
Linköpings universitet
IDA Department of Computer and Information Sciences
Doc. Christoph Kessler

EXAM
FDA149 / TDDC54 Software Engineering

2006-02-16, 14:00–18:00

Name: Personnummer:

Please mark solved problems with X:

Question 1 2 3 4 5 6 7 8 9 10 11 12
answered
(X)
score
(points)

Total score: Grade (U/G, U/3/4/5):

Sign. Examinator:

Examinator: Christoph Kessler

Jour / tentavakt (Linköping): Christoph Kessler (070-3666687, 013-282406)

External supervisors for exams written outside Linköping,

please confirm with your signature below that you have checked the identity of the candidate and
supervised this exam before you send it by mail to Christoph Kessler, IDA, Linköpings universitet,
58183 Linköping.

Supervisor (name, signature):

Hjälpmedel / Admitted material:

None.

1



General instructions

� This exam has 12 assignments. Read all assignments carefully and completely before you
begin.

� Those who only do half the exam (corresponding to the second half of the course or
TDDC18), please solve only assignments 6 to 12. Hand in a copy of your Ladok account
documenting the result you scored in the PUM exam (i.e., TDDC01, TDDC06, TDDB62
or equivalent) together with your exam.

� It is recommended that you use a new sheet for each assignment. Number all your sheets,
and mark each sheet on top with your name, personnummer, and a page number.

� You may answer in either English or Swedish.

� Write clearly. Unreadable text will be ignored.

� Be precise in your statements. Unprecise formulations may lead to a reduction of points.

� Motivate clearly all statements and reasoning.

� Explain calculations and solution procedures.

� The assignments are not ordered according to difficulty.

� The exam is designed for 40 points and 4 hours (or 20p and 2h for half the exam). You may
thus plan about 5 minutes per point.

� Grading: For FDA149: U, 3, 4, 5. For TDDC54 (CUGS master students): U, G.

The preliminary threshold for passing is 20 points (10 points for those who write half the
exam).

� The exams will be corrected by 6 different teachers in sequence. Hence, expect at least 3
weeks until the result will be available.

2



Assignments

1. (5 p.) Software processes

(a) Write down a decision table for selection of life cycle or process models. The columns
represent properties of the problem, properties of the organisation or wanted quality
attributes and constraints of the forthcoming systems. The rows are the life cycle or
process models, and the squares contain short information of the relation between the
column and row. Make sure you have at least five life cycle or process models and
comments in at least 10 squares. Example:

P1 Q2 ...

Waterfall The more change-prone requirements, Easy to connect to a ...
model the less appropriate is the model. project management model.
... ... ... ...

P1=Requirements volatility
Q2=Manageability

2. (4 p.) Use-case modeling in UML

(a) Read the following use-case diagram:

Think of some classes and draw a sequence diagram that captures most of the be-
haviour from the use case. Also write down use-case behaviour you have not included
in the sequence diagram.

3. (4 p.) Software project organization

(a) Write down detailed instructions of how to measure:

(A) The maintainability of a system.
Suitable keywords: complexity, size, documentation, comments, observed mainte-
nance, replacement.

3



(B) The relevance of a prototype of a highly interactive system.
Suitable keywords: perceived relevance, invoked commands, completeness, tasks
completed, weighting measures

4. (1 p.) Design patterns

(a) What is a design pattern? (1p)

5. (6 p.) Testing

(a) Define the terms below: (2 p)

(A) Fault

(B) Failure

(C) Test

(D) Test case

(b) The following figure illustrates the component hierarchy in a software system. De-
scribe the sequence of tests for integration of the components using
– a bottom-up approach and
– a sandwich approach. (4 p)

The following assignments apply to the second part of the course.

6. (6 p.) OO technology

(a) Explain the term syntactic substitutability.

Explain the terms covariance and contravariance of parameter types, in the context
of design by contract.
Which of these two imposes an extensibility problem in OO-based component-based
design, and why? (3p)

(b) Explain the Syntactic Fragile Base Class Problem. What are its implications for the
compatibility of binary components compiled from OO programs? (3p)

4



7. (1 p.) Metaprogramming

(a) Define the term introspection, and give an example of where and how it is used in
some component system. (1p)

8. (1 p.) Model-driven architecture (MDA)

(a) Explain how MDA supports reuse. (1p)

9. (3 p.) Enterprise JavaBeans (EJB)

(a) Name two advantages of using Enterprise JavaBeans (EJB) when developing Java
business applications. (2p)

(b) One could argue about whether Enterprise JavaBeans are object oriented or not. What
are the arguments against? (1p)

10. (4 p.) CORBA

(a) How does CORBA achieve programming language transparency for static calls?
(Describe the principle and those main parts involved in CORBA static calls that are
primarily relevant for enabling language transparency. What is the purpose of each
part? Which parts are to be written by the programmer, and which ones are generated
and how?) (3p)

(b) What does the CORBA trader service do? (1p)

11. (3 p.) Software Architecture Systems

(a) Software architecture systems are said to be a first step towards separation of concerns.
Which concerns are separated, and what are the advantages of this? (1.5p)

(b) Define the term layered architectural style (also known as onion architectural style)
and give an example of a software system with this style. (1.5p)

12. (2 p.) Aspect-Oriented Programming

(a) Aspect oriented programming simplifies software development by providing a mech-
anism for implementing concerns that crosscuts modules. Describe a major disadvan-
tage with aspect oriented programming. (1p)

(b) What is an advice in aspect-oriented programming? (1p)

5


