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Interrupt, System Calls

Operating System Operations

n Overview of the major operating system components
n Interrupts, Dual mode, System calls
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What is an Operating System (OS)?

n A program that acts as an intermediary
between a user of a computer  
and the computer hardware.

n Operating system goals:
l Execute user programs in a well-defined environment.
l Make the computer system convenient to use.
l Administrate system resources.
l Enable efficient use of the computer hardware.

n An operating system provides an environment
within which other programs can do useful work; 
the OS does not perform any “useful” function itself.

1.3TDIU11, C. Kessler, IDA, Linköpings universitet.

What Operating Systems Do

n Depends on the point of view
n Users want convenience, ease of use and good performance 

l Don’t care about resource utilization
n But shared computer such as mainframe or minicomputer must keep 

all users happy
n Users of dedicate systems such as workstations have dedicated 

resources but frequently use shared resources from servers
n Handheld computers are resource poor,  optimized for usability and 

battery life
n Some computers have little or no user interface, such as embedded 

computers in devices and automobiles
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Operating System Definition (1)

n OS is a resource allocator
l Manages all resources of a computer system
l Decides between conflicting requests 

for efficient and fair resource use

n OS is a control program
l Controls execution of programs 

to prevent errors and improper use of the computer
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Operating System Definition (2)

n No universally accepted definition
l “Everything a vendor ships when you order an operating system” is a 

good approximation
l But varies wildly

n “The one program running at all times on the computer” 
is called the kernel.  
l Everything else is either a system program (ships with the operating 

system) or an application program.
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Computer System Structure

Computer system
can be divided into 4 main layers:

n Hardware
provides basic computing resources
l CPU, memory, I/O devices

n Operating system
controls and coordinates use of hardware 
among various applications and users

n System and Application programs
define the ways in which the system resources are used 
to solve the computing problems of the users
l Word processors, compilers, web browsers, database systems, games

n Users
l People, machines, other computers
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Computer Startup

n Bootstrap program is loaded at power-up or reboot
l Typically stored in ROM or EPROM, generally known 

as firmware
l Initializes all aspects of the system
l Loads operating system kernel 

and starts execution
Operating system
kernel code and data

Memory:

(available memory for 
accommodating
user code and data)

0

512M

Secondary storage 
(usually, disk)
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Computer System Organization
n Computer-system operation
l One or more CPUs, device controllers connected through 

common bus providing access to shared memory
l Concurrent execution of CPUs and devices,

competing for memory cycles
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Background:  Interrupt
n Program execution (von-Neumann cycle)

by a processor

Instruction Fetch

Instruction Decode

Instruction Execute

Update Program Counter
No way to react to events
not explicitly anticipated 
in the (user) program code
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Background:  Interrupt

n Program execution (von-Neumann cycle)
by a processor with interrupt logic

Instruction Fetch

Instruction Decode

Instruction Execute

Update Program Counter

Check for Interrupt

No

Yes

Execute interrupt
service routine (ISR)

Restore processor state

Save processor state
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CPU – I/O Device Interaction (1)
n I/O devices and the CPU can execute concurrently.
n Each device controller has a local buffer.
n CPU moves data from/to main memory to/from local buffers
n I/O is from the device to local buffer of controller.
n Device controller informs CPU that it has finished its operation 

by causing 
an interrupt.

Interrupt Interrupt

kernel I/O ISR 
processing

Remark:
Alternative to 
interrupt usage:
Polling / Busy-
waiting, see
[SGG7] Ch. 13.2.1
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I/O Interaction using Interrupt
n Example:  Read from the keyboard (KBD)

CPU + Memory

Memory

OS Kernel space
ISR table

ISR’s

Device driver 1

Device driver 
KBD

...

...

...

User program code

Device 
controller

Local buffer

Device

System Bus

0:  initiate I/O operation KBD_RD

1:    
token

2:  data 
+ signal interrupt for KBD_RD

3:

3:  call ISR for KBD_RD

4:  ISR uses device driver KBD,
passes data to an OS buffer

OS buffer

4:

5:  return from interrupt

5:

A

A

Computer motherboard
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Interrupt Timeline

for a device sending input

Interrupt Interrupt

ISR
kernel
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I/O Interaction using Interrupt 
n The device driver loads the 

appropriate registers within the 
device controller

n The device controller 
determines what action to take 
based on the registers

l “read a character from
the keyboard”

n The controller starts the transfer 
of data from the device to its 
local buffer

n Once the transfer is complete, 
the device controller informs the 
device driver via an interrupt 
that it has completed the 
transfer.
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CPU – I/O Device Interaction (2)
n DMA = Direct Memory Access
l allows for parallel activity of CPU and I/O data transfer
l Moe efficient for

large volume
data transfer

1 2 3
4
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Interrupt (1)
n Interrupt transfers control to an interrupt service routine, 

generally through the interrupt vector (IRV), a branch table that 
contains the start addresses of all the service routines.

n Interrupt architecture must save the address of the interrupted 
instruction.

n How to determine which type of interrupt has occurred?
l polling
l vectored interrupt system: interrupt number indexes IRV
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Interrupt (2)

n A trap is a software-generated interrupt 
caused either by an error or a user request.
l Examples:  Division by zero;  

Request for OS service

n An operating system is interrupt driven.
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Interrupt Handling

n The operating system preserves the state of the CPU by storing 
registers and the program counter

n Determines which type of interrupt has occurred:
l polling
l vectored interrupt system 

n Separate segments of code (Interrupt service routines) 
determine what action should be taken for each type of interrupt
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Interrupt Handling
n Hardware + OS preserves the state of the CPU by

l Storing registers and program counter (address of interrupted instruction)

n Determines which type of interrupt has occurred:

l Polling (Continually checking a non-busy bit in device controllers’ status register)

l Vectored interrupt system:  Interrupt signal, number indexes into IRV table

n Separate segments of code determine what action should be taken 
for each type of interrupt
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Interrupt Handling
n Hardware + OS preserves the state of the CPU by

l Storing registers and program counter (address of interrupted instruction)

n Determines which type of interrupt has occurred:

l Polling (Continually checking a non-busy bit in device controllers’ status register)

l Vectored interrupt system:  Interrupt signal, number indexes into IRV table

n Separate segments of code determine what action should be taken 
for each type of interrupt

Intel Pentium Processor Event Vector Table
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Introduction

More in TDIU16:  System call API, 
Passing parameters, Types of system calls
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Dual mode,  System calls
n Dual-mode operation 

allows OS to protect itself and other system components
l User mode and kernel mode (supervisor mode, privileged mode)

4 Privileged instructions only executable in kernel mode
4 System call changes mode to kernel, on return resets it to user

l Mode bit provided by hardware
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Dual-Mode Operation
n Sharing system resources requires the operating system to 

ensure that an incorrect program cannot cause other 
programs to execute incorrectly.

n Hardware support (mode bit) to differentiate between at 
least two modes of operations.

n User mode
l Execution done on behalf of a user
l Access only to memory addresses owned by the process

n Kernel mode (also supervisor mode or system mode) 
l Execution done on behalf of operating system. 
l Privileged instructions are executable

(= instructions that may be harmful, 
e.g., system login, set priorities, system halt, etc.)

l Unrestricted memory access
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Dual-Mode Operation (Cont.)

n When an interrupt or fault occurs, hardware switches to 
kernel mode.

n System calls – call OS service

kernel user

Interrupt/fault

set user mode

Remark:
Increasingly, CPUs support multi-mode operations for virtualization,
i.e. virtual machine manager (VMM) mode for guest VMs
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Example of System Calls
n System call sequence to copy contents of one file to another
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System Call API – OS Relationship

Call to C 
standard 
library fn.
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System Call API Implementation
n System call implementation is hardware-specific, 

e.g. special trap instruction with a system call number passed 
in a register, indexing the interrupt vector (branch table)

n System call interface (usually, in C) 
l invokes the intended system call in OS kernel and 

returns status of the system call and any return values
n Advantage: 
l Caller does not need to know anything about how the 

system call is implemented
l Most details of OS interface hidden from programmer by 

API
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Types of System Calls
n Process control

load, execute, end, abort, create, terminate, wait ...
memory allocation and deallocation

n File management
open, close, create, delete, read, write, get/set attributes...

n Device management
request / release device, read, write, ...

n Information maintenance
get / set time, date, system data, process / file attributes

n Communications
create / delete connection, send, receive, ...
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Operating-System Operations

n Interrupt driven (hardware and software)

l Hardware interrupt by one of the devices 

l Software interrupt (exception or trap):

4Software error (e.g., division by zero)

4Request for operating system service

n Operating system and users share hardware and software. 
Make sure that an error in a user program does not cause 
problems for other programs. 

l Infinite loops, processes modifying each other or the operating 
system
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Operating System Operations
n Dual mode, system calls
n CPU management
l Uniprogramming, Multiprogramming, Multitasking
l Process management

n Memory management
n File system and mass storage management
n Protection and security
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Uniprogramming

Running Running
Waiting Waiting

Process execution time: 
CPU: 10 + 10 time units
I/O: 100 + 100 time units

I.e., I/O intensive (200/220 = 90.9%),  CPU utilization 9.1%

Single user with single program 
cannot keep CPU and I/O devices busy at all times.

0 10 110 120 220
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Multiprogramming with three programs

Running Running
Waiting (printer) Waiting

Running Running
Waiting (disk) Waiting

B

A

Running RunningWaiting (network) Waiting
C

Running Running Running Running Running RunningWaiting Waiting

combined
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Multiprogramming
n needed for efficiency
l Single user cannot keep CPU and I/O 

devices busy at all times
l Multiprogramming organizes jobs

(code and data) 
so CPU always has one to execute

l A subset of total jobs in system 
is kept in memory

l One job selected and run 
via job scheduling

l When it has to wait  (e.g., for I/O), 
OS switches to another job

Memory layout for multiprogrammed system

kernel code and data
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Timesharing  (Multitasking)
n Extension of multiprogramming:

CPU switches jobs so frequently that users can interact with 
each job while it is running
l For interactive computer systems,

the response time should be short  (< 1 second)
l Each user has at least one program executing in memory 
[ Processes

l If several jobs ready to run at the same time 
[ CPU scheduling

l If processes don’t fit in memory, 
swapping moves them in and out to run

l [ Virtual memory allows execution of processes not 
completely in memory
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CPU time sharing using timer interrupt
n Timer to prevent infinite loop / process hogging resources
l Set up to interrupt the computer after specific period
l System decrements counter at clock ticks
l When counter = zero, generate an interrupt
l So, OS regains control and can reschedule or terminate a 

program that exceeds allotted time
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Process Management
n A process is a program in execution. 

l A unit of work within the system. 
l Program is a passive entity, process is an active entity.

n Process needs resources to accomplish its task
l CPU, memory, I/O, files
l Initialization data

n Process termination requires reclaim of any reusable resources
n Single-threaded process: has one program counter

specifying location of next instruction to execute
l Process executes instructions sequentially, one at a time, until 

completion
n Multi-threaded process: has one program counter per thread
n Typically, a system has many processes  (some user, some system pr.) 

running concurrently on one or more CPUs
l Concurrency by multiplexing the CPUs among the processes / threads
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Process Management Activities
The operating system is responsible for:
n Creating and deleting both user and system processes
n Suspending and resuming processes
n Providing mechanisms for process synchronization
n Providing mechanisms for process communication
n Providing mechanisms for deadlock handling

[ Lecture on Processes and Threads
[ Lecture on CPU Scheduling
[ TDIU16 Lectures on Synchronization
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Memory Management

n Memory: A large array of words or bytes, each with its own address
l Primary storage – directly accessible from CPU

n In order to execute a program, its instructions (or part) must be in memory
n All  (or part) of the data that is needed by the program must be in memory.

n Memory management determines what is in memory when.
l Optimizing CPU utilization and computer response to users 

n OS memory management activities
l Keeping track of which parts of memory are currently being used 

and by whom
l Deciding which processes (or parts thereof) and data to move 

into and out of memory
l Allocating and deallocating memory space as needed

[ Lectures on Memory Management and Virtual Memory
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Mass-Storage Management (1)
n Usually, disks are used to store data that do not fit in main memory or 

data that must be kept for a “long” period of time.
l Secondary storage

n Proper management is of central importance
n Critical for system performance

l Often, speed of computer operation hinges 
on disk subsystem and its algorithms

n OS activities:
l Free-space management
l Storage allocation
l Disk scheduling

n Some storage need not be fast
l Tertiary storage

optical storage, magnetic tape...
l Still must be managed
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Mass-Storage Management (2)

n OS provides uniform, logical view of information storage
l Abstracts from physical to logical storage unit:  file
l Each medium (disk, tape) has different properties:

access speed, capacity, data transfer rate, sequential/random access

n OS File-System management
l Files usually organized into directories
l Access control
l OS activities include

4 Creating and deleting files and directories
4 Primitives to manipulate files and directories
4 Mapping files onto secondary storage
4 Backup files to tertiary storage

[ Lecture on File Systems
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Protection and Security
n Protection – any mechanism for controlling access of processes or users 

to resources defined by the OS

n Security – defense of the system against internal and external attacks
l Huge range, including denial-of-service, worms, viruses, identity theft, 

theft of service

n Systems generally first distinguish among users, 
to determine who can do what
l User identities (user IDs, security IDs) 
l associated with all files, processes of that user 
l Group identifier (group ID)

n Privilege escalation allows user to change to effective ID with more rights

[ Lectures on Protection and Security
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System Programs
n provide a convenient environment for program development and 

execution.  
l File management
l Status information
l File modification
l Programming language support: Compilers, assemblers, debuggers...
l Program loading and execution
l Communications:  Message passing, e-mail, web browser, ...

n Some of them are simply user interfaces to system calls; 
others are considerably more complex

n Most users’ view of the operation system is defined by system programs, 
not the actual system calls
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Summary

n Operating System  =  OS Kernel + System Programs
l Mediates all accesses to system resources
l Interrupt-driven

4Error handling
4Controlled access to system resources, e.g.

– I/O devices, DMA
– CPU time sharing

4…
n Dual-Mode (user mode, kernel mode)
l System Call API for portability


