
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating systems

Memory Management

[SGG7/8/9] Chapter 8

Copyright Notice: The lecture notes are modifications of the slides accompanying the course
book “Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

4.2TDIU11, C. Kessler, IDA, Linköpings universitet.

Contents: Memory Management

n Background
l Relocation
l Dynamic loading and linking

n Swapping
n Contiguous Allocation
n Paging
n Segmentation

4.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Background

n To be run, a program must be brought into memory
and placed within a process

n Long-term scheduler / Medium-term scheduler
l Not all processes fit into memory

(i.e., memory is a limited resource)
l Input queue – collection of processes on the disk that are

waiting to be brought into memory to run the program

n User programs go through several steps before being run
l e.g., relocation

4.4TDIU11, C. Kessler, IDA, Linköpings universitet.

How to generate code?
n When the compiler/assembler/linker generates code,

how does it handle …
l Absolute Jumps?
l Adresses of global variables?

Symbolic addressing:

…

Definition of data X

…

If (X) goto P

…

P: …

Relative addressing:

0: …

1: Space for data

2: …

3: If (*1) goto 5

4: …

5: …

Absolute addressing:

243: …

244: Space for data

245: …

246: If (*244) goto 248

247: …

248: …

Relocation table:
- line 3, patch base+1
- line 3, patch base+5

as Static
loading

2

4.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Binding of Instructions and Data to Memory

n Compile time / Link time:
l If memory location known a priori,

absolute code can be generated;
l must recompile code

if starting location changes

n Load time: Must generate relocatable code
if memory location is not known at compile time

n Execution time: Binding delayed until run time
if the process can be moved during its execution
from one memory segment to another.
l Need hardware support for address maps

(e.g., base and limit registers, MMU).

Address binding of instructions and data to memory
addresses can happen at three different stages:

link
time

load
time

4.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Static vs. Dynamic Loading

n Static Loading:
l Move the compiled and linked image into program memory,

patch remaining relative addresses, and start execution.

n Dynamic loading:
l postpone loading of some routine until it is called
l Better memory-space utilization

4unused routine is never loaded
l Useful when large amounts of code are needed

to handle infrequently occurring cases
l No special support from OS required

4implemented through compiler runtime system
l Example: Java dynamic class loading

4.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Static vs. Dynamic Linking

n Static linking:
l Copy together a program from its modules and libraries used
l Relocation (patching) of relative addresses with new ones
l update relocation table and table of externally visible symbols

n Dynamic linking:
l “true” linking postponed until runtime
l Small piece of code, stub, used to locate the appropriate

memory-resident library routine
l Stub replaces itself with a call to the address of the routine,

and executes the routine
l OS needed to check if routine is in processes’ memory area

or other accessible memory area
l Dynamic linking is particularly useful for libraries

4.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Logical vs. Physical Address Space
n The concept of a logical address space

that is bound to a separate physical address space
is central to proper memory management
l Logical address

4generated by the CPU
4also referred to as virtual address

l Physical address
4address seen by the memory unit

n Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

n Logical (virtual) and physical addresses differ
in run-time address-binding scheme

CPU memory

Logical
addresses

Physical
addresses

3

4.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Memory-Management Unit (MMU)

n Hardware device that maps virtual to physical address

n The value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

n The user program deals with logical addresses;
it never sees the real physical addresses

Dynamic relocation using a relocation register
4.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Swapping

n A process can be swapped temporarily out of memory
to a backing store, and then brought back into memory
for continued execution

n Backing store
l fast disk large enough to accommodate copies of all

memory images for all users
l must provide direct access to these memory images

4.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Swapping

n Roll out, roll in
l swapping variant

used for priority-based scheduling algorithms
l lower-priority process is swapped out

so higher-priority process can be loaded and executed
n Major part of swap time is transfer time
l total transfer time is directly proportional

to the amount of memory swapped
n Modified versions of swapping are found on many systems

(i.e., UNIX, Linux, and Windows)

Swapping
is costly!

4.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Contiguous Allocation
n Dual mode: Main memory separated into 2+ partitions:
l Resident OS kernel,

usually held in low memory (incl. interrupt vector)
l User processes

then held in high memory

n Multi-partition allocation
l Relocation-register scheme:

4 protect user processes
from each other,

4 and from changing OS code / data

l Relocation register contains
value of smallest physical address

l Limit register contains range of logical addresses

1 process has 1 block
(partition) of memory

4

4.13TDIU11, C. Kessler, IDA, Linköpings universitet.

HW address protection (1)
with base and limit registers

A base and a limit register
define a logical address space

logical address
= physical address
(as long as in
process’ range)

4.14TDIU11, C. Kessler, IDA, Linköpings universitet.

HW address protection (2)
with relocation and limit registers

A base and a limit register
define a logical address space

4.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Contiguous multi-partition allocation
2 variants:

n Fixed partition scheme
l All partitions have equal (fixed) size

+ Simple model
– Degree of multiprogramming

limited by #partitions
– Internal fragmentation

n Variable partition scheme
l Size of loaded program dictates partition size

– External fragmentation

(unused)

4.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Contiguous Allocation (Cont.)

n Hole – block of available memory
l holes of various size are scattered throughout memory

n When a process arrives, it is allocated memory from a hole
large enough to accommodate it

n OS maintains information about:
a) allocated partitions
b) free partitions (holes)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

5

4.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Dynamic Storage-Allocation Problem

n First-fit: Allocate the first hole that is big enough
n Best-fit: Allocate the smallest hole that is big enough;
l must search entire list, unless ordered by size.
l Produces the smallest leftover hole.

n Worst-fit: Allocate the largest hole;
l must also search entire list.
l Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes?

Simulations show: First-fit and best-fit better than worst-fit
in terms of storage utilization

4.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Fragmentation

n External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous

n Internal Fragmentation – allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

n Reduce external fragmentation by compaction
l Shuffle memory contents to place all free memory together

in one large block (also known as garbage collection)
l Compaction is possible only if relocation is dynamic,

and is done at execution time
l I/O problem

4 Latch job in memory while it is involved in I/O
4 Do I/O only into OS buffers

4.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Compacting

p1

p3

p4

p2 pnew

4.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Compacting: Solution 1

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Move all occupied areas to one side until there is a hole large enough for pnew

6

4.21TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Compacting: Solution 2

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Search and select one (or a few) processes to move to free a hole large enough…

4.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Paging
n Goals:
☺ Physical address space of a process can be noncontiguous
☺ Process is allocated physical memory whenever the latter is

available – no external fragmentation
n Divide physical memory into fixed-sized blocks called frames.

Frame size is power of 2, between 512 bytes and 8192 bytes.
n Divide logical memory into blocks of same size, called pages.
n Keep track of all free frames
n To run a program of size n pages,

need to find n free frames
and load program

n Set up a page table
to translate logical to physical addresses

n L Internal fragmentation

4.23TDIU11, C. Kessler, IDA, Linköpings universitet.

Paging: Address Translation Scheme

n Address generated by
CPU is divided into:

l Page number (p) –
index into a page
table which contains
the base address of
each page in
physical memory

l Page offset (d) –
combined with base
address to define
the physical memory
address that is sent
to the memory unit

4.24TDIU11, C. Kessler, IDA, Linköpings universitet.

Tiny Paging Example

1 character = 1 byte

Frame/page size = 4 bytes = 22 bytes

Number of pages = 4 = 22

Logical addr. space size = 16 = 22+2

Physical address
space size = 32 bytes

7

4.25TDIU11, C. Kessler, IDA, Linköpings universitet.

Paging – Remarks

n Internal fragmentation with paging
l Worst case fragmentation = 1 frame – 1 byte
l Average fragmentation = 0.5 * frame size

n So small frame sizes are desirable?
l But each page table entry takes memory to track

n Page sizes growing over time

n Process view and physical memory are now very different
l By implementation, a process can only access its own

memory

4.26TDIU11, C. Kessler, IDA, Linköpings universitet.

Allocating frames from free-frame list

Before allocation After allocation

4.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Implementation of the Page Table

n Page table is kept in main memory
n Page-table base register (PTBR)

points to the page table
n Page-table length register (PRLR)

indicates size of the page table
n Every data/instruction access requires 2 memory accesses.
l One for the page table and one for the data/instruction.

n Solve the two-memory-access problem
l by using a special fast-lookup cache (in hardware):

translation look-aside buffer (TLB)
4Implements an associative memory

4.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Associative Memory

n Associative memory = content-addressable memory
l ADT Dictionary

TLB: Address translation (p, f)
l If p is in TLB, get frame number f out
l Otherwise get frame number from page table in memory

n TLB realized in hardware à parallel search for contents

Page number Frame number

p f

8

4.29TDIU11, C. Kessler, IDA, Linköpings universitet.

Paging Hardware With TLB

TLB: fast, small, and expensive,

Typ. 64…1024 TLB entries in main memory
4.30TDIU11, C. Kessler, IDA, Linköpings universitet.

Effective Access Time

n Memory cycle time: t
n Time for associative lookup: ε
n TLB hit ratio α
l percentage of times that a page number is found in TLB

n Effective Access Time (EAT):
EAT = (t + ε) α + (2t + ε)(1 – α)

= 2t + ε – α t

Example: For t =100 ns, ε = 20 ns, α = 0.8: EAT = 140 ns

4.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Memory Protection
n implemented by

associating protection bit
with each frame

n Valid-invalid bit attached
to each entry in the page
table:
l “valid”: the associated

page is in the process’
logical address space,
and is thus a legal
page

l “invalid”: the page is
not in the process’
logical address space

4.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Page Table Structure

n The “large page table problem”
l Most modern systems support large logical address spaces

(232 … 264 bytes)
l For 232 logical addresses with a page size 212 = 4096,

page table has 220 = 1M entries,
thus needing 4 MB physical memory

n Page table structures:
l Hierarchical Paging: “page the page table”
l Hashed Page Tables
l Inverted Page Tables

9

4.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Hierarchical Page Tables

n Break up the
logical address space into
multiple page tables

n A simple technique is a
two-level page table:

4.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Two-Level Paging Example

n A logical address (on 32-bit machine with 4K page size)
is divided into:
l a page number consisting of 20 bits
l a page offset consisting of 12 bits

n Since the page table is paged, the page number is
further divided into:
l a 10-bit page number
l a 10-bit page offset

n Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is
the displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

4.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Address-Translation Scheme

n Address-translation scheme for a two-level 32-bit paging
architecture

4.36TDIU11, C. Kessler, IDA, Linköpings universitet.

Hashed Page Tables

n Common in address spaces > 32 bits
n The virtual page number is hashed into a page table.

This page table contains a chain of elements hashing to the
same location.

n Virtual page numbers are compared in this chain searching
for a match.
If a match
is found,
the corresponding
physical frame
is extracted.

10

4.37TDIU11, C. Kessler, IDA, Linköpings universitet.

Inverted Page Table

n One entry for each
real page of memory

n Entry: <pid, p>
p: virtual address of the
page stored in that
real memory location,
pid: process that owns that page
(as address space identifier)

n Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

n Use hash table to limit the search to one — or at most a few —
page-table entries

n Examples: UltraSPARC, PowerPC, Itanium 4.38TDIU11, C. Kessler, IDA, Linköpings universitet.

Shared Pages
– Easy with paged memory!
n Shared code
l One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).
l Shared code must appear in same location in the logical

address space of all processes
n Private code and data
l Each process keeps a separate copy of the code and data
l The pages for the private code and data can appear

anywhere in the logical address space

n Shared pages are hard to implement when inverted page
tables are used
l Only 1 virtual page entry for every physical page

4.39TDIU11, C. Kessler, IDA, Linköpings universitet.

Shared Pages Example

4.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Segmentation

n Memory-management scheme
that supports a user view of memory:

n A program is a collection of segments.
n A segment is a logical unit such as:
l main program, procedure,

function, method,
l object, local variables, global variables,
l common block, stack,
l symbol table, arrays

n Idea: allocate memory according to such segments

11

4.41TDIU11, C. Kessler, IDA, Linköpings universitet.

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

4.42TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Segmentation

4.43TDIU11, C. Kessler, IDA, Linköpings universitet.

Segmentation Architecture
n Logical address is a pair <segment-number, offset>

n Segment table – maps two-dimensional physical addresses;
each table entry has:
l base – physical starting address where the segment

resides in memory
l limit – specifies the length of the segment

n 2 registers (part of PCB):
l Segment-table base register (STBR)

points to the segment table’s location in memory
l Segment-table length register (STLR)

indicates number of segments used by a program;
Segment number s is legal if s < STLR

4.44TDIU11, C. Kessler, IDA, Linköpings universitet.

Segmentation Architecture:
Address Translation

12

4.45TDIU11, C. Kessler, IDA, Linköpings universitet.

Segmentation Architecture (cont.)

n Relocation.
l dynamic
l by segment table

n Sharing.
l shared segments
l same segment

number

n Allocation.
l first fit/best fit
l external fragmentation

n Protection. With each entry
in segment table associate:
l validation bit = 0

⇒ illegal segment
l read / write / execute

privileges
Protection bits in table entries

Since segments vary in length,
memory allocation is a dynamic

storage-allocation problem

4.46TDIU11, C. Kessler, IDA, Linköpings universitet.

Sharing of Segments

4.47TDIU11, C. Kessler, IDA, Linköpings universitet.

Combining Segmentation and Paging
n Each segment is organized as a set of pages.
n Segment table entries refer to a page table for each segment.
n TLB used to speed up effective access time.
n Common in today’s operating systems (e.g. Solaris, Linux).

s dp
segment number page number displacement

virtual address:

segment
table origin
register

s

s’
p

f df

physical address

segment
table for this
process

page table for
this segment

if TLB hit for (s,p), get f,
otherwise:

