
1

pelab

FDA149
Software Engineering

Introduction to Design Patterns

Peter Bunus
Dept of Computer and Information Science
Linköping University, Sweden
petbu@ida.liu.se

Peter Bunus 2TDDB84 Design Patterns

pelab
The Design Patterns Late Show

Top 10 Reasons to take a Design Pattern
Course

1. Amy Diamond took this course but she is still
wondering ”What’s in if for me ?”. Maybe I will
get it an explain it to her.

2. I could get some easy points.
3. Everybody is talking about so it must to be

cool.
4. If I master this I can added it to my CV.
5. Increase my salary at the company.
6. Applying patterns is easier than thinking
7. A great place to pick up ideas to plagiarize.
8. I bought this lousy T Shirt an I would like to

understand the joke.
9. I thought that course is about Dating Design

Patterns.
10. I failed the course last year so I’m trying again.

2

Peter Bunus 3TDDB84 Design Patterns

pelab
Seven Layers of Architecture

Objects

Micro-Architecture

Macro-Architecture

Application-Architecture

System-Architecture

Enterprise-Architecture
Global-Architecture

Design-Patterns

OO Programming

Frameworks

Subsystem

OO Architecture

Peter Bunus 4TDDB84 Design Patterns

pelab
A Brief History of Design Patterns

1963 Ivan Edward Sutherland publishes his Ph.D Thesis at MIT: ”
SketchPad, a Man-Machine Graphical Communication System.

1970... - the window and desktop metaphors (conceptual patterns)
are discovered by the Smalltalk group in Xerox Parc, Palo Alto

3-D computer modeling
visual simulations
computer aided design (CAD)
virtual reality
OO Programming

3

Peter Bunus 5TDDB84 Design Patterns

pelab
A Brief History of Design Patterns

1978/79: Goldberg and Reenskaug develop the MVC pattern for
user Smalltalk interfaces at Xerox Parc

1979 Cristopher Alexander publishes: ”The Timeless Way of
Buildings”

Introduces the notion of pattern and a
pattern language

It is a architecture book and not a software
book

Alexander sought to define step-by-step
rules for solving common engineering
problems relevant to the creation of
buildings and communities.

Peter Bunus 6TDDB84 Design Patterns

pelab
A Brief History of Design Patterns

1987 OOPSLA - Kent Beck and Ward Cunningham at the OOPSLA-
87 workshop on the Specification and Design for Object-Oriented
Programming publish the paper: Using Pattern Languages for
Object-Oriented Programs

Discovered Alexander's work for software engineers by applying
5 patterns in Smalltalk

1991 Erich Gamma came up with an idea for a Ph.D. thesis about
patterns, and by 1992, he had started collaborating with the other
GOF members (Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides) on expanding this idea.

Erik come up with the idea while working on an object oriented
application framework in C++ called "ET++".

Bruce Anderson gives first Patterns Workshop at OOPSLA

4

Peter Bunus 7TDDB84 Design Patterns

pelab
A Brief History of Design Patterns

1993 GOF submitted a catalog of object-oriented software design
patterns to the European Conference of Object-Oriented
Programming (ECOOP) in 1993
E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Abstraction and Reuse of Object-Oriented Design.
ECOOP 97 LNCS 707, Springer, 1993

1993 Kent Beck and Grady Booch sponsor the first meeting of what
is now known as the Hillside Group

1994 - First Pattern Languages of Programs (PLoP) conference

Peter Bunus 8TDDB84 Design Patterns

pelab
A Brief History of Design Patterns

1995 – GOF publishes : Design Patterns. Elements of
Reusable Object-Oriented Software

the most popular computer book ever
published

1 million copies sold

5

Peter Bunus 9TDDB84 Design Patterns

pelab
Are you bored?

Let’s do some
programming!!!!

Peter Bunus 10TDDB84 Design Patterns

pelab
The Job

The game should have the following specifications:
A variety of different ducks should be integrated into the game
The ducks should swim
The duck should quake

Joe works at a company that
produces a simulation game called
SimUDuck. He is an OO
Programmer and his duty is to
implement the necessary
functionality for the game.

6

Peter Bunus 11TDDB84 Design Patterns

pelab

+quack()
+swim()
+display()

Duck

+display()

MallardDuck

+display()

RedHeadDuck

A First Design for the Duck Simulator Game

All ducks quack() and swim(). The superclass
takes care of the implementation

Each duck subtype is responsible for
implementing its own display() behavior for
how it looks on the screen

The display()method is abstract since all the duck
subtypes look different

Lots of other types of ducks inherit from the Duck
type

Peter Bunus 12TDDB84 Design Patterns

pelab
Ducks that Fly

+quack()
+swim()
+display()
+fly()

Duck

+display()

MallardDuck

+display()

RedHeadDuck

Joe, at the shareholders meeting
we decided that we need to crush
the competition. From now on our
ducks need to fly.

All subclasses inherit fly()

7

Peter Bunus 13TDDB84 Design Patterns

pelab
But Something Went Wrong

Joe, I’m at the shareholder’s
meeting. They just gave a demo
and there were rubber duckies
flying around the screen. Is this a
joke or what?

OK, so there’s a slight flaw in my
design. I don’t see why they can’t
just call it a “feature”. It’s kind of
cute

By putting fly() in the
superclass Joe gave
flying ability to all ducks
including those that
shouldn’t

Peter Bunus 14TDDB84 Design Patterns

pelab
Inheritance at Work

quack quack squick

void RubberDuck::quack(){

cout << ”squick, squick” << endl;

}

void Duck::quack(){

cout << ”quack, quack” << endl;

}

We can override the fly() method in the rubber
duck in a similar way that we override the
quack() method

void RubberDuck::fly(){

// do nothing

}

void Duck::fly(){

// fly implementation

}

8

Peter Bunus 15TDDB84 Design Patterns

pelab
How About an Interface

We can take the fly() out of the Duck
superclass and make a Flyable interface
with a method fly(). Each duck that is
supposed to fly will implement that
interface+quack()

+swim()
+display()
+fly()

Duck

+display()
+fly()
+quack()

MallardDuck

+display()
+fly()
+quack()

RedHeadDuck

+display()
+quack()

RubberDuck

+quack()

DecoyDuck

+fly()

Flyable

+quack()

Quackable

Peter Bunus 16TDDB84 Design Patterns

pelab
Yet Another Duck is Added to the Application

void DecoyDuck::quack(){

// do nothing;

}

void DecoyDuck::fly(){

// do nothing

}

+quack()
+swim()
+display()
+fly()

Duck

+display()

MallardDuck

+display()

RedHeadDuck

+quack()
+fly()
+display()

RubberDuck

+quack()
+fly()
+display()

DecoyDuck

9

Peter Bunus 17TDDB84 Design Patterns

pelab
Embracing Change

In SOFTWARE projects you can count on one thing that is constant:

CHANGE

Solution
Deal with it.

Make CHANGE part of your design.
Identify what vary and separate from the rest.

Let’s shoot some ducks!

Peter Bunus 18TDDB84 Design Patterns

pelab
Design Principle

Encapsulate that vary

10

Peter Bunus 19TDDB84 Design Patterns

pelab
The Constitution of Software Architects

Encapsulate that vary.

?????????

?????????

?????????

?????????

?????????

?????????

?????????

?????????

Peter Bunus 20TDDB84 Design Patterns

pelab
Embracing Change in Ducks

fly() and quack() are the parts that vary
We create a new set of classes to represent each behavior

+quack()

Quack

+quack()

Squick

+quack()

MuteQuack

void Quack::quack(){
cout << "Quack" << endl;

};

void MuteQuack::quack(){
cout << "....." << endl;

};

void Squeak::quack(){
cout << "Squeak" << endl;

};

virtual void quack()=0;
virtual void fly()=0;

void FlyWithWings::fly(){
cout << "I'm flying!" << endl;

};

void FlyNoWay::fly(){
cout << "I can't fly." << endl;

};

11

Peter Bunus 21TDDB84 Design Patterns

pelab
Design Principle

Program to an interface
not to an implementation

Peter Bunus 22TDDB84 Design Patterns

pelab
The Constitution of Software Architects

Encapsulate that vary.

Program to an interface not to an

implementation.

?????????

?????????

?????????

?????????

?????????

?????????

?????????

12

Peter Bunus 23TDDB84 Design Patterns

pelab
Integrating the Duck Behavior

The behavior variables
are declared as the
behavior interface type

These methods replace
fly() an quack()

class Duck{
public:

FlyBehavior *flyBehavior;
QuackBehavior *quackBehavior;
...
void performFly();
void performQuack();
...

};

void Duck::performFly(){
flyBehavior->fly();

}
void Duck::performQuack(){

quackBehavior->quack();
}

MallardDuck::MallardDuck(){
flyBehavior = new FlyWithWings();
quackBehavior = new Quack();

}

RubberDuck::RubberDuck(){
flyBehavior = new FlyNoWay();
quackBehavior = new Squick();

}

Peter Bunus 24TDDB84 Design Patterns

pelab
Design Principle Ahead

Each Duck HAS A FlyingBehavior
and a QuackBehavior to which it
delegates flying an quacking

Composition

Instead of inheriting behavior, the
duck get their behavior by being
composed with the right behavior
object

13

Peter Bunus 25TDDB84 Design Patterns

pelab
Design Principle

Favor Composition over
Inheritance

Peter Bunus 26TDDB84 Design Patterns

pelab
The Constitution of Software Architectcts

Encapsulate that vary.

Program to an interface not to an

implementation.

Favor Composition over Inheritance.

?????????

?????????

?????????

?????????

?????????

?????????

14

Peter Bunus 27TDDB84 Design Patterns

pelab
Testing the Duck Simulator

int main(){
cout << "Testing the Duck Simulator”
<< endl << endl;

Duck *mallard = new MallardDuck();
mallard->display();
mallard->swim();
mallard->performFly();
mallard->performQuack();

cout << endl;

Duck *rubberduck = new RubberDuck();
rubberduck->display();
rubberduck->swim();
rubberduck->performFly();
rubberduck->performQuack();

return 0;
}

The mallard duck inherited
performQuack() method which
delegates to the object
QuackBehavior (calls quack()) on
the duck’s inherited quackBehavior
reference

Peter Bunus 28TDDB84 Design Patterns

pelab
Shooting Ducks Dynamicaly

Joe, I’m at the shareholder’s
meeting. The competitors are
ahead us. They just released a
new version of DOOM. Do
something! It should be possible
to shoot those damned ducks.

No problem boss. I can fix this. I will
transform our Simulator into a duck
shooting game

15

Peter Bunus 29TDDB84 Design Patterns

pelab
Shooting Ducks Dynamicaly

+performQuack()
+swim()
+display()
+performFly()
+setFlyBehavior()
+setQuakBehavior()

-flyBehavior : FlyBehavior
-quackBehavior : QuackBehavior

Duck void Duck::setFlyBehavior(FlyBehavior *fb){
flyBehavior = fb;

}
void Duck::setQuackBehavior(QuackBehavior *qb){
quackBehavior = qb;

}

int main(){

Duck *mallard = new MallardDuck();
mallard->display();
mallard->swim();
mallard->performFly();
mallard->performQuack();

cout << endl;

mallard->setFlyBehavior(new FlyNoWay());
mallard->setQuackBehavior(new MuteQuack());
mallard->performFly();
mallard->performQuack();

return 0;
}

I’m flying

Quack

I can’t fly

….

Peter Bunus 30TDDB84 Design Patterns

pelab
The Big Picture

16

Peter Bunus 31TDDB84 Design Patterns

pelab
Yet another Change

Joe, I’m at the movie theater. I
just saw Star Wars. Great movie. I
was just thinking maybe we
should put some nice planes into
a our simulator. This will destroy
our competitors.

OK, Ok… I will do that. But I need
a raise.

Peter Bunus 32TDDB84 Design Patterns

pelab
Behavior Reuse

17

Peter Bunus 33TDDB84 Design Patterns

pelab
Congratulations

Congratulations !!!
This is your first pattern

called STRATEGY

Peter Bunus 34TDDB84 Design Patterns

pelab
Strategy Pattern Diagram

Strategy – defines a family of algorithms, encapsulate
each one, and makes them interchangeable. Strategy lets
the algorithm vary independently from the clients that
use it.

18

Peter Bunus 35TDDB84 Design Patterns

pelab
Strategy – Non Software Example

Peter Bunus 36TDDB84 Design Patterns

pelab
What are Patterns

A pattern is a named nugget of insight that conveys the essence of a
proven solution to a recurring problem within a certain context
amidst competing concerns.“ (D. Riehle/H. Zullighoven)
The pattern is at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing, and when
we must create it.
(R. Gabriel)
A pattern involves a general discription of a recurring solution to a
recurring problem with various goals and constraints.It identify more
than a solution, it also explains why the solution is needed.“ (J.
Coplien)
... describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice [Alexander]

19

Peter Bunus 37TDDB84 Design Patterns

pelab
Design Pattern Space

Creational patterns
Deal with initializing and configuring of classes and objects

Structural patterns
Deal with decoupling interface and implementation of classes
and objects

Behavioral patterns
Deal with dynamic interactions among societies of classes and
objects

Peter Bunus 38TDDB84 Design Patterns

pelab
Design Pattern Space

Purpose

Creational Structural Behavioral

Class • Factory Method • Adapter • Interperter

Scope
Object

• Abstract
Factory

• Builder
• Prototype
• Singleton

• Adapter
• Bridge
• Composite
• Decorator
• Facade
• Flyweight
• Proxy

• Chain of Responsibility
• Command
• Iterator
• Mediator
• Momento
• Observer
• State
• Strategy
• Vistor

20

Peter Bunus 39TDDB84 Design Patterns

pelab
Design Pattern Space

Peter Bunus 40TDDB84 Design Patterns

pelab
What’s In a Design Pattern--1994

• The GoF book describes a pattern using the
following four attributes:
• The namename to describes the pattern, its

solutions and consequences in a word or
two

• The problemproblem describes when to apply the
pattern

• The solutionsolution describes the elements that
make up the design, their relationships,
responsibilities, and collaborations

• The consequences are the results and are the results and
tradetrade--offs in applying the patternoffs in applying the pattern

• All examples in C++ and Smalltalk

21

Peter Bunus 41TDDB84 Design Patterns

pelab
Closing remarks

No Real Ducks have been harmed during this lecture.

