
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating Systems

Processes and Threads

[SGG7/8/9] Chapters 3.1-3.3 and 4.1-4.3

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

4.2TDIU11, C. Kessler, IDA, Linköpings universitet.

Processes and Threads – Overview

n Process Concept
l Context Switch
l Scheduling Queues
l Creation and Termination

n Cooperating Processes
l Interprocess Communication
l Example: Bounded buffer in shared memory

n Thread Concept
n Multithreading Models
n Threading Issues

4.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Concept
n Process = a program in execution

l Program is a passive entity stored on disk (executable file),
process is active

l Example: Consider multiple users executing the same program

n Textbook uses the terms job and process almost interchangeably.

4.4TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Concept
n Process = a program in execution

n Needs resources for execution
4 esp., CPU, memory slice

n A process includes:
l The program code (also called text section)
l Current activity including program counter,

processor registers
l Data section containing global variables
l Stack containing temporary data:

function parameters, return addresses,
local variables

l Heap containing memory dynamically
allocated during run time

A process in memory:

2

4.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Process State
n As a process executes, it changes state

l new: The process is being created
l running: Instructions are being executed
l waiting: The process is waiting for some event to occur
l ready: The process is waiting to be assigned to a process
l terminated: The process has finished execution

4.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Control Block (PCB)

A data structure for each process in the OS kernel,
containing information associated with a process
(PCB, also called task control block)

n Process state – running, waiting, etc.
n Program counter – location of instruction to execute next
n CPU register contents of all process-centric CPU

registers
n CPU scheduling information d – priorities, scheduling

queue pointers
n Memory-management information – memory allocated

to the process
n Accounting information – CPU used, clock time

elapsed since start, time limits
n I/O status information – I/O devices allocated to

process, list of open files

4.7TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU Switch From Process to Process

4.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Context Switch

n When CPU switches to another process, the system must
l save the state of the old process
l and load the saved state for the new process

n Context-switch time is overhead
l the system does no useful work while switching
l time depends on hardware support

3

4.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Scheduling Queues
n Job queue
l set of all processes in the system

n Ready queue
l set of all processes residing in main memory, ready and

waiting to execute
n Device queues
l set of processes

waiting for an
I/O device

n Processes migrate
among the various
queues

4.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Ready Queue And Various I/O Device Queues

4.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Schedulers

n Long-term scheduler (or job scheduler)
l for batch systems – new jobs for execution queued on disk
l selects which processes should be brought into the ready

queue, and loads them into memory for execution
l controls the degree of multiprogramming
l invoked very infrequently (seconds, minutes)
l No long-term scheduler on UNIX and Windows;

instead swapping, controlled by medium-term scheduler

n Short-term scheduler (or CPU scheduler)
l selects which ready process should be executed next
l invoked very frequently (milliseconds)

⇒ must be fast

4.12TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU-bound vs I/O-bound processes
n I/O-bound process
l spends more time doing I/O than computations
l many short CPU bursts

n CPU-bound process
l spends more time doing computations;
l few very long CPU bursts

n Long-term (or medium-term) scheduler should aim at a
good process mix.

4

4.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Scheduling
n Non-preemptive scheduling:
l process keeps CPU until it terminates or voluntarily

releases it (sleep() – step back into ready queue)
n Preemptive scheduling:
l OS puts process from CPU back into ready queue

after a certain time quantum has passed

4.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Creation

n Parent process creates children processes,
which, in turn create other processes,
forming a tree of processes

n Resource sharing variants:
l Parent and children share all resources
l Children share subset of parent’s resources
l Parent and child share no resources

n Execution variants:
l Parent and children execute concurrently
l Parent waits until children terminate

n Address space variants:
l Child is a duplicate of parent
l Child has a program loaded into it

4.15TDIU11, C. Kessler, IDA, Linköpings universitet.

int main()
{

Pid_t ret;
/* fork another process: */
ret = fork();
if (ret < 0) { /* error
occurred */

fprintf (stderr, "Fork
Failed“);

exit(-1);
}
else if (ret == 0) { // I am
child process:

execlp ("/bin/ls", "ls",
NULL);
}
else { // I am the parent
process

// of child
process with PID==ret

/* wait for child to
complete: */

Example: Process Creation in UNIX
n fork system call

l creates new child process
n exec system call

l used after a fork to replace the
process’ memory space with a
new program

n wait system call
l by parent, suspends parent

execution until child process
has terminated

C program forking
a separate process

4.16TDIU11, C. Kessler, IDA, Linköpings universitet.

A typical tree of processes in Solaris

5

4.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Termination
n Process executes last statement and asks the operating

system to delete it (exit)
l Process returns status value to its parent (used in wait)
l OS de-allocates process’s resources

n Parent may terminate execution of children processes (abort)
l Child has exceeded allocated resources
l Task assigned to child is no longer required

n If parent is exiting:
l Some OS do not allow child to continue after parent

terminates
4All children terminated - cascading termination

4.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Cooperating Processes
n Independent process

l cannot affect or be affected by execution of another process
n Cooperating process

l can affect or be affected by execution of another process
n Advantages of process cooperation:

l Information sharing
l Computation speed-up
l Modularity
l Convenience

n Inter-Process Communication (IPC)
l shared memory
l message passing
l signals

4.19TDIU11, C. Kessler, IDA, Linköpings universitet.

IPC Models – Realization by OS

IPC via Message Passing IPC via Shared Memory

process A process A

kernel

4.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Example: POSIX Shared Memory API
l #include <sys/shm.h>

#include <sys/stat.h>

n Let OS create a shared memory segment (system call):
l int segment_id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

n Attach the segment to the executing process (system call):
l void *shmemptr = shmat (segment_id, NULL, 0);

n Now access it:
l strcpy ((char *)shmemptr, ”Hello world”); // Example: copy a string into it
l …

n Detach it from executing process when no longer accessed:
l shmdt (shmemptr);

n Let OS delete it when no longer used:
l shmctl (segment_id, IPC_RMID, NULL);

6

4.21TDIU11, C. Kessler, IDA, Linköpings universitet.

n Producer-Consumer paradigm for cooperating processes:
l producer process produces data items

that are consumed by a consumer process

n Realization with shared memory:
Shared buffer (queue) of data items
l unbounded-buffer

4places no practical limit on the size of the buffer
4Consumer must wait when buffer is empty

l bounded-buffer
4assumes that there is a fixed buffer size
4Producer must also wait when buffer is full

Example for IPC:
Producer-Consumer Problem

Producer Consumer
buffer

4.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Bounded-Buffer – Shared-Memory Solution

n Shared buffer:

n buffer empty when in == out
n buffer full when ((in+1) % BUFFER_SIZE) == out
n can hold at most BUFFER_SIZE – 1 elements

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Producer Consumer
buffer

inout

4.23TDIU11, C. Kessler, IDA, Linköpings universitet.

while (true) {
while (in == out)

; // do nothing -- nothing to
consume

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
// ... now use the item;

}

while (true) {
/* ... produce an item */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing -- no free buffers

*/
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

Bounded-Buffer Producer and Consumer

Producer code

Consumer code

Producer Consumer
buffer

4.24TDIU11, C. Kessler, IDA, Linköpings universitet.

IPC with Message Passing
n Message system
l processes communicate with each other

without resorting to shared variables
l provides two basic operations:

4send(receiverPID, message)
4receive(senderPID, message)

n In order to communicate, two processes
l establish a communication link between them
l exchange messages via send/receive

n [SGG7] 3.4.2.
n More about message passing variants and programming

in TDDC78 Programming of Parallel Computers

7

4.25TDIU11, C. Kessler, IDA, Linköpings universitet.

Client-Server Communication
n Message passing variant for client-server systems
n Sockets
l Endpoint for IPC between clients and servers
l addressed by (IP address, port number) instead of PID

n Remote Procedure Calls
l Client calls function of (maybe remote) server process

by sending a RPC request to a server socket address
l Server listens on socket port for incoming RPC requests

n In Java: Remote Method Invocation (RMI)

n [SGG7] 3.6

4.26TDIU11, C. Kessler, IDA, Linköpings universitet.

Threads – Overview
n Thread Concept
n Multithreading Models
n Threading Issues
n Thread libraries
l Pthreads [SGG7] 4.3.1
l Win32 Threads [SGG7] 4.3.2
l Java Threads [SGG7] 4.3.3

n OS thread implementations
l Windows XP Threads [SGG7] 4.5.1
l Linux Threads [SGG7] 4.5.2

4.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Single- and Multithreaded Processes

A thread is a basic unit of CPU utilization:

§ Thread ID, program counter, register set, stack.

§ May be represented in a Thread Control Block (TCB)

A process may have one or several threads.
4.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Threads: Motivation

n Most modern applications are multithreaded

l Several threads can run within an application,
and thus, within a process

n Multiple tasks with the application can be implemented by
separate threads

l Example: Tasks in a web browser

4Update display

4Fetch data

4Spell checking

4Answer a network request

n Can simplify code, increase efficiency / responsiveness

8

4.29TDIU11, C. Kessler, IDA, Linköpings universitet.

Benefits of Multithreading

n Responsiveness
l Interactive application can continue even when part of it is

blocked
n Resource Sharing

l Threads of a process share its memory by default.
n Economy

l Light-weight
l Creation, management, context switching for threads

is much faster than for processes
4E.g. Solaris: creation 30x, switching 5x faster

n Utilization of Multiprocessor Architectures
l Threads are more convenient for shared-memory parallel

processing on multiprocessors, such as multi-core CPUs, to
speed-up program execution

4.30TDIU11, C. Kessler, IDA, Linköpings universitet.

User Threads (User-Level Threads)
n Thread management (scheduling, dispatch)

done by user-level threads library (linked with the application),
without kernel support.

n The thread-unaware kernel views all user threads of a
multithreaded process as a single thread of control.
l process dispatched as a unit

☺ user control of scheduling algorithm; less overhead
L user threads do not scale well to multiprocessor systems

n Three primary user-level thread libraries:
l Win32 threads
l Java threads
l POSIX Pthreads (API / standard, not implementation –

may be provided as either user- or kernel-level library)

4.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Kernel Threads (Kernel-Level Threads)
n Threads are managed by the OS kernel (Kernel-specific thread API)

n Each kernel thread services (executes) one or several user threads

☺ Flexible: OS can dispatch ready threads of a multithreaded process
even if some other thread is blocked.

L Kernel invocation overhead at scheduling/synchronization;
less portable

n All modern operating systems
support kernel-level threads In short:

Kernel threads = kernel-managed threads.
NB – The term ”kernel thread” is sometimes
misused with a different meaning, namely for the
part of a program thread doing a syscall and
thus running in kernel mode. This is wrong
usage of the term and has nothing to do with the
above kernel-thread/user thread concept!

NB – The term ”kernel thread” is sometimes
misused with a different meaning, namely for the
part of a program thread doing a syscall and
thus running in kernel mode. This is wrong
usage of the term and has nothing to do with the
above kernel-thread/user thread concept!

4.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Multicore Programming with Threads

n Multicore or multiprocessor systems putting pressure on
programmers, challenges include: Dividing activities, Balance, Data
splitting, Data dependency, Testing and debugging

n Parallelism implies that a system can perform more than one task
simultaneously, using multiple processors
l Program designed with multiple processors in mind

n Concurrency supports more than one task making progress
l Also on single processor / core, scheduler providing concurrency

n Types of parallelism
l Data parallelism – distributes subsets of the same data across

multiple cores, same operation on each
l Task parallelism – distributing threads across cores, each thread

performing unique operation

n More about this in course TDDD56 Multicore and GPU Programming

9

4.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

4.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Side remark: Amdahl’s Law

n Estimates performance gains from adding additional cores to an

application that does both serial and parallel(izable) work

n S is serial portion of the work

n N processing cores

n That is, if application is 75% parallel(izable) / 25% serial,

moving from 1 to 2 cores results in speedup of 1.6 times

n As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

4.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Multithreading Models
Relationship user threads – kernel threads:

n Many-to-One (M:1)

n One-to-One (1:1)

n Many-to-Many (M:N)

n Variations:
l Two-Level Model
l Light-Weight Processes

[SGG7] 4.4.6
4.36TDIU11, C. Kessler, IDA, Linköpings universitet.

Many-to-One

n Many user-level threads mapped to single kernel thread

☺ Low overhead
L Not scalable to

multiprocessors

n Examples:
l Solaris Green Threads
l GNU Portable Threads

n Few current OS support
this model

10

4.37TDIU11, C. Kessler, IDA, Linköpings universitet.

One-to-One
n Each user-level thread maps to one kernel thread

☺ more concurrency; scalable to multiprocessors
L overhead of creating a kernel thread for each user thread

(can partly be eliminated by using thread pools)

n The preferred model for parallel computing on multicore CPUs
l Many modern OS support it

4.38TDIU11, C. Kessler, IDA, Linköpings universitet.

Many-to-Many Model

n Allows many user level threads to be mapped
to many kernel threads

n Allows the OS to create
a sufficient number of
kernel threads

n Solaris 8 and earlier

4.39TDIU11, C. Kessler, IDA, Linköpings universitet.

Two-level Model

n Similar to Many-to-Many,
except that it allows a user thread
to be bound to a kernel thread

n Examples
l Solaris 8

and earlier
l IRIX
l HP-UX
l Tru64 UNIX

4.40TDIU11, C. Kessler, IDA, Linköpings universitet.

What have we learned?

n Processes versus Threads

n Process control block
n Context switch
n Ready queue and other queues used for scheduling
n Long-/Mid-term versus Short-term scheduler
n Process creation and termination
n Process tree
n Inter-Process Communication

n Motivation for multithreading a process
n Thread control block
n User (level) threads versus Kernel (level) threads
n Threading models: M:1, 1:1, M:N, two-level

