
1

Software processes

Kristian Sandahl
krs@ida.liu.se

Kristian Sandahl, IDA
krisa@ida.liu.se

Contents

Definitions
Software life-cycle processes

activities
software life-cycle models

Process models

Kristian Sandahl, IDA
krisa@ida.liu.se

Software process

Sequence of steps
Result: software items
Input
Output
Resource consumption
Feed-back

analysis design implementation

in out

side-effectsresources

feed-back
Kristian Sandahl, IDA

krisa@ida.liu.se

write SRS

The effector process

A process that verifies
itself
A process that exits
under certain criteria

ETVXM-architecture:
Entry
Task
Verify
Exit
Measure

plan decide SRS

defects

E T

MExample:

Inspect

X
V

2

Kristian Sandahl, IDA
krisa@ida.liu.se

Process levels

Universal:
Processes suitable for many projects

Worldly
Processes adapted to a certain project or
product

Atomic
Detailed processes for teams and individuals

document
whiteboard

Kristian Sandahl, IDA
krisa@ida.liu.se

The software life-cycle

= time for concept -> time for “unavailability”

The SLC is made up by:
Software life-cycle model
Activities

Kristian Sandahl, IDA
krisa@ida.liu.se

Software life-cycle models

Waterfall model
Incremental model
Spiral model
Win-win spiral model
Iterative model: “RUP”

Kristian Sandahl, IDA
krisa@ida.liu.se

Waterfall model
de Facto reference model

forward engineering
manageable
fixed documents

Negative:
one-step delivery
the negative circle:

sensitivity to changes ->
more time for planning ->
shortened design time ->
sensitivity to changes....

Concept
exploration

Requirements

Design

Implementation

Test

Installation

Operation

Maintenance

Replacement

feed-back

3

Kristian Sandahl, IDA
krisa@ida.liu.se

Incremental model

Concept
exploration Requirements

Design

Design

Design

Implementation

Implementation

Implementation Test

Test

Test

Installation

Installation

Installation R1

R2

Rn

The release
planning
problem

Kristian Sandahl, IDA
krisa@ida.liu.se

The original spiral model

Involves early phases
in increments ⇒
the process is iterative

Original goal: handle
risks

See:
http://www.sei.cmu.edu/

cbs/spiral2000/

Kristian Sandahl, IDA
krisa@ida.liu.se

The win-win negotiation
Find stake-holders’ win
condition
Infer design attributes
Negotiate a suitable
architectural solution

See:
http://sunset.usc.edu/
research/WINWIN/
index.html

different
markets

fast
updates

distributed
development

example:
layered
architecture:
+ changeability
- response time

Negotiation

Kristian Sandahl, IDA
krisa@ida.liu.se

The win-win spiral model

4

Kristian Sandahl, IDA
krisa@ida.liu.se

RUP – Rational Unified Process

See: http://www-
306.ibm.com/software/awdtools/rup/

Kristian Sandahl, IDA
krisa@ida.liu.se

Prototypig

Sometimes called RAD
(Rapid Application
Development)
Focus on feed-back

Negative:
too early commitment
hard to obtain quality?

Concept
exploration Requirements

Design

Implementation

Test

Design

Implementation

Test

Kristian Sandahl, IDA
krisa@ida.liu.se

Synchronise and Stabilise

Idea: to always be prepared to deliver
Incremental method
Frequent increment installation and test

Daily Build
Smoke tests
Regression testing
The MS way

Kristian Sandahl, IDA
krisa@ida.liu.se

Cleanroom process model

Incremental method
Committed to formal specification
Dedicated use of ETVXM
Usage-based verification

5

Kristian Sandahl, IDA
krisa@ida.liu.se

eXtreme Programming

See: http://www.extremeprogramming.org/
Kristian Sandahl, IDA

krisa@ida.liu.se

Some XP-rules
User stories are written
Make frequent small
releases
Move people around
Simplicity
Choose a system metaphor
Create spike solutions to
reduce risk
Refactor whenever and
wherever possible

The customer is always
available
Code the unit test first
All production code is pair
programmed
Leave optimisation till last
No overtime
All code must pass all unit
tests before it can be
released
Acceptance tests are run
often and the score is
published.

Kristian Sandahl, IDA
krisa@ida.liu.se

Open source

The code is published
An interested community voluntarily evolves
the code
All results are free to use
Success #1: Linux
”Software culture”

