Software processes

Kristian Sandahl
krs@ida.liu.se

Contents

Definitions

Software life-cycle processes
= activities

= software life-cycle models
Process models

4% Linkopings universitet

Kristian Sandahl, IDA
krisa@ida. iu.se

Software process

Sequence of steps
Result: software items

Input
Output analysis design implementation
Resource consumption
Feed-back)
resources % side-effects
in out
feed-back

Ab Linkopings universitet

Kristian Sandahl, IDA
krisa@ida liu.se

The effector process

A process that verifies

ETVXM-architecture:

itself = Entry
A process that exits = Task
under certain criteria = Verify
w Exit
= Measure
Example:
p
write SRS SRS Inspect
T \'

Ab Linkopings universitet X

Kristian Sandah, IDA
krisa@ida liu.se

Process levels The software life-cycle

Universal: = time for concept -> time for “unavailability”
m Processes suitable for many projects
Worldly The SLC is made up by:
= Processes adapted to a certain project or Software life-cycle model
product Activities
"""" Atomic o document

m Detailed processes for teams and individuals

% Linkdpings universitet Kostan Sanca, DA aﬂ. Linképings universitet ot S, 08
Software life-cycle models Waterfall model
Concept
Waterfall model de Facto reference model | \exploration
forward engineering
Incremental model manageable kRequirements '
Spiral model fixed documents m
Win-win spiral model one-step delivery kimplementation
Iterative model: “RUP” the negative circle: 5
= sensitivity to changes -> R

more time for planning ->
shortened design time ->
sensitivity to changes....

% Linkdpings universitet Kt Sendah, DA % Linkdpings universitet Kistan Sancah, DA

krisa@ida liu.se krisa@ida liu.se

Incremental model

The release
planning
problem

| Design—l—-‘ Implementation }—-{ TestH Installation)———> R,
| Design—l—-‘ Implementation }——{ TestH Installation)—> R,

| Design—}—-‘ Implementation }—'{ TestH Installation }—' R,

Concept
exploration

Kristian Sandahl, IDA
krisa@idaiu.se

4% Linkopings universitet

The original spiral model

cumuuie

P

erocass

Involves early phases
n increments =
he process is iterative

riginal goal: handle ™ / B
isks '

See:

http://www.sei.cmu.edu/
cbs/spiral2000/

4% Linkopings universitet

Kristian Sandahl, IDA
krisa@ida. iu.se

The win-win negotiation

Find stake-holders’ win
condition

Infer design attributes
Negotiat itabl
architectural solution \

See:
http://sunset.usc.edu/ | different| | fast distributed
research/WINWIN/ markets| | updates| | developmen
index.html P
‘ Negotiation ‘
example: = _ =
layered Y R |
architecture: O

% Linkdpings universitet + changeability ———————siensancan n
- response time O O d

The win-win spiral model

2. Mdentify wakehokders
win conditions

Ja. Regomeike
win conditions

| Kentify
nexl-bevel

ib. Establish next level
s i Establish next le

objectives, constrainis
and altematives

7. Reveiw and

5. Define pext of
product i process
including partitions

Ab Linkopings universitet

Kristian Sandah, IDA
krisa@ida liu.se

RUP — Rational Unified Process

Phases

Core Process Workflows \rvaptunlElaburahml Conetrustion | Tramtiunl
i
Business Modeling, : :
Requirerments_
Analysis &Design ,V: i |
! !
Irrplementation,....... m
I [F— .*__
geea‘ e i —
ploy : . f ! _4’_
Core Supporting Workflows 1 F)
Configuration & Change g, __,—#
Project Managemett... SRS VI
Erwironmert. e i {
See:. http://www- peimiay | e | | e | e | ml . | m.l
306.ibm.com/software/awdtools/rup/ EEREZ 41~ # - & s #iaT i i
Iterations
-ﬂt Linkdpings universitet R

Prototypig

Sometimes called RAD

. o Concept ’:_‘
(Rapid Application exploration Requirements

Development)
Focus on feed-back
Negative:

too early commitment | |mplementation

hard to obtain quality?

4% Linkopings universitet

Implementation

Kristian Sandahl, IDA
krisa@ida. iu.se

Synchronise and Stabilise

Idea: to always be prepared to deliver
Incremental method

Frequent increment installation and test
= Daily Build

Smoke tests

Regression testing

The MS way

% LIﬂkOpIngS universitet Kristian Sandah, IDA

krisa@ida liu.se

Cleanroom process model

Incremental method

Committed to formal specification
Dedicated use of ETVXM
Usage-based verification

Ab Linkopings universitet

Kristian Sandah, IDA
krisa@ida liu.se

eXtreme Programming

v o
» 4 -, Extreme Programming Project

i, Programming

Test Seenarios

New User Story

User Stories
Requirements Projectvelacity Bugs

Latest
Wersion,

: System Release
Archlt?cmalmetaphor liel“}“ Plan

Spike — " Pl anmng@\

Cugtomer
Acceptance approval . Small
Tests Releases

Uncertain Confident Next Iteration
Estimates Estimates
Spike) Copyriht 20091 Deavan Wl
See: http://www.extremeprogramming.org/
4% Linkopings universitet Kostan Sanca, DA

Some XP-rules

User stories are written

Make frequent small
releases

Move people around
Simplicity

Choose a system metaphor

Create spike solutions to
reduce risk

Refactor whenever and
wherever possible

4% Linkopings universitet

The customer is always
available

Code the unit test first

All production code is pair
programmed

Leave optimisation till last
No overtime

All code must pass all unit
tests before it can be
released

Acceptance tests are run
often and the score is
published.

Kristian Sandahl, IDA
krisa@ida. iu.se

Open source

The code is published

An interested community voluntarily evolves
the code

All results are free to use
Success #1: Linux
"Software culture”

% LIﬂkOpIngS universitet Kristian Sandah, IDA

krisa@ida liu.se

