
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11
Operating systems

Introduction
Interrupt, System Calls

Operating System Operations

n Overview of the major operating system components
n Interrupts, Dual mode, System calls

[SGG7/8/9]
Chapter 1.1-1.7
Chapter 2.3-2.5

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

1.2TDIU11, C. Kessler, IDA, Linköpings universitet.

What is an Operating System (OS)?

n A program that acts as an intermediary
between a user of a computer
and the computer hardware.

n Operating system goals:
l Execute user programs in a well-defined environment.
l Make the computer system convenient to use.
l Administrate system resources.
l Enable efficient use of the computer hardware.

n An operating system provides an environment
within which other programs can do useful work;
the OS does not perform any “useful” function itself.

1.3TDIU11, C. Kessler, IDA, Linköpings universitet.

What Operating Systems Do

n Depends on the point of view
n Users want convenience, ease of use and good performance

l Don’t care about resource utilization
n But shared computer such as mainframe or minicomputer must keep

all users happy
n Users of dedicate systems such as workstations have dedicated

resources but frequently use shared resources from servers
n Handheld computers are resource poor, optimized for usability and

battery life
n Some computers have little or no user interface, such as embedded

computers in devices and automobiles

1.4TDIU11, C. Kessler, IDA, Linköpings universitet.

Operating System Definition (1)

n OS is a resource allocator
l Manages all resources of a computer system
l Decides between conflicting requests

for efficient and fair resource use

n OS is a control program
l Controls execution of programs

to prevent errors and improper use of the computer

2

1.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Operating System Definition (2)

n No universally accepted definition
l “Everything a vendor ships when you order an operating system” is a

good approximation
l But varies wildly

n “The one program running at all times on the computer”
is called the kernel.
l Everything else is either a system program (ships with the operating

system) or an application program.

1.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Computer System Structure

Computer system
can be divided into 4 main layers:

n Hardware
provides basic computing resources
l CPU, memory, I/O devices

n Operating system
controls and coordinates use of hardware
among various applications and users

n System and Application programs
define the ways in which the system resources are used
to solve the computing problems of the users
l Word processors, compilers, web browsers, database systems, games

n Users
l People, machines, other computers

1.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Computer Startup

n Bootstrap program is loaded at power-up or reboot
l Typically stored in ROM or EPROM, generally known

as firmware
l Initializes all aspects of the system
l Loads operating system kernel

and starts execution
Operating system
kernel code and data

Memory:

(available memory for
accommodating
user code and data)

0

512M

Secondary storage
(usually, disk)

1.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Computer System Organization
n Computer-system operation
l One or more CPUs, device controllers connected through

common bus providing access to shared memory
l Concurrent execution of CPUs and devices,

competing for memory cycles

3

1.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Background: Interrupt
n Program execution (von-Neumann cycle)

by a processor

Instruction Fetch

Instruction Decode

Instruction Execute

Update Program Counter
No way to react to events
not explicitly anticipated
in the (user) program code

1.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Background: Interrupt

n Program execution (von-Neumann cycle)
by a processor with interrupt logic

Instruction Fetch

Instruction Decode

Instruction Execute

Update Program Counter

Check for Interrupt

No

Yes

Execute interrupt
service routine (ISR)

Restore processor state

Save processor state

1.11TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU – I/O Device Interaction (1)
n I/O devices and the CPU can execute concurrently.
n Each device controller has a local buffer.
n CPU moves data from/to main memory to/from local buffers
n I/O is from the device to local buffer of controller.
n Device controller informs CPU that it has finished its operation

by causing
an interrupt.

Interrupt Interrupt

kernel I/O ISR
processing

Remark:
Alternative to
interrupt usage:
Polling / Busy-
waiting, see
[SGG7] Ch. 13.2.1

1.12TDIU11, C. Kessler, IDA, Linköpings universitet.

I/O Interaction using Interrupt
n Example: Read from the keyboard (KBD)

CPU + Memory

Memory

OS Kernel space
ISR table

ISR’s

Device driver 1

Device driver
KBD

...

...

...

User program code

Device
controller

Local buffer

Device

System Bus

0: initiate I/O operation KBD_RD

1:
token

2: data
+ signal interrupt for KBD_RD

3:

3: call ISR for KBD_RD

4: ISR uses device driver KBD,
passes data to an OS buffer

OS buffer

4:

5: return from interrupt

5:

A

A

Computer motherboard

4

1.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt Timeline

for a device sending input

Interrupt Interrupt

ISR
kernel

1.14TDIU11, C. Kessler, IDA, Linköpings universitet.

I/O Interaction using Interrupt
n The device driver loads the

appropriate registers within the
device controller

n The device controller
determines what action to take
based on the registers

l “read a character from
the keyboard”

n The controller starts the transfer
of data from the device to its
local buffer

n Once the transfer is complete,
the device controller informs the
device driver via an interrupt
that it has completed the
transfer.

1.15TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU – I/O Device Interaction (2)
n DMA = Direct Memory Access
l allows for parallel activity of CPU and I/O data transfer
l Moe efficient for

large volume
data transfer

1 2 3
4

1.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt (1)
n Interrupt transfers control to an interrupt service routine,

generally through the interrupt vector (IRV), a branch table that
contains the start addresses of all the service routines.

n Interrupt architecture must save the address of the interrupted
instruction.

n How to determine which type of interrupt has occurred?
l polling
l vectored interrupt system: interrupt number indexes IRV

5

1.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt (2)

n A trap is a software-generated interrupt
caused either by an error or a user request.
l Examples: Division by zero;

Request for OS service

n An operating system is interrupt driven.

1.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt Handling

n The operating system preserves the state of the CPU by storing
registers and the program counter

n Determines which type of interrupt has occurred:
l polling
l vectored interrupt system

n Separate segments of code (Interrupt service routines)
determine what action should be taken for each type of interrupt

1.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt Handling
n Hardware + OS preserves the state of the CPU by

l Storing registers and program counter (address of interrupted instruction)

n Determines which type of interrupt has occurred:

l Polling (Continually checking a non-busy bit in device controllers’ status register)

l Vectored interrupt system: Interrupt signal, number indexes into IRV table

n Separate segments of code determine what action should be taken
for each type of interrupt

1.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt Handling
n Hardware + OS preserves the state of the CPU by

l Storing registers and program counter (address of interrupted instruction)

n Determines which type of interrupt has occurred:

l Polling (Continually checking a non-busy bit in device controllers’ status register)

l Vectored interrupt system: Interrupt signal, number indexes into IRV table

n Separate segments of code determine what action should be taken
for each type of interrupt

Intel Pentium Processor Event Vector Table

6

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11
Operating systems

System Calls

Introduction

More in TDIU16: System call API,
Passing parameters, Types of system calls

1.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Dual mode, System calls
n Dual-mode operation

allows OS to protect itself and other system components
l User mode and kernel mode (supervisor mode, privileged mode)

4 Privileged instructions only executable in kernel mode
4 System call changes mode to kernel, on return resets it to user

l Mode bit provided by hardware

1.23TDIU11, C. Kessler, IDA, Linköpings universitet.

Dual-Mode Operation
n Sharing system resources requires the operating system to

ensure that an incorrect program cannot cause other
programs to execute incorrectly.

n Hardware support (mode bit) to differentiate between at
least two modes of operations.

n User mode
l Execution done on behalf of a user
l Access only to memory addresses owned by the process

n Kernel mode (also supervisor mode or system mode)
l Execution done on behalf of operating system.
l Privileged instructions are executable

(= instructions that may be harmful,
e.g., system login, set priorities, system halt, etc.)

l Unrestricted memory access
1.24TDIU11, C. Kessler, IDA, Linköpings universitet.

Dual-Mode Operation (Cont.)

n When an interrupt or fault occurs, hardware switches to
kernel mode.

n System calls – call OS service

kernel user

Interrupt/fault

set user mode

Remark:
Increasingly, CPUs support multi-mode operations for virtualization,
i.e. virtual machine manager (VMM) mode for guest VMs

7

1.25TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of System Calls
n System call sequence to copy contents of one file to another

1.26TDIU11, C. Kessler, IDA, Linköpings universitet.

System Call API – OS Relationship

Call to C
standard
library fn.

1.27TDIU11, C. Kessler, IDA, Linköpings universitet.

System Call API Implementation
n System call implementation is hardware-specific,

e.g. special trap instruction with a system call number passed
in a register, indexing the interrupt vector (branch table)

n System call interface (usually, in C)
l invokes the intended system call in OS kernel and

returns status of the system call and any return values
n Advantage:
l Caller does not need to know anything about how the

system call is implemented
l Most details of OS interface hidden from programmer by

API

1.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Types of System Calls
n Process control

load, execute, end, abort, create, terminate, wait ...
memory allocation and deallocation

n File management
open, close, create, delete, read, write, get/set attributes...

n Device management
request / release device, read, write, ...

n Information maintenance
get / set time, date, system data, process / file attributes

n Communications
create / delete connection, send, receive, ...

8

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11
Operating systems

Operating System Operations

1.30TDIU11, C. Kessler, IDA, Linköpings universitet.

Operating-System Operations

n Interrupt driven (hardware and software)

l Hardware interrupt by one of the devices

l Software interrupt (exception or trap):

4Software error (e.g., division by zero)

4Request for operating system service

n Operating system and users share hardware and software.
Make sure that an error in a user program does not cause
problems for other programs.

l Infinite loops, processes modifying each other or the operating
system

1.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Operating System Operations
n Dual mode, system calls
n CPU management
l Uniprogramming, Multiprogramming, Multitasking
l Process management

n Memory management
n File system and mass storage management
n Protection and security

1.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Uniprogramming

Running Running
Waiting Waiting

Process execution time:
CPU: 10 + 10 time units
I/O: 100 + 100 time units

I.e., I/O intensive (200/220 = 90.9%), CPU utilization 9.1%

Single user with single program
cannot keep CPU and I/O devices busy at all times.

0 10 110 120 220

9

1.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Multiprogramming with three programs

Running Running
Waiting (printer) Waiting

Running Running
Waiting (disk) Waiting

B

A

Running RunningWaiting (network) Waiting
C

Running Running Running Running Running RunningWaiting Waiting

combined

1.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Multiprogramming
n needed for efficiency
l Single user cannot keep CPU and I/O

devices busy at all times
l Multiprogramming organizes jobs

(code and data)
so CPU always has one to execute

l A subset of total jobs in system
is kept in memory

l One job selected and run
via job scheduling

l When it has to wait (e.g., for I/O),
OS switches to another job

Memory layout for multiprogrammed system

kernel code and data

1.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Timesharing (Multitasking)
n Extension of multiprogramming:

CPU switches jobs so frequently that users can interact with
each job while it is running
l For interactive computer systems,

the response time should be short (< 1 second)
l Each user has at least one program executing in memory
[Processes

l If several jobs ready to run at the same time
[CPU scheduling

l If processes don’t fit in memory,
swapping moves them in and out to run

l [Virtual memory allows execution of processes not
completely in memory

1.36TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU time sharing using timer interrupt
n Timer to prevent infinite loop / process hogging resources
l Set up to interrupt the computer after specific period
l System decrements counter at clock ticks
l When counter = zero, generate an interrupt
l So, OS regains control and can reschedule or terminate a

program that exceeds allotted time

10

1.37TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Management
n A process is a program in execution.

l A unit of work within the system.
l Program is a passive entity, process is an active entity.

n Process needs resources to accomplish its task
l CPU, memory, I/O, files
l Initialization data

n Process termination requires reclaim of any reusable resources
n Single-threaded process: has one program counter

specifying location of next instruction to execute
l Process executes instructions sequentially, one at a time, until

completion
n Multi-threaded process: has one program counter per thread
n Typically, a system has many processes (some user, some system pr.)

running concurrently on one or more CPUs
l Concurrency by multiplexing the CPUs among the processes / threads

1.38TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Management Activities
The operating system is responsible for:
n Creating and deleting both user and system processes
n Suspending and resuming processes
n Providing mechanisms for process synchronization
n Providing mechanisms for process communication
n Providing mechanisms for deadlock handling

[Lecture on Processes and Threads
[Lecture on CPU Scheduling
[TDIU16 Lectures on Synchronization

1.39TDIU11, C. Kessler, IDA, Linköpings universitet.

Memory Management

n Memory: A large array of words or bytes, each with its own address
l Primary storage – directly accessible from CPU

n In order to execute a program, its instructions (or part) must be in memory
n All (or part) of the data that is needed by the program must be in memory.

n Memory management determines what is in memory when.
l Optimizing CPU utilization and computer response to users

n OS memory management activities
l Keeping track of which parts of memory are currently being used

and by whom
l Deciding which processes (or parts thereof) and data to move

into and out of memory
l Allocating and deallocating memory space as needed

[Lectures on Memory Management and Virtual Memory
1.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Mass-Storage Management (1)
n Usually, disks are used to store data that do not fit in main memory or

data that must be kept for a “long” period of time.
l Secondary storage

n Proper management is of central importance
n Critical for system performance

l Often, speed of computer operation hinges
on disk subsystem and its algorithms

n OS activities:
l Free-space management
l Storage allocation
l Disk scheduling

n Some storage need not be fast
l Tertiary storage

optical storage, magnetic tape...
l Still must be managed

11

1.41TDIU11, C. Kessler, IDA, Linköpings universitet.

Mass-Storage Management (2)

n OS provides uniform, logical view of information storage
l Abstracts from physical to logical storage unit: file
l Each medium (disk, tape) has different properties:

access speed, capacity, data transfer rate, sequential/random access

n OS File-System management
l Files usually organized into directories
l Access control
l OS activities include

4 Creating and deleting files and directories
4 Primitives to manipulate files and directories
4 Mapping files onto secondary storage
4 Backup files to tertiary storage

[Lecture on File Systems
1.42TDIU11, C. Kessler, IDA, Linköpings universitet.

Protection and Security
n Protection – any mechanism for controlling access of processes or users

to resources defined by the OS

n Security – defense of the system against internal and external attacks
l Huge range, including denial-of-service, worms, viruses, identity theft,

theft of service

n Systems generally first distinguish among users,
to determine who can do what
l User identities (user IDs, security IDs)
l associated with all files, processes of that user
l Group identifier (group ID)

n Privilege escalation allows user to change to effective ID with more rights

[Lectures on Protection and Security

1.43TDIU11, C. Kessler, IDA, Linköpings universitet.

System Programs
n provide a convenient environment for program development and

execution.
l File management
l Status information
l File modification
l Programming language support: Compilers, assemblers, debuggers...
l Program loading and execution
l Communications: Message passing, e-mail, web browser, ...

n Some of them are simply user interfaces to system calls;
others are considerably more complex

n Most users’ view of the operation system is defined by system programs,
not the actual system calls

1.44TDIU11, C. Kessler, IDA, Linköpings universitet.

Summary

n Operating System = OS Kernel + System Programs
l Mediates all accesses to system resources
l Interrupt-driven

4Error handling
4Controlled access to system resources, e.g.

– I/O devices, DMA
– CPU time sharing

4…
n Dual-Mode (user mode, kernel mode)
l System Call API for portability

