
UML - Unified Modeling Language

Christoph Kessler, IDA, Linköpings universitet

Most slides by courtesy of Kristian Sandahl

Software engineering process

Requirements
analysis

System
design

Program
design

Coding

Unit & inte-
gration testing

System
testing

Acceptance
testing

Operation &
Maintenance

Support, Management, Tools, Methods, Techniques, Resources

Modeling as a Design Technique

• Testing a physical entity before building it
• Communication with customers
• Visualization
• Reduction of complexity

• Models supplement natural language
• Models support understanding, design, documentation
• Creating a model forces you to take necessary design

decisions
• UML is now the standard notation for modeling software.

Literature on UML

• Official standard documents by OMG:
www.omg.org, www.uml.org

• Current version is UML 2.0 (2004/2005)
– OMG documents: UML Infrastructure, UML Superstructure

• Books:
– Pfleeger: Software Engineering 3rd ed., 2005 (mostly Chapter 6)
– Rumbaugh, Jacobson, Booch:

The Unified Modeling Language Reference Manual, Second
Edition, Addison-Wesley 2005

– Blaha, Rumbaugh: Object-Oriented Modeling and Design with
UML, Second Edition, Prentice-Hall, 2005.

– Stevens, Pooley: Using UML: Software Engineering with
Objects and Components, 2nd edition. Addison-Wesley, 2006

– And many others…

UML: Different diagram types
for different views of software

Modeling (logical) structure of software:
• Static view: Class diagram
• Design view: Structure diagram, collaboration diagr., component d.
• Use case view: Use case diagram
Modeling behavior of software:
• Activity view: Activity diagram
• State machine view: State machine diagram
• Interaction view: Sequence diagram, communication diagram
Modeling physical structure of software
• Deployment view: Deployment diagram
Modeling the model, and extending UML itself
• Model management view: Package Diagram
• Profiles

Use-case modelling

A use-case is:

“… a particular form or pattern or exemplar of
usage, a scenario that begins with some user of
the system initiating some transaction of
sequence of interrelated events.”

Jacobson, m fl 1992: Object-oriented software
engineering. Addison-Wesley

Use-case diagram

Buy a cup of coffee

CoffeeDrinker
A CoffeeDrinker approaches the machine
with her cup and a coin of SEK 5. She
places the cup on the shelf just under the
pipe. She then inserts the coin, and
presses the button for coffee to get coffee
according to default settings. Optionally
she might use other buttons to adjust the
strength and decide to add sugar and/or
whitener. The machine processes the
coffee and rings a bell when it is ready.
The CoffeeDrinker takes her cup from
the shelf.

Actor: a user of
the system in a
particular role.
Can be human
or system.

Detail of use-case

Use-case diagram
for the coffee machine

CoffeeDrinker

TeaDrinker

Service

Porter

Buy a cup of
coffee

Get coin in
return

Pour hot water

Clean the
Machine

Brew a can of
coffee

CoffeeMachine

Add substances

Collect coinsSystem boundary

Relations between use-cases

Clean the
machine

Collect coins

Open machine

<<include>>

<<include>>Service

Add change
<<extend>>Stereotype: extended

classification of meaning

”Separating scenarious”
(often conditional)

”Reuse”

Please, keep as
simple as possible.

Please, keep as
simple as possible.

Identifying classes:
noun analysis

•machine – real noun handled by the
system

•cup – unit for beverage

•coin – detail of user and machine

•shelf – detail of machine

•pipe – detail of machine

•button– handled by the system

•sugar – detail of coffee

•whitener – detail of coffee

•cup of coffee – handled by the system

•indicator – not discovered

A CoffeeDrinker approaches the
machine with her cup and a coin of
SEK 5. She places the cup on the shelf
just under the pipe. She then inserts
the coin, and presses the button for
coffee to get coffee according to
default settings. Optionally, she might
use other buttons to adjust the
strength and decide to add sugar
and/or whitener. The machine
processes the coffee and rings a bell
when it is ready. The CoffeeDrinker
takes her cup from the shelf.

The single class model

CoffeeCustomer

name: String

numberOfCoins() : Integer
buy (c : CupOfCoffee)

name

attribute

operations

Associations between classes

CoffeeCustomer CupOfCoffeebuys
0..*0..*

association

multiplicity A multiplicity can be:
• an exact number
• a range of numbers
• unspecified number denoted by *

Extended class model

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Porter buys0..*

0..*0..* CanOfCoffee

buys
0..*

Revised class model

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Porter buys
0..*0..* CanOfCoffee

Generalisation
association

Class model with navigability

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Porter buys
0..*0..* CanOfCoffee

Generalisation
association

Class model with inheritance
and abstract classes

CoffeeCustomer

IndividualCustomer Porter

getCup() getCan()

pay(c: coin)

Abstract class
(cannot be instantiated,
only extended/specialized)

pay() method is
inherited from
CoffeeCustomer

pay() method is
inherited from
CoffeeCustomer

Class model with aggregation

Machine

1

1

1

1
1

1

Interface CoinHandler Brewer

Aggregation: part-of relationshipAggregation: part-of relationship

More relations between classes

Topic Link
1..* 10..* aggregation

Encylopedia Volume
1 1..* composition

Board Square1
qualified association

1row:{1,2,..8}
column:{1,2,..8}

Book
Copy

Journal

is a copy of

1..* 0..*

is a copy of

{xor}

0..*
1..*

constraint

Stronger form of aggregation:
Composite has sole respon-
sibility for managing its parts,
e.g. allocation / deallocation

The coffee machine class model

CoffeeCustomer

Porter

CupOfCoffee

CanOfCoffee

buys

byus

0..*

0..1

0..*

0..*

makes

makes

machine

1
1

1 11
1

1
1

0..*

0..*

Interface CoinHandler Brewer

Even small models
take space. You need
good drawing tools
and a large sheet.

Even small models
take space. You need
good drawing tools
and a large sheet.

Classes and objects

CupOfCoffeebuys
0..*0..*CoffeeCustomer CupOfCoffeebuys
0..*0..*

Kristian:
CoffeeCustomer

c1: CupOfCoffeebuys

c1: CupOfCoffee

buys

Classes:

Objects:

: CoffeeCustomer

aCoffeeCustomer:
CoffeeCustomer

Reasoning about
an arbitrary object

buys theCupOfCoffee:
CupOfCoffee

buys

buys : CupOfCoffeebuys

...or simply like this:

Like this:

Sequence diagram

: CoffeeCustomer

: Interface

insertCoin

machineReady

pressButton(b1)

pourCoffeetime

Life line of object

Message

Sequence diagram
with several objects

: CoffeeCustomer

: Interface : CoinHandler : Brewer

insertCoin transportA

C

{C-A < 5s}
coinAccepted warmUp

litIndicators

pressButton(b1) makeOrder(o1)

pourCoffeepourCoffee

Communication diagram

: CoffeeCustomer

: Interface

: CoinHandler : Brewer

1: insertCoin

2: transport 4: coinAccepted

3: warmUp

5: litIndicators

6: pressButton(b1)

7: makeOrder(o1) 8: pourCoffee9: pourCoffee

Shows message flows with sequence numbers

Similar information as sequence diagram

State machine diagram

checking idle
falseCoin()/returnCoin(self)

insertCoin()/checkCoin(self)

For class CoinHandler:
start state marker

state event, causing
transition

action, reaction
to the event

message this object

Can formally
describe protocols

Activity Diagram

• Graph
– Nodes are activities (actions)

• Method invocations, operations, sending / receiving messages, handling
events, creating / accessing / modifying / deleting objects, variables …

• Data flow by input and output parameter pins
– Edges are control flow transitions
– To some degree dual to the state diagram

• Might be refined to a low-level specification;
cf. control flow graph (~ compiler IR)

• A Petri Net
– Interpretation by moving tokens along edges
– Models concurrency by multiple tokens for ”current state”
– Fork / join for synchronization

• Models real-world workflows

brew coffee

Activity diagram

insert coin

brew coffee add hot water
to adjust strength

pour coffee

coin accepted? [no]decision

fork

add sugar/whitener

join

initial node

final node

[yes]

Other features…

• Comments
• Constraints in OCL (Object Constraint Language)
• Profiles: Collections of stereotypes for specific

domains, e.g. Realtime-profile for UML
– Customize (specialize) UML elements, e.g. associations
– Can introduce own symbols

• MOF (Meta-Object Facility):
– UML is specified in UML
– Powerful mechanism for extending UML by adding new

language elements

UML Summary

• UML – the standard for modeling software
• Modeling before/during design, precedes coding
• Different diagrams for different views
• Model a software system only partially,

focus on a certain aspect and/or part at a time
• Problem: Maintaining consistency across diagrams
• Tools
• Trend towards more detailed modeling

– Stepwise refinement
– ”executable UML”: UML 2 is almost a programming language…
– UML is customizable and extendible: Profiles, MOF

• Trend towards automatized partial generation of models
and code from models (MDA – model-driven architecture)

Homework Exercise

• Draw a class diagram for the following scenario:
A customer, characterized by his/her name and phone number, may
purchase reservations of tickets for a performance of a show. A reservation
of tickets, annotated with the reservation date, can be either a reservation by
subscription, in which case it is characterized by a subscription series
number, or an individual reservation. A subscription series comprehends at
least 3 and at most 6 tickets; an individual reservation at most one ticket.
Every ticket is part of a subscription series or an individual reservation, but
not both. Customers may have many reservations, but each reservation is
owned by exactly one customer. Tickets may be available or not, and one
may sell or exchange them. A ticket is associated with one specific seat in a
specific performance, given by date and time, of a show, which is
characterized by its name. A show may have several performances.

