segmentation

2

5.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Virtual Memory That is Larger Than Physical Memory

⇒

5.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Demand Paging
n Bring a page into memory only when it is needed
l Less I/O needed
l Less memory needed
l Faster response
l More users

n Page is needed if referenced (load/store, data/instructions)
l invalid reference ⇒ abort
l not-in-memory ⇒ bring to memory

[Kilburn et al. 1961]

5.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Demand paging (“lazy paging”, “lazy swapping”):
Transfer of a Paged Memory to Contiguous Disk Space

Rather than swapping entire processes (cf. swapping),
we page their pages from/to disk only when first referenced.

5.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Valid-Invalid Bit

n With each page table entry, a valid–invalid bit is associated
(1 ⇒ page in memory, 0 ⇒ not-in-memory)

n Initially, valid–invalid bit is set to 0 on all entries
n Example of a page table snapshot:

n During address translation,
if valid–invalid bit in page table entry is 0 ⇒ page fault

1
1
1
1
0

0
0

Μ

Frame # valid-invalid bit

page table

3

5.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Page Table When Some Pages Are Not in Main Memory

5.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Steps in Handling a Page Fault
(Case: a free frame exists)

”Busy waiting” for slow disk?
Better allocate the CPU to
some other ready process in
the meanwhile…

5.11TDIU11, C. Kessler, IDA, Linköpings universitet.

What happens if there is no free frame?

n Page replacement –
find some page in memory, but not really in use,
swap it out
l Write-back only necessary if victim page was modified
l Same page may be brought into memory several times
l Various algorithms
l Performance

4want an algorithm that minimizes number of page faults

5.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Performance of Demand Paging

n Page Fault Rate p 0 ≤ p ≤ 1.0
l if p = 0: no page faults
l if p = 1, every reference is a fault

n Memory access time t

n Effective Access Time (EAT)
EAT = (1 – p) t

+ p . (page fault overhead
+ time to swap page out, if modified
+ time to swap new page in
+ restart overhead
+ t)

4

5.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Demand Paging Example
n Write-back rate w 0 <= w <= 1

% of page faults where page replacement is needed and the
victim page has been modified so it needs to be swapped out

n Example:
l Memory access time = 1 microsecond (µs)
l Time for swapping a page = 10 ms = 10,000 µs
l Write-back rate w = 0.5 = 50%
à expected swap time per page fault = (1+w) * 10,000 µs

à EAT = (1 – p) . 1µs + p (15,000 µs)
= 1 µs + p . 14999 µs

5.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Example: Need For Page Replacement

kernel

...

...

0
1
2
3

0
1
2
3 all frames

currently in use...

page fault for
page 3

5.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Page Replacement
n Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

n Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

n Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory

5.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Basic Page Replacement
Extended page-fault service routine:

n Find the location of the desired page on disk

n Find a free frame:
- If there is a free frame,

use it
- If there is no free frame,

use a page replacement algorithm
to select a victim frame
and, if dirty, write its page to disk (1,2)

n Read the desired page into the (newly) free frame (3)
Update the page table (4)

n Restart the process

5

5.17TDIU11, C. Kessler, IDA, Linköpings universitet.

How to compare algorithms
for page replacement?

n Goal: find algorithm with lowest page-fault rate.

n Method: Simulation.
l Assume initially empty page table
l Run algorithm on a particular string of memory references

(reference string – page numbers only)
l Count number of page faults on that string.

n In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

5.18TDIU11, C. Kessler, IDA, Linköpings universitet.

First-In-First-Out (FIFO) Algorithm

n Use a time stamp or a queue
n Victim is the ”oldest page”

n Assume table size = 3 frames / process
(3 pages can be in memory at a time per process)
and reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3
3 3 3 2 2 2 2 2 4 4

After page 3 is loaded,
page 1 is the oldest of
them all (gray box)

The fact that we re-use an existing
page does not alter who has been
in there the longest...

A total
of 9 page

faults

5.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Expected Graph of
Page Faults Versus Number of Frames

Generally, more frames => Less page faults ?

5.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Same FIFO: More frames = better ?
n 4 frames/process

(4 pages can be in memory at a time per process)
n Reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n FIFO Replacement – Belady’s Anomaly
l more frames with more page faults – possible!

1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 3 3 3

A total
of 10 page

faults

6

5.21TDIU11, C. Kessler, IDA, Linköpings universitet.

FIFO illustrating Belady’s Anomaly

more frames but more page faults
5.22TDIU11, C. Kessler, IDA, Linköpings universitet.

An Optimal Algorithm [Belady 1966]

n ”optimal”:
l has the lowest possible page-fault rate (NB: still ignoring dirty-ness)
l does not suffer from Belady’s anomaly

n Belady’s Algorithm: Farthest-First, MIN, OPT
l Replace page that will not be used for the longest period of time....
l How do you know this?

n Example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
1 1 1 1 1 1 1 1 1 1 4 1

2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

A total
of 6 page

faults

We will need frames 1, 2 and 3
before we need frame 4 again,
thus throw it out!

Theoretical algorithm! Used for measuring
how well your algorithm performs, e.g.,
”is it within 12% from the optimal?”

Remark: Belady’s algorithm
is only optimal if there are no
dirty write-backs. Otherwise
it is just a heuristic algorithm.

5.23TDIU11, C. Kessler, IDA, Linköpings universitet.

Least Recently Used (LRU) Algorithm

n Optimal algorithm not feasible?
....try using recent history as approximation of the future!

n LRU Algorithm:
l Replace the page that has not been used for the longest period of time

n Example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 1 1 1 1 1 1 1 1 5
2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 5 5 5 5 4 4
4 4 4 4 4 4 3 3 3

Out of pages 1,2,3 and 4,
page 3 is the one not used for
the longest time...

A total
of 8 page

faults

5.24TDIU11, C. Kessler, IDA, Linköpings universitet.

LRU Algorithm Implementations
n Timestamp implementation

l The process maintains a logical clock
(counter for number of memory accesses made)

l Every page entry has a timestamp field
l Every time a page is referenced,

copy the logical clock into the timestamp field
l When a page needs to be replaced, search for oldest timestamp

n Stack implementation
l keep a stack of page numbers

in doubly linked form:
l page referenced:

4 move it to the top
4 requires 6 pointers

to be changed
l No search for replacement

Overhead!

Linear search!

7

5.25TDIU11, C. Kessler, IDA, Linköpings universitet.

LRU Approximation Algorithms
n Reference bit for each page

l Initially = 0 (by OS)
l When page is referenced,

bit set to 1
l Replace a page whose bit is 0

(if one exists).
l We do not know the access order,

however.
l May improve precision by

using several bits.

n Second chance algorithm
l Clockwise replacement
l If page to be replaced (in clock order) has reference bit = 1 then:

4 set reference bit 0
4 leave page in memory
4 replace next page (in clock order), subject to same rules

5.26TDIU11, C. Kessler, IDA, Linköpings universitet.

Counting Algorithms

n Keep a counter of the number of references that have been
made to each page

n LFU Algorithm: replaces page with smallest count

n MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

n Not common in today’s operating systems

5.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Allocation of Frames

n Each process needs a minimum number of pages
l Example:

IBM 370 – 6 pages to handle SS MOVE instruction:
4instruction is 6 bytes, might span 2 pages
42 pages to handle from
42 pages to handle to

n Two major allocation schemes
l fixed allocation
l priority allocation

5.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Fixed Allocation

n Equal allocation
l Example: if there are 100 frames and 5 processes,

give each process 20 frames.

n Proportional allocation
l Allocate according to the size of process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=

=

=

∑

for allocation

frames ofnumber total

 process of size

5964
137
127

564
137
10

127
10
64

2

1

2

1

≈×=

≈×=

=
=
=

a

a

s
s
m

8

5.29TDIU11, C. Kessler, IDA, Linköpings universitet.

Priority Allocation

n Use a proportional allocation scheme
using priorities rather than size

n If process Pi generates a page fault,
l select for replacement one of its frames
l select for replacement a frame from a process with lower

priority

5.30TDIU11, C. Kessler, IDA, Linköpings universitet.

Global vs. Local Allocation

n Global replacement
l process selects a replacement frame

from the set of all frames;
l one process can take a frame from another

n Local replacement
l each process selects from only its own set of allocated

frames

5.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Thrashing

n If a process does not have “enough” pages,
the page-fault rate is very high. This leads to:
l low CPU utilization
l operating system thinks that it needs to increase the

degree of multiprogramming
l another process added to the system

n Thrashing ≡ a process is busy swapping pages in and out
5.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Demand Paging and Thrashing

n Why does demand paging work?

Locality model
l Locality = set of pages that

are actively used together
l Process migrates from

one locality to another
l Localities may overlap

n Why does thrashing occur?
Σ sizes of localities

> total memory size

9

5.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Working-Set Model [Denning, 1968]

5.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Working-Set Model [Denning, 1968]

n ∆ ≡ working-set window ≡ a fixed number of page references
n WSi = WSi (t) = working set of process Pi at current time t

= set of pages referenced in the most recent ∆ accesses
l if ∆ too small, WS will not encompass entire locality
l if ∆ too large, WS will encompass several localities
l if ∆ = ∞ ⇒ WS will encompass entire program

n WSSi = |WSi| = working set size of process Pi at current time
= total number of pages referenced in the most recent ∆ accesses

n D = Σi WSSi ≡ total demand frames
l if D > m ⇒ Thrashing
l Policy: if D > m, then suspend one of the processes

WS can be derived
e.g. by simulation,

by sampling or
tracing (with hard-

ware support).

5.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Program Structure Matters!
n Example: Matrix initialization

l int data [128][128];
4 Each row is stored in one page

l Assume page size = 128 ints
l Assume < 128 frames available, LRU repl.

n Program 1: for (j = 0; j <128; j++)
for (i = 0; i < 128; i++) // traverse column-wise

data[i][j] = 0;

-> 128 x 128 = 16,384 page faults

n Program 2: for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++) // traverse row-wise

data[i][j] = 0;

-> 128 page faults
....

j

i

Data access
locality is an important
issue for programmers

and optimizing compilers

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating systems

Copyright Notice: The lecture notes are modifications of the slides accompanying the course
book “Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

Additional Slides
on Virtual Memory

10

5.37TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Creation: Copy-on-Write
n fork():

Child process
gets a copy of
parent process’
address space

n Lazy copying

copy of C

process2 writes
to page C

5.38TDIU11, C. Kessler, IDA, Linköpings universitet.

Copy-on-Write
n Copy-on-Write (COW) allows both parent and child processes

to initially share the same pages in memory
l If either process modifies a shared page,

only then the page is copied
l Free pages are allocated from a pool of zeroed-out pages
l More efficient process creation

as only modified pages are copied
l No improvement if child process does exec (overwrites

all)

n Alternatively: vfork() in Unix, Solaris, Linux:
l Light-weight fork variant:

sleeping parent and immediate exec() by child process

5.39TDIU11, C. Kessler, IDA, Linköpings universitet.

I/O interlock

(Physical) address of buffer gets
stale if any of its pages is

evicted: risk for overwriting
(unrelated) data

DMA /
interrupt-
driven I/O

n I/O Interlock
– Pages must sometimes be locked in memory

n Consider I/O.
Pages that are used for
copying a file from a device
must be locked from being
selected for eviction by a
page replacement algorithm.

Uses physical
mem. addresses

5.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Data used by
Page Replacement Algorithms

n All algorithms need extra data in the page table,
e.g., one or several of the following:
l A reference bit to mark if the page has been used
l a modify (dirty) bit to mark if a page has been written to

(changed) since last fetched from SM
l Additional mark bits
l Counters or time stamps (used for theoretical algorithms –

must often be converted into use of mark bits)
l A queue or stack of page numbers...

11

5.41TDIU11, C. Kessler, IDA, Linköpings universitet.

Page-Fault Frequency Scheme

n Establish “acceptable” page-fault rate
l If actual rate too low, process loses frame
l If actual rate too high, process gains frame

5.42TDIU11, C. Kessler, IDA, Linköpings universitet.

References
n Belady, L.: A Study of Replacement of Algorithms for a Virtual

Storage Computer. IBM Systems Journal 5 (1966) 78–101
n Peter J. Denning: The working set model for program

behavior, Communications of the ACM 11(5):323-333, May
1968

n Peter J. Denning: The Locality Principle. Communications of
the ACM 48(7):19-24, July 2005.

