
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System 
Concepts”, 7th ed., Wiley, 2005).  No part of the lecture notes may be reproduced in any form, due to the copyrights 
reserved by Wiley.  These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA, 
Linköpings universitet.

TDIU11

Operating systems
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Contents:  Memory Management

n Background
l Relocation
l Dynamic loading and linking

n Swapping 
n Contiguous Allocation
n Paging
n Segmentation
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Background

n To be run, a program must be brought into memory 
and placed within a process

n Long-term scheduler / Medium-term scheduler
l Not all processes fit into memory

(i.e., memory is a limited resource)
l Input queue – collection of processes on the disk that are 

waiting to be brought into memory to run the program

n User programs go through several steps before being run
l e.g., relocation
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How to generate code?
n When the compiler/assembler/linker generates code,

how does it handle …
l Absolute Jumps?
l Adresses of global variables?

Symbolic addressing:

…

Definition of data X

…

If (X) goto P

…

P: …

Relative addressing:

0: …

1: Space for data

2: …

3: If (*1) goto 5

4: …

5: …

Absolute addressing:

243: …

244: Space for data

245: …

246: If (*244) goto 248

247: …

248: …

Relocation table:
- line 3, patch base+1
- line 3, patch base+5

as Static 
loading
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Binding of Instructions and Data to Memory

n Compile time / Link time:  
l If memory location known a priori, 

absolute code can be generated; 
l must recompile code 

if starting location changes

n Load time:  Must generate relocatable code
if memory location is not known at compile time

n Execution time:  Binding delayed until run time 
if the process can be moved during its execution 
from one memory segment to another.  
l Need hardware support for address maps 

(e.g., base and limit registers, MMU). 

Address binding of instructions and data to memory 
addresses can happen at three different stages:

link 
time

load 
time
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Static vs. Dynamic Loading

n Static Loading: 
l Move the compiled and linked image into program memory, 

patch remaining relative addresses, and start execution.

n Dynamic loading: 
l postpone loading of some routine until it is called
l Better memory-space utilization

4unused routine is never loaded
l Useful when large amounts of code are needed 

to handle infrequently occurring cases
l No special support from OS required 

4implemented through compiler runtime system
l Example: Java dynamic class loading
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Static vs. Dynamic Linking

n Static linking:
l Copy together a program from its modules and libraries used
l Relocation (patching) of relative addresses with new ones
l update relocation table and table of externally visible symbols

n Dynamic linking: 
l “true” linking postponed until runtime
l Small piece of code, stub, used to locate the appropriate 

memory-resident library routine
l Stub replaces itself with a call to the address of the routine, 

and executes the routine
l OS needed to check if routine is in processes’ memory area 

or other accessible memory area
l Dynamic linking is particularly useful for libraries
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Logical vs. Physical Address Space
n The concept of a logical address space

that is bound to a separate physical address space
is central to proper memory management
l Logical address

4generated by the CPU
4also referred to as virtual address

l Physical address
4address seen by the memory unit

n Logical and physical addresses are the same 
in compile-time and load-time address-binding schemes

n Logical (virtual) and physical addresses differ 
in run-time address-binding scheme

CPU memory

Logical 
addresses

Physical 
addresses
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Memory-Management Unit   (MMU)

n Hardware device that maps virtual to physical address

n The value in the relocation register is added to every address 
generated by a user process at the time it is sent to memory

n The user program deals with logical addresses; 
it never sees the real physical addresses

Dynamic relocation using a relocation register
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Swapping

n A process can be swapped temporarily out of memory 
to a backing store, and then brought back into memory 
for continued execution

n Backing store
l fast disk large enough to accommodate copies of all 

memory images for all users
l must provide direct access to these memory images
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Swapping

n Roll out, roll in
l swapping variant 

used for priority-based scheduling algorithms
l lower-priority process is swapped out 

so higher-priority process can be loaded and executed
n Major part of swap time is transfer time
l total transfer time is directly proportional 

to the amount of memory swapped
n Modified versions of swapping are found on many systems 

(i.e., UNIX, Linux, and Windows)

Swapping 
is costly!
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Contiguous Allocation
n Dual mode: Main memory separated into 2+ partitions:
l Resident OS kernel, 

usually held in low memory  (incl. interrupt vector)
l User processes 

then held in high memory 

n Multi-partition allocation
l Relocation-register scheme: 

4 protect user processes 
from each other,

4 and from changing OS code / data

l Relocation register contains 
value of smallest physical address 

l Limit register contains range of logical addresses

1 process has 1 block 
(partition) of memory
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HW address protection (1)
with base and limit registers

A base and a limit register 
define a logical address space

logical address
= physical address 
(as long as in
process’ range)
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HW address protection (2)
with relocation and limit registers

A base and a limit register 
define a logical address space
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Contiguous multi-partition allocation
2 variants:

n Fixed partition scheme
l All partitions have equal (fixed) size

+ Simple model
– Degree of multiprogramming 

limited by #partitions
– Internal fragmentation

n Variable partition scheme
l Size of loaded program dictates partition size

– External fragmentation

(unused)
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Contiguous Allocation (Cont.)

n Hole – block of available memory 
l holes of various size are scattered throughout memory

n When a process arrives, it is allocated memory from a hole 
large enough to accommodate it

n OS maintains information about:
a) allocated partitions    
b) free partitions (holes)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10
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Dynamic Storage-Allocation Problem

n First-fit:  Allocate the first hole that is big enough
n Best-fit:  Allocate the smallest hole that is big enough; 
l must search entire list, unless ordered by size.  
l Produces the smallest leftover hole.

n Worst-fit:  Allocate the largest hole; 
l must also search entire list.  
l Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes?

Simulations show:  First-fit and best-fit better than worst-fit
in terms of storage utilization
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Fragmentation

n External Fragmentation – total memory space exists to 
satisfy a request, but it is not contiguous

n Internal Fragmentation – allocated memory may be slightly 
larger than requested memory; this size difference is memory 
internal to a partition, but not being used

n Reduce external fragmentation by compaction
l Shuffle memory contents to place all free memory together 

in one large block      (also known as garbage collection)
l Compaction is possible only if relocation is dynamic, 

and is done at execution time
l I/O problem

4 Latch job in memory while it is involved in I/O
4 Do I/O only into OS buffers
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Example of Compacting

p1

p3

p4

p2 pnew
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Example of Compacting: Solution 1

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Move all occupied areas to one side until there is a hole large enough for pnew
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Example of Compacting: Solution 2

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Search and select one (or a few) processes to move to free a hole large enough…
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Paging
n Goals: 
☺ Physical address space of a process can be noncontiguous
☺ Process is allocated physical memory whenever the latter is  

available – no external fragmentation
n Divide physical memory into fixed-sized blocks called frames.

Frame size is power of 2, between 512 bytes and 8192 bytes.
n Divide logical memory into blocks of same size, called pages.
n Keep track of all free frames
n To run a program of size n pages, 

need to find n free frames 
and load program

n Set up a page table
to translate logical to physical addresses

n L Internal fragmentation
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Paging:  Address Translation Scheme

n Address generated by 
CPU is divided into:

l Page number (p) –
index into a page
table which contains 
the base address of 
each page in 
physical memory

l Page offset (d) –
combined with base 
address to define 
the physical memory 
address that is sent 
to the memory unit
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Tiny Paging Example

1 character = 1 byte

Frame/page size = 4 bytes = 22 bytes

Number of pages = 4 = 22

Logical addr. space size = 16 = 22+2

Physical address 
space size = 32 bytes
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Paging  – Remarks 

n Internal fragmentation with paging
l Worst case fragmentation = 1 frame – 1 byte
l Average fragmentation = 0.5 * frame size

n So small frame sizes are desirable?
l But each page table entry takes memory to track

n Page sizes growing over time

n Process view and physical memory are now very different
l By implementation, a process can only access its own 

memory
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Allocating frames from free-frame list

Before allocation After allocation
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Implementation of the Page Table

n Page table is kept in main memory
n Page-table base register (PTBR) 

points to the page table
n Page-table length register (PRLR) 

indicates size of the page table
n Every data/instruction access requires 2 memory accesses.  
l One for the page table and one for the data/instruction.

n Solve the two-memory-access problem 
l by using a special fast-lookup cache (in hardware): 

translation look-aside buffer (TLB)
4Implements an associative memory
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Associative Memory

n Associative memory = content-addressable memory
l ADT Dictionary 

TLB:  Address translation (p, f)
l If p is in TLB, get frame number f out
l Otherwise get frame number from page table in memory

n TLB realized in hardware  à parallel search for contents

Page number Frame number

p f
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Paging Hardware With TLB

TLB:  fast, small, and expensive,

Typ. 64…1024 TLB entries in main memory
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Effective Access Time

n Memory cycle time:  t
n Time for associative lookup:  ε
n TLB hit ratio α
l percentage of times that a page number is found in TLB

n Effective Access Time (EAT):
EAT  =  (t + ε) α + (2t + ε)(1 – α)   

=  2t + ε – α t

Example:  For  t =100 ns,  ε = 20 ns,  α = 0.8:    EAT = 140 ns
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Memory Protection
n implemented by 

associating protection bit 
with each frame

n Valid-invalid bit attached 
to each entry in the page 
table:
l “valid”: the associated 

page is in the process’ 
logical address space, 
and is thus a legal 
page

l “invalid”: the page is 
not in the process’ 
logical address space
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Page Table Structure

n The “large page table problem”
l Most modern systems support large logical address spaces 

(232 … 264 bytes)
l For 232 logical addresses with a page size 212 = 4096,

page table has 220 = 1M entries, 
thus needing 4 MB physical memory

n Page table structures:
l Hierarchical Paging:  “page the page table”
l Hashed Page Tables
l Inverted Page Tables
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Hierarchical Page Tables

n Break up the 
logical address space into 
multiple page tables

n A simple technique is a 
two-level page table:
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Two-Level Paging Example

n A logical address (on 32-bit machine with 4K page size) 
is divided into:
l a page number consisting of 20 bits
l a page offset consisting of 12 bits

n Since the page table is paged, the page number is 
further divided into:
l a 10-bit page number 
l a 10-bit page offset

n Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is 
the displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12
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Address-Translation Scheme

n Address-translation scheme for a two-level 32-bit paging 
architecture
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Hashed Page Tables

n Common in address spaces > 32 bits
n The virtual page number is hashed into a page table. 

This page table contains a chain of elements hashing to the 
same location.

n Virtual page numbers are compared in this chain searching 
for a match. 
If a match 
is found, 
the corresponding 
physical frame
is extracted.
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Inverted Page Table

n One entry for each 
real page of memory

n Entry: <pid, p>
p: virtual address of the 
page stored in that 
real memory location, 
pid: process that owns that page
(as address space identifier)

n Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs

n Use hash table to limit the search to one — or at most a few —
page-table entries

n Examples:  UltraSPARC, PowerPC, Itanium 4.38TDIU11,   C. Kessler, IDA, Linköpings universitet.

Shared Pages
– Easy with paged memory!
n Shared code
l One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems).
l Shared code must appear in same location in the logical 

address space of all processes
n Private code and data
l Each process keeps a separate copy of the code and data
l The pages for the private code and data can appear 

anywhere in the logical address space

n Shared pages are hard to implement when inverted page 
tables are used
l Only 1 virtual page entry for every physical page
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Shared Pages Example
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Segmentation

n Memory-management scheme 
that supports a user view of memory:

n A program is a collection of segments.  
n A segment is a logical unit such as:
l main program, procedure, 

function, method,
l object, local variables, global variables,
l common block, stack,
l symbol table, arrays

n Idea: allocate memory according to such segments
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

4.42TDIU11,   C. Kessler, IDA, Linköpings universitet.

Example of Segmentation
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Segmentation Architecture 
n Logical address is a pair     <segment-number, offset>

n Segment table – maps two-dimensional physical addresses; 
each table entry has:
l base – physical starting address where the segment 

resides in memory
l limit – specifies the length of the segment

n 2 registers (part of PCB):
l Segment-table base register (STBR)

points to the segment table’s location in memory
l Segment-table length register (STLR)

indicates number of segments used by a program;
Segment number s is legal if s < STLR

4.44TDIU11,   C. Kessler, IDA, Linköpings universitet.

Segmentation Architecture:  
Address Translation
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Segmentation Architecture  (cont.)

n Relocation.
l dynamic
l by segment table 

n Sharing.
l shared segments
l same segment 

number 

n Allocation.
l first fit/best fit
l external fragmentation

n Protection.  With each entry 
in segment table associate:
l validation bit = 0 

⇒ illegal segment
l read / write / execute 

privileges
Protection bits in table entries

Since segments vary in length, 
memory allocation is a dynamic 

storage-allocation problem
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Sharing of Segments
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Combining Segmentation and Paging
n Each segment is organized as a set of pages.
n Segment table entries refer to a page table for each segment.
n TLB used to speed up effective access time.
n Common in today’s operating systems  (e.g. Solaris, Linux).

s dp
segment number page number displacement

virtual address:

segment 
table origin 
register

s

s’
p

f df

physical address

segment 
table for this 
process

page table for 
this segment

if TLB hit for (s,p), get f,
otherwise:


