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Background

®m To be run, a program must be brought into memory
and placed within a process

m Long-term scheduler / Medium-term scheduler

e Not all processes fit into memory
(i.e., memory is a limited resource)

e Input queue - collection of processes on the disk that are
waiting to be brought into memory to run the program

m User programs go through several steps before being run
e e.g., relocation
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How to generate code?

m When the compiler/assembler/linker generates code,
how does it handle ...

e Absolute Jumps?
e Adresses of global variables?

Relocation table:
- line 3, patch base+1
- line 3, patchbase+5

Symbolic addressing:

Absolute addressing:

243: ...
Definition of data X 244: Space for data
e 245: ...

v
If (X) goto P E> 3:1f (*1) goto 5 ﬁ> 246: If (*244) goto 248
B4 Static 547,
loading

P: ... 5: ... 248: ...
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Binding of Instructions and Data to Memory

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

in-memory
binary
memory
image

Address binding of instructions and data to memory
addresses can happen at three different stages: }
compile
time
m Compile time / Link time:
e If memory location known a priori,
absolute code can be generated;

e must recompile code
if starting location changes

m Load time: Must generate relocatable code
if memory location is not known at compile time

library
m Execution time: Binding delayed until run time
if the process can be moved during its execution amcai
from one memory segment to another. P
o Need hardware support for address maps S
(e.g., base and limit registers, MMU).

dynamic
linking

executiol
time (ru
time)
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Static vs. Dynamic Linking

m Static linking:
e Copy together a program from its modules and libraries used
e Relocation (patching) of relative addresses with new ones
e update relocation table and table of externally visible symbols
B Dynamic linking:
e “true” linking postponed until runtime

e Small piece of code, stub, used to locate the appropriate
memory-resident library routine

e Stub replaces itself with a call to the address of the routine,
and executes the routine

e OS needed to check if routine is in processes’ memory area
or other accessible memory area

e Dynamic linking is particularly useful for libraries
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Static vs. Dynamic Loading
m Static Loading:
e Move the compiled and linked image into program memory,
patch remaining relative addresses, and start execution.
® Dynamic loading:
e postpone loading of some routine until it is called
e Better memory-space utilization
» unused routine is never loaded

e Useful when large amounts of code are needed
to handle infrequently occurring cases

e No special support from OS required
» implemented through compiler runtime system
e Example: Java dynamic class loading
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Logical vs. Physical Address Space

m The concept of a logical address space
that is bound to a separate physical address space
is central to proper memory management !

e Logical address
» generated by the CPU ")
» also referred to as virtual address /
e Physical address

TAY
I

memory

1

1
i

1

1

n

1

1
o

1
Logical 1 Physical

» address seen by the memory unjt ~ 2ddresses | addresses

m Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

m Logical (virtual) and physical addresses differ
in run-time address-binding scheme
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Memory-Management Unit (MMU)

® Hardware device that maps virtual to physical address

®m The value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

m The user program deals with /ogical addresses;
it never sees the real physical addresses

relocation
register

logical physical
address /\ address
CPU Q memory

346 14346

MMU

Dynamic relocation using a relocation register
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Swapping

@ swap out process P,

@ swapin process P,

Ul
® Roll out, roll in
space backing store
e swapping variant " main memory

used for priority-based scheduling algorithms

e lower-priority process is swapped out
so higher-priority process can be loaded and executed

m Major part of swap time is transfer time
Swapping

e total transfer time is directly proportional is costly!

to the amount of memory swapped

®m Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)
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Swapping e

process P;
@ swap out

. process P,
@swap in

o
user

SpEce) backing store

main memory
m A process can be swapped temporarily out of memory
to a backing store, and then brought back into memory
for continued execution

m Backing store

e fast disk large enough to accommodate copies of all
memory images for all users

e must provide direct access to these memory images

TDIU11, C. Kessler, IDA, Linkdpings_universitet. 410

LINKOPING
UNIVERSIT

| [X
Contiguous Allocation

® Dual mode: Main memory separated into 2+ partitions:

e Resident OS kernel,
usually held in low memory (incl. interrupt vector)

e User processes
then held in high memory 0

operating
system
25600

m Multi-partition allocation process

e Relocation-register scheme: 30004 30004
1 process has 1 block base
» protect user processes ) ey < G

from each other, 42004 12090
» and from changing OS code / data process fimit
e Relocation register contains 88000

value of smallest physical address

102400

e Limit register contains range of logical addresses
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HW address protection (1)
with base and limit registers

0

operating
system
25600 Abase and a limit register
process define a logical address space
30004 30004
process base
42094 12090

88000

02400

address
CPU

limit
process base

yes
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no no

trap to operating system
—addressing error

413

base + limit
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logical address
= physical address
(as long as in

process’ range)

memory
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Contiguous multi-partition allocation

2 variants:

m Fixed partition scheme

e All partitions have equal (fixed) size

+ Simple model

— Degree of multiprogramming
limited by #partitions

— Internal fragmentation

m Variable partition scheme

e Size of loaded program dictates partition size

— External fragmentation
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(unused)

HW address protection (2) I
with relocation and limit registers
0

operating

system
25600 A base and a limit register

process define a logical address space
30004 30004

process base
42094 12090

limit
process
limit relocation
88000 register register
02400
logical physical
address yes address
CPU —— = O memory
no
trap: addressing error
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Contiguous Allocation (Cont.)

m Hole — block of available memory
e holes of various size are scattered throughout memory

® When a process arrives, it is allocated memory from a hole
large enough to accommodate it

B OS maintains information about:
a) allocated partitions
b) free partitions (holes)

os os os os
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |::> |::> process 10
process 2 process 2 process 2 process 2
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Dynamic Storage-Allocation Problem Fragmentation

How to satisfy a request of size n from a list of free holes? ® External Fragmentation — total memory space exists to

satisfy a request, but it is not contiguous

m First-fit: Allocate the first hole that is big enough m Internal Fragmentation — allocated memory may be slightly

m Best-fit: Allocate the smallest hole that is big enough; larger than requested memory; this size difference is memory
o . internal to a partition, but not being used
e must search entire list, unless ordered by size. ) .
m Reduce external fragmentation by compaction
e Produces the smallest leftover hole.
. e Shuffle memory contents to place all free memory together
m Worst-fit: Allocate the largest hole;

in one large block  (also known as garbage collection)
e must also search entire list.

e Compaction is possible only if relocation is dynamic,
e Produces the largest leftover hole.

and is done at execution time

e |/O problem
Simulations show: First-fit and best-fit better than worst-fit

. S » Latch job in memory while it is involved in I/O
in terms of storage utilization

» Do I/O only into OS buffers
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Example of Compacting Example of Compacting: Solution 1
p1 p1 I 4 pl
p2
p2 pnew p2
p3 p3 pnew
p4 p4 p4
Move all occupied areas to one side until there is a hole large enough for pnew
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Example of Compacting: Solution 2

p1 pl
p3
p2 p2
p3 pnew
p4 p4

Search and select one (or a few) processes to move to free a hole large enough...
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Paging: Address Translation Scheme

m Address generated by
CPU is divided into:

e Page number (p) —
index into a page
table which contains
the base address of logical physical
eaCh page in address address | f0000 ... 0000
physical memory | cpu

AN woo VI

combined with base -
address to define t
the physical memory — physical
address that is sent memory
to the memory unit page table
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e Page offset (d) — p{

| [RTIe
Paging
m Goals:
© Physical address space of a process can be noncontiguous

© Process is allocated physical memory whenever the latter is|
available — no external fragmentation

m Divide physical memory into fixed-sized blocks called frames.
Frame size is power of 2, between 512 bytes and 8192 bytes.

m Divide logical memory into blocks of same size, called pages.

frame

m Keep track of all free frames - numbzv
s
®m To run a program of size n pages, page 1 ‘B [ pageo
need to find n free frames page 2 HE >
and load program pages page table o| page
logical 4| page 1
m Set up a page table emert .
to translate logical to physical addresses o
7| page 3

m ® Internal fragmentation
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Tiny Paging Example

0fa 0
1|b
2 )¢
3|d
4 e 4 i
5 f j
619 0 }J<
7 |h 18] I
8 | i 2 8 m
9] n
10 | k 3 o
11 page table P
12| m 12
13| n
14| 0
15| p
logical memory 16
1 character = 1 byte 2|2
Frame/page size = 4 bytes = 22 bytes g
Number of pages = 4 = 22 24 | ¢
. ’ g
Logical addr. space size = 16 = 22+2 h
28
Physical address
space size = 32 bytes

physical memory
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Paging — Remarks

m /nternal fragmentation with paging

e Worst case fragmentation = 1 frame — 1 byte

e Average fragmentation = 0.5 * frame size
B So small frame sizes are desirable?

e But each page table entry takes memory to track
B Page sizes growing over time

m Process view and physical memory are now very different

e By implementation, a process can only access its own
memory
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Implementation of the Page Table

m Page table is kept in main memory

m Page-table base register (PTBR)
points to the page table oy

m Page-table length register (PRLR)
indicates size of the page table

page table

physicall
memory|

m Every data/instruction access requires 2 memory accesses.
e One for the page table and one for the data/instruction.
m Solve the two-memory-access problem
e by using a special fast-lookup cache (in hardware):
translation look-aside buffer (TLB)

» Implements an associative memory —
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Allocating frames from free-frame list

free-frame list free-frame list
13 15 13 [page 1

13

14 14 |page 0

18 18 |page 2
19 0 19
1
20 2 20 |page 3
3
21 new-process page table 21
(a) (b)
Before allocation After allocation
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Associative Memory

m Associative memory = content-addressable memory
e ADT Dictionary

Page number Frame number

TLB: Address translation (p, f)
e If pisin TLB, get frame number fout
e Otherwise get frame number from page table in memory

m TLB realized in hardware - parallel search for contents
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Paging Hardware With TLB

logical

address
CPU p

page frame
number number

TLB hit

i

physical
address

d —

TLB

p {
TLB miss

TLB: fast, small, and expensive,

Typ. 64...1024 TLB entries
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page table in main memory

physical
memory
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Memory Protection

®m implemented by
associating protection bit
with each frame

® Valid-invalid bit attached
to each entry in the page
table:

e “valid”: the associated
page is in the process’
logical address space,
and is thus a legal
page

e “invalid”: the page is
not in the process’
logical address space
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00000

10,468
12,287

431

page 0

page 1

page 2

page 3

page 4

page 5

frame number

page table

valid-invalid bit

LINKOPING
UNIVERSITY|

Il LINKOPING
loWY UNIVERSTY]

Effective Access Time

® Memory cycle time: ¢
m Time for associative lookup: ¢
m TLB hit ratio o
e percentage of times that a page number is found in TLB

m Effective Access Time (EAT):
EAT = (t+e)a+ (2t+e)(1 —a)
2t+e—at

Example: For t=100ns, ¢=20ns, o« =0.8: EAT =140 ns
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page 0

page 1

page 2

page 3

page 4

page 5

page n
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Page Table Structure

m The “large page table problem”

e Most modern systems support large logical address spaces
(232 ... 254 bytes)

e For 232 |ogical addresses with a page size 212 = 4096,
page table has 220 = 1M entries,
thus needing 4 MB physical memory

m Page table structures:
e Hierarchical Paging: “page the page table”
e Hashed Page Tables
e Inverted Page Tables
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Hierarchical Page Tables Two-Level Paging Example

®m A logical address (on 32-bit machine with 4K page size)

m Break up the ° is divided into:
logical address space into 7 e apage number consisting of 20 bits
: e
multiple page tables // . g e a page offset consisting of 12 bits
500 N > . . .
) ) ) . - m Since the page table is paged, the page number is
B A simple technique is a \\ LI : further divided into:
two-level page table: 500 e a 10-bit page number
7(:)8 \\708’ e a 10-bit page offset page number | page offset
: . . . ‘ pi ‘ P2 d
outer page S ® Thus, a logical address is as follows:
table . N o 10 10 12
9(')0 T >< B . . . .
"~ where p; is an index into the outer page table, and p, is
il 929 the displacement within the page of the outer page table
page table :
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Address-Translation Scheme Hashed Page Tables

® Common in address spaces > 32 bits

m Address-translation scheme for a two-level 32-bit paging m The virtual page number is hashed into a page table.

architecture This page table contains a chain of elements hashing to the
logical address same location.
pr [P ] d] m Virtual page numbers are compared in this chain searching
hysical
for a matCh logical address gd‘étlecsas
p1{ If a match [ o[ ]
0 { is found,
? the corresponding
outterbrlaage d{ physical frame
able .
is extracted. AL B CTEYLN) TR RISt
page of |_T
page table

hash table
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Inverted Page Table

| One entry for eaCh logical physical

address address

— .
real page of memory | cru fpd[p [d] [G]dl—— P

memory
}i

m Entry: <pid, p>
p: virtual address of the Smhl
page stored in that

pid [ p
real memory location, -
pid: process that owns that page
(as address space identifier) page table

m Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

m Use hash table to limit the search to one — or at most a few —
page-table entries

B.Examples.. WitraSPARC, PowerPC, Itanium
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Shared Pages Example

ed3 2| data3
data 1 page table 3 ed1
for P,
1 ed 1
process P, 4| ed?2
ed?2
5
ed3
6| ed3
data 2 page table
for P, 7| data2
ed 1 2

process P,

data 3 page table
for Py

process P,
TDIU11, C. Kessler, IDA, Linkopings universitet. 4.39
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Shared Pages
— Easy with paged memory!

® Shared code -

e One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

e Shared code must appear in same location in the logical
address space of all processes

m Private code and data
e Each process keeps a separate copy of the code and data
e The pages for the private code and data can appear
anywhere in the logical address space
m Shared pages are hard to implement when inverted page
tables are used
e Only 1 virtual page entry for every physical page
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Segmentation

® Memory-management scheme
that supports a user view of memory:

subroutine stack

symbol
table

m A program is a collection of segments.

m A segment is a logical unit such as:

main
program

e main program, procedure,
function, method,

e object, local variables, global variabl

logical address

e common block, stack,
e symbol table, arrays
B |dea: allocate memory according to such segments
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Logical View of Segmentation

user space physical memory space
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Segmentation Architecture

m Logical address is a pair <segment-number, offset>
m Segment table — maps two-dimensional physical addresses;
each table entry has:

e base — physical starting address where the segment
resides in memory

e limit — specifies the length of the segment

m 2 registers (part of PCB):

e Segment-table base register (STBR)
points to the segment table’s location in memory

e Segment-table length register (STLR)
indicates number of segments used by a program;

Segment number sis legal if s < STLR

Example of Segmentation

subroutine stack
segment 3
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300
main 2| 400 | 4300
program 3| 1100 | 3200
411000 | 4700

segment 1 segment 2

logical address space
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segment table
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1400
segment 0|
2400

3200

segment 3|

4300
4700

segment 2|

segment 4|

5700

6300
segment 1

6700
physical memory
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Segmentation Architecture:
Address Translation

— limit |[base

segment
table

CPU S

no

\
trap: addressing error
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physical memory
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Segmentation Architecture (cont.) Sharing of Segments
® Relocation. m Protection. With each entry /gdm,
e dynamic in segment table associate:
. . . segment 0
e by segment table e validation bit =0 — a0e2
. data 1 Imi ase
= illegal segment weament 9| 26286 | 43062 ditor
m Sharing. e read / write / execute et
rivileges revessr,” Bt I
rocess ] 72773
e shared segments P
Protection bits in table entries
e same segment
number i 90003 ;
lata 2
98553
segment 0
m Allocation.
data 2 limit | base <ical memor
o first fit/best fit Since segments vary in length, D|eeess | as0se physial Y
memory allocation is a dynamic ‘ segment table
e external fragmentation storage-allocation problem logical memory proess £y
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Combining Segmentation and Paging
m Each segment is organized as a set of pages.
m Segment table entries refer to a page table for each segment.
m TLB used to speed up effective access time.
m Common in today’s operating systems (e.g. Solaris, Linux).

segment number page number displacement

virtual address: ‘ s ‘ p | d

if TLB hit for (s,p), get f,

otherwise:
segment —*|
tab{e origin l s page table for
register ; this segment

S
|»
segment [ f -—'| f | d

table for this ;
process physical address
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