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Operating Systems

Processes and Threads
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Processes and Threads – Overview

n Process Concept
l Context Switch
l Scheduling Queues
l Creation and Termination

n Cooperating Processes
l Interprocess Communication
l Example: Bounded buffer in shared memory

n Thread Concept
n Multithreading Models
n Threading Issues
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Process Concept
n Process = a program in execution

l Program is a passive entity stored on disk (executable file), 
process is active

l Example: Consider multiple users executing the same program

n Textbook uses the terms job and process almost interchangeably.
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Process Concept
n Process = a program in execution

n Needs resources for execution
4 esp., CPU, memory slice

n A process includes:
l The program code (also called text section)
l Current activity including program counter,

processor registers 
l Data section containing global variables
l Stack containing temporary data: 

function parameters, return addresses, 
local variables

l Heap containing memory dynamically 
allocated during run time

A process in memory:
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Process State
n As a process executes, it changes state

l new:  The process is being created
l running:  Instructions are being executed
l waiting:  The process is waiting for some event to occur
l ready:  The process is waiting to be assigned to a process
l terminated:  The process has finished execution
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Process Control Block (PCB)

A data structure for each process in the OS kernel, 
containing information associated with a process 
(PCB, also called task control block)

n Process state – running, waiting, etc.
n Program counter – location of instruction to execute next 
n CPU register contents of all process-centric CPU 

registers
n CPU scheduling information d – priorities, scheduling 

queue pointers
n Memory-management information – memory allocated 

to the process
n Accounting information – CPU used, clock time 

elapsed since start, time limits
n I/O status information – I/O devices allocated to 

process, list of open files
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CPU Switch From Process to Process
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Context Switch

n When CPU switches to another process, the system must 
l save the state of the old process 
l and load the saved state for the new process

n Context-switch time is overhead
l the system does no useful work while switching
l time depends on hardware support
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Process Scheduling Queues
n Job queue
l set of all processes in the system

n Ready queue
l set of all processes residing in main memory, ready and 

waiting to execute
n Device queues
l set of processes 

waiting for an 
I/O device

n Processes migrate 
among the various 
queues
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Ready Queue And Various I/O Device Queues
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Schedulers

n Long-term scheduler (or job scheduler) 
l for batch systems – new jobs for execution queued on disk
l selects which processes should be brought into the ready 

queue, and loads them into memory for execution
l controls the degree of multiprogramming
l invoked very infrequently (seconds, minutes)
l No long-term scheduler on UNIX and Windows;

instead swapping, controlled by medium-term scheduler

n Short-term scheduler (or CPU scheduler) 
l selects which ready process should be executed next 
l invoked very frequently (milliseconds) 

⇒ must be fast
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CPU-bound vs I/O-bound processes
n I/O-bound process
l spends more time doing I/O than computations
l many short CPU bursts

n CPU-bound process
l spends more time doing computations; 
l few very long CPU bursts

n Long-term (or medium-term) scheduler should aim at a 
good process mix.
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Scheduling
n Non-preemptive scheduling:
l process keeps CPU until it terminates or voluntarily 

releases it  (sleep() – step back into ready queue)
n Preemptive scheduling:
l OS puts process from CPU back into ready queue 

after a certain time quantum has passed
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Process Creation

n Parent process creates children processes, 
which, in turn create other processes, 
forming a tree of processes

n Resource sharing variants:
l Parent and children share all resources
l Children share subset of parent’s resources
l Parent and child share no resources

n Execution variants:
l Parent and children execute concurrently
l Parent waits until children terminate

n Address space variants:
l Child is a duplicate of parent
l Child has a program loaded into it
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int main()
{

Pid_t  ret;
/* fork another process: */
ret = fork();
if (ret < 0)  {  /* error 
occurred */

fprintf ( stderr, "Fork 
Failed“ );

exit(-1);
}
else if (ret == 0)  { // I am 
child process:

execlp ( "/bin/ls", "ls", 
NULL );
}
else {  // I am the parent 
process 

// of child 
process with PID==ret

/* wait for child to 
complete: */

Example:  Process Creation in UNIX
n fork system call 

l creates new child process
n exec system call 

l used after a fork to replace the 
process’ memory space with a 
new program

n wait system call 
l by parent, suspends parent 

execution until child process 
has terminated

C program forking
a separate process
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A typical tree of processes in Solaris



5

4.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Termination
n Process executes last statement and asks the operating 

system to delete it (exit)
l Process returns status value to its parent  (used in wait)
l OS de-allocates process’s resources

n Parent may terminate execution of children processes (abort)
l Child has exceeded allocated resources
l Task assigned to child is no longer required

n If parent is exiting:
l Some OS do not allow child to continue after parent 

terminates
4All children terminated - cascading termination
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Cooperating Processes
n Independent process 

l cannot affect or be affected by execution of another process
n Cooperating process 

l can affect or be affected by execution of another process
n Advantages of process cooperation:

l Information sharing 
l Computation speed-up
l Modularity
l Convenience

n Inter-Process Communication (IPC)
l shared memory
l message passing
l signals
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IPC Models – Realization by OS

IPC via Message Passing IPC via Shared Memory

process A process A

kernel
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Example:  POSIX Shared Memory API
l #include <sys/shm.h>

#include <sys/stat.h>

n Let OS create a shared memory segment  (system call):
l int segment_id = shmget ( IPC_PRIVATE, size, S_IRUSR | S_IWUSR );

n Attach the segment to the executing process  (system call):
l void *shmemptr = shmat ( segment_id, NULL, 0 );

n Now access it:
l strcpy ( (char *)shmemptr, ”Hello world” );     // Example: copy a string into it
l …

n Detach it from executing process when no longer accessed:
l shmdt ( shmemptr );

n Let OS delete it when no longer used:
l shmctl ( segment_id, IPC_RMID, NULL );
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n Producer-Consumer paradigm for cooperating processes: 
l producer process produces data items

that are consumed by a consumer process

n Realization with shared memory: 
Shared buffer (queue) of data items
l unbounded-buffer

4places no practical limit on the size of the buffer
4Consumer must wait when buffer is empty

l bounded-buffer
4assumes that there is a fixed buffer size
4Producer must also wait when buffer is full

Example for IPC:
Producer-Consumer Problem

Producer Consumer
buffer
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Bounded-Buffer – Shared-Memory Solution

n Shared buffer:

n buffer empty when in == out
n buffer full when ((in+1) % BUFFER_SIZE) == out
n can hold at most  BUFFER_SIZE – 1  elements

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Producer Consumer
buffer

inout
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while (true) {
while (in == out)

; // do nothing -- nothing to 
consume

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
//  ... now use the item;

}

while (true)  {
/* ... produce an item */

while (((in + 1) % BUFFER SIZE)  == out)
;   /* do nothing -- no free buffers 

*/
buffer[in] = item; 
in = (in + 1) % BUFFER SIZE;

}

Bounded-Buffer Producer and Consumer

Producer code

Consumer code

Producer Consumer
buffer
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IPC with Message Passing
n Message system
l processes communicate with each other 

without resorting to shared variables
l provides two basic operations:

4send( receiverPID, message) 
4receive( senderPID, message)

n In order to communicate, two processes
l establish a communication link between them
l exchange messages via send/receive

n [SGG7]  3.4.2.
n More about message passing variants and programming 

in TDDC78 Programming of Parallel Computers
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Client-Server Communication
n Message passing variant for client-server systems
n Sockets
l Endpoint for IPC between clients and servers
l addressed by (IP address, port number)  instead of PID

n Remote Procedure Calls
l Client calls function of (maybe remote) server process

by sending a RPC request to a server socket address
l Server listens on socket port for incoming RPC requests

n In Java: Remote Method Invocation (RMI)

n [SGG7]  3.6
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Threads – Overview
n Thread Concept
n Multithreading Models
n Threading Issues
n Thread libraries
l Pthreads    [SGG7]  4.3.1
l Win32 Threads   [SGG7]  4.3.2
l Java Threads   [SGG7] 4.3.3

n OS thread implementations
l Windows XP Threads   [SGG7] 4.5.1
l Linux Threads   [SGG7]  4.5.2
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Single- and Multithreaded Processes

A thread is a basic unit of CPU utilization:

§ Thread ID,  program counter,  register set,  stack.

§ May be represented in a Thread Control Block  (TCB)

A process may have one or several threads.
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Threads: Motivation

n Most modern applications are multithreaded

l Several threads can run within an application, 
and thus, within a process

n Multiple tasks with the application can be implemented by 
separate threads

l Example: Tasks in a web browser 

4Update display

4Fetch data

4Spell checking

4Answer a network request

n Can simplify code, increase efficiency / responsiveness
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Benefits of Multithreading

n Responsiveness
l Interactive application can continue even when part of it is 

blocked
n Resource Sharing

l Threads of a process share its memory by default.
n Economy

l Light-weight
l Creation, management, context switching for threads

is much faster than for processes
4E.g. Solaris: creation 30x, switching 5x faster

n Utilization of Multiprocessor Architectures
l Threads are more convenient for shared-memory parallel 

processing on multiprocessors, such as multi-core CPUs, to 
speed-up program execution
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User Threads     (User-Level Threads)
n Thread management (scheduling, dispatch) 

done by user-level threads library (linked with the application),
without kernel support.

n The thread-unaware kernel views all user threads of a 
multithreaded process as a single thread of control.
l process dispatched as a unit

☺ user control of scheduling algorithm;  less overhead
L user threads do not scale well to multiprocessor systems

n Three primary user-level thread libraries:
l Win32 threads
l Java threads
l POSIX Pthreads (API / standard, not implementation –

may be provided as either user- or kernel-level library)
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Kernel Threads   (Kernel-Level Threads)
n Threads are managed by the OS kernel  (Kernel-specific thread API)

n Each kernel thread services (executes) one or several user threads

☺ Flexible:  OS can dispatch ready threads of a multithreaded process 
even if some other thread is blocked.

L Kernel invocation overhead at scheduling/synchronization;   
less portable 

n All modern operating systems
support kernel-level threads In short:

Kernel threads = kernel-managed threads.
NB – The term ”kernel thread” is sometimes 
misused with a different meaning, namely for the 
part of a program thread doing a syscall and 
thus running in kernel mode. This is wrong
usage of the term and has nothing to do with the 
above kernel-thread/user thread concept!

NB – The term ”kernel thread” is sometimes
misused with a different meaning, namely for the 
part of a program thread doing a syscall and 
thus running in kernel mode. This is wrong
usage of the term and has nothing to do with the 
above kernel-thread/user thread concept!
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Multicore Programming with Threads

n Multicore or multiprocessor systems putting pressure on 
programmers, challenges include: Dividing activities, Balance, Data 
splitting, Data dependency, Testing and debugging

n Parallelism implies that a system can perform more than one task 
simultaneously, using multiple processors
l Program designed with multiple processors in mind

n Concurrency supports more than one task making progress
l Also on single processor / core, scheduler providing concurrency

n Types of parallelism 
l Data parallelism – distributes subsets of the same data across 

multiple cores, same operation on each
l Task parallelism – distributing threads across cores, each thread 

performing unique operation

n More about this in course TDDD56 Multicore and GPU Programming
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Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:
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Side remark:  Amdahl’s Law

n Estimates performance gains from adding additional cores to an 

application that does both serial and parallel(izable) work

n S is serial portion of the work

n N processing cores

n That is, if application is 75% parallel(izable) / 25% serial, 

moving from 1 to 2 cores results in speedup of 1.6 times

n As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate  effect on 

performance gained by adding additional cores

4.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Multithreading Models
Relationship user threads – kernel threads:

n Many-to-One  (M:1)

n One-to-One  (1:1)

n Many-to-Many  (M:N)

n Variations:
l Two-Level Model
l Light-Weight Processes

[SGG7]  4.4.6
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Many-to-One

n Many user-level threads mapped to single kernel thread

☺ Low overhead
L Not scalable to 

multiprocessors

n Examples:
l Solaris Green Threads
l GNU Portable Threads

n Few current OS support 
this model
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One-to-One
n Each user-level thread maps to one kernel thread

☺ more concurrency;  scalable to multiprocessors
L overhead of creating a kernel thread for each user thread

(can partly be eliminated by using thread pools)

n The preferred model for parallel computing on multicore CPUs
l Many modern OS support it
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Many-to-Many Model

n Allows many user level threads to be mapped 
to many kernel threads

n Allows the OS to create 
a sufficient number of 
kernel threads

n Solaris 8 and earlier
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Two-level Model

n Similar to Many-to-Many, 
except that it allows a user thread 
to be bound to a kernel thread

n Examples
l Solaris 8 

and earlier
l IRIX
l HP-UX
l Tru64 UNIX
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What have we learned?

n Processes versus Threads

n Process control block
n Context switch
n Ready queue and other queues used for scheduling
n Long-/Mid-term versus Short-term scheduler
n Process creation and termination
n Process tree
n Inter-Process Communication

n Motivation for multithreading a process
n Thread control block
n User (level) threads versus Kernel (level) threads
n Threading models:  M:1, 1:1, M:N, two-level


