
1

Software Testing

Mariam Kamkar
Department of Computer and Information Science

Linköping University, Sweden
marka@ida.liu.se

Software Engineering
January 2008

2

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

A Software Life-cycle Model
Which part will we talk about today? Maintenance

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

3

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Agenda - What will you learn today?

Part I
Introduction, Testing Process

Part II
Unit Testing:

Black-box, White-box testing

Part III
Module Testing

(Integration testing)

Part IV
System Testing

4

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Part I
Introduction, Testing Process

5

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Triangle program (simple version)

triangle problem is the most widely used example in software testing literature.

The program accepts three integers, a, b, and c as input. The three values are
interpreted as representing the lengths of sides of a triangle. The program
prints a message that states whether the triangle is scalene (oregelbunden),
isosceles (likbent) or equilateral (liksidig).

On a sheet of paper, write a set of test cases (i.e., specific sets of data) that
you feel would adequately test this program.

Test case a b c Expected output
__

1 3 3 4 isosceles (likbent)
2 ? ? ? ?

…

6

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Testing a ballpoint pen

Does the pen write in the right color,
with the right line thickness?
Is the logo on the pen according to
company standards?
Is it safe to chew on the pen?
Does the click-mechanism still work
after 100 000 clicks?
Does it still write after a car has run
over it?

What is expected from this pen?

Intended use!!

2

7

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

Design SpecificationCode = System

8

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Error, Fault, Failure

Human error (Mistake, Bug)

Can lead to

Can lead to

Fault (Defect, Bug)

Failure

9

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Types of Faults
(dep. on org. IBM, HP)

Algorithmic: division by zero
Computation & Precision: order of op
Documentation: doc - code
Stress/Overload: data-str size (dimensions of tables, size of buffers)
Capacity/Boundary: x devices, y parallel tasks, z interrupts
Timing/Coordination: real-time systems
Throughout/Performance: speed in req.
Recovery: power failure
Hardware & System Software: modem
Standards & Procedure: organizational standard; difficult for
programmers to follow each other.

10

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Requirements
Specification Fault

Resolutio
n

Fault
Isolation

Design

Coding

Testing

Fault
Classification

Error

Error

Error

Error

Fault

Fault

Fault

Incident

Fix

A Testing Life Cycle

Putting Bugs IN
Development phases

Finding Bugs
Testing phase

Getting Bugs OUT

11

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Types (strategy) of testing

Black-box: a strategy in which
testing is based on
requirements and specifications.

White-box: a strategy in which
testing is based on internal
paths, structure, and
implementation.

Gray-box: peek into the “box”
just long enough to understand
how it has been implemented.

Program

Test cases

Specification
Black-box testing

Program

Test cases

Specification
White-box testing

12

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

"Boilerplate": author, date, purpose, test case ID
Pre-conditions (including environment)
Inputs
Expected Outputs
Observed Outputs
Pass/Fail

Contents of a Test Case

3

13

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Part II
Unit Testing:

Black-box, White-box testing

14

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Unit & Integration Testing

Objective: to ensure that code implemented the design
properly.

Design SpecificationCode = System

15

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

16

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Test

Object

Input

Output

Failure?

Oracle

17

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Two Types of Oracles

Human: an expert that can examine an input and its
associated output and determine whether the
program delivered the correct output for this
particular input.

Automated: a system capable of performing the
above task.

18

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Unit Testing

Black-box Testing
White-box Testing

4

19

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Black-box Testing

1. Exhaustive testing
2. Equivalence class testing (Equivalence Partitioning)
3. Boundary value analysis
4. Decision table testing

20

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Black-box / Closed-box Testing

incorrect or missing functions
interface errors
performance error

input

output

21

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Block-Box Testing Techniques

Definition: a strategy in which testing is based on requirements and
specifications.

Applicability: all levels of system development
Unit
Integration
System
Acceptance

Disadvantages: never be sure of how much of the system under test
(SUT) has been tested.

Advantages: directs tester to choose subsets to tests that are both
efficient and effective in finding defects.

22

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

1. Exhaustive testing

Definition: testing with every member of the input
value space.

Input value space: the set of all possible input values
to the program.

23

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

2. Equivalence Class Testing

Equivalence Class (EC) testing is a technique used to reduce
the number of test cases to a manageable level while still
maintaining reasonable test coverage.

Each EC consists of a set of data that is treated the same by the
module or that should produce the same result. Any data value
within a class is equivalent, in terms of testing, to any other
value.

24

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Identifying the Equivalence Classes

Taking each input condition (usually a sentence or phrase in the
specification) and partitioning it into two or more groups:

Input condition
• range of values x: 1-50

Valid equivalence class

• ? < x < ?

Invalid equivalence classes

• x < ?

• x > ?

5

25

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Guidelines

1. If an input condition specifies a range of values; identify one valid EC
and two invalid EC.

2. If an input condition specifies the number (e.g., one through 6
owners can be listed for the automobile); identify one valid EC and
two invalid EC (- no owners; - more than 6 owners).

3. If an input condition specifies a set of input values and there is
reason to believe that each is handled differently by the program;
identify a valid EC for each and one invalid EC.

4. If an input condition specifies a “must be” situation (e.g., first
character of the identifier must be a letter); identify one valid EC (it is
a letter) and one invalid EC (it is not a letter)

5. If there is any reason to believe that elements in an EC are not
handled in an identical manner by the program, split the equivalence
class into smaller equivalence classes.

26

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Identifying the Test Cases

1. Assign a unique number to each EC.

2. Until all valid ECs have been covered by test cases, write a new test
case covering as many of the uncovered valid ECs as possible.

3. Until all invalid ECs have been covered by test cases, write a test
case that cover one, and only one, of the uncovered invalid ECs.

27

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Applicability and Limitations

Most suited to systems in which much of the input data takes on values
within ranges or within sets.

It makes the assumption that data in the same EC is, in fact, processed
in the same way by the system. The simplest way to validate this
assumption is to ask the programmer about their implementation.

EC testing is equally applicable at the unit, integration, system, and
acceptance test levels. All it requires are inputs or outputs that can be
partitioned based on the system’s requirements.

28

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Equivalence partitioning

outputs

Valid inputsInvalid inputs

29

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Specification: the program accepts four to eight
inputs which are 5 digit integers greater than 10000.

30

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

3. Boundary Value Testing

Boundary value testing focuses on the boundaries
simply because that is where so many defects hide.
The defects can be in the requirements or in the
code.

The most efficient way of finding such defects, either
in the requirements or the code, is through inspection
(Software Inspection, Gilb and Graham’s book).

6

31

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Technique

1. Identify the ECs.

2. Identify the boundaries of each EC.

3. Create test cases for each boundary value by
choosing one point on the boundary, one point just
below the boundary, and one point just above the
boundary.

32

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Boundary value analysis

Less than 10000 Between 10000 and 99999 More than 99999

33

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Applicability and Limitations

Boundary value testing is equally applicable at the
unit, integration, system, and acceptance test levels.
All it requires are inputs that can be partitioned and
boundaries that can be identified based on the
system’s requirements.

34

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

4. Decision Table Testing

Decision tables are an excellent tool to capture certain kinds of
system requirements and to document internal system design.
They are used to record complex business rules that a system
must implement.

In addition, they can serve as a guide to creating test cases.

35

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Technique

Action-n

…

Action-2

Action-1

Actions

Condition-m

…

Condition-2

Condition-1

Conditions

Rule P…Rule 2Rule 1

The general format of a decision table:

36

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

X

F

T

F

Rule 6

X

X

T

T

F

Rule 5

XXA4

XA3

XA2

XXA1

__ FTC3

FFTTC2

FTTTC1

Rules
7,8

Rules
3,4

Rule 2Rule 1

• _ : “don’t care” entry. The don’t care entry has two major interpretations: the condition is
irrelevant, or the condition does not apply. Sometimes the “n/a” symbol for this latter
interpretation..

A decision table
with ”don’t care” entry

7

37

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Technique (cont.)

Action-n

…

Action-2

Action-1

Expected
Results

Condition-m

…

Condition-2

Condition-1

Inputs

Test Case P…Test Case 2Test Case 1

A decision table converted to a test case table:

38

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Triangle program (new conditions)

The program accepts three integers, a, b, and c as input. The
three values are interpreted as representing the lengths of sides
of a triangle. The integers a, b, and c must satisfy the following
conditions:

C1: 1 <= a <= 200
C2: 1 <= b <= 200
C3: 1 <= c <= 200
C4: a < b + c
C5: b < a + c
C6: c < a + b

39

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

1110

C2: b < a + c ?

C3: c < a + b ?

A5: Impossible

A4: Equilateral

A3: Isosceles

A2: Scalene

A1:
Not a triangle

C6: b = c?

C5: a = c?

C4: a = b?

C1: a < b + c ?

987654321

Test Cases for the Triangle Problem

DT2

DT3

DT
11

DT
10

DT9

DT8

DT7

DT6

DT5

DT4

DT1

Expected outputcbaCase
ID

40

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Applicability and Limitations

Decision table testing can be used whenever the
system must implement complex business rules
when these rules can be represented as a
combination of conditions and when these conditions
have discrete actions associated with them.

41

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

White-box Testing
(Glass box testing, Open box testing, Clear box testing, Structural testing)

1. Control flow testing
2. Data flow testing

42

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

1. Control flow testing

Definition: a strategy in which testing is based on the internal paths, structure,
and implementation of the software under test (SUT)

Applicability: all levels of system development (path testing!)
Unit
Integration
System
Acceptance

Disadvantages: 1) number of execution paths may be so large; 2) test cases
may not detect data sensitivity; 3) assumes that control flow is correct
(nonexistent paths!); 4) tester must have programming skills.

Advantages: tester can be sure that every path have been identified and
tested.

8

43

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Control Flow Graphs

Process blocks Decision Point Junction Point

Sequence
If

While Until
Case

44

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Definition: Given a program written in an imperative
programming language, its program graph is a
directed graph in which nodes are statement
fragments, and edges represent flow of control (a
complete statement is a “default” statement
fragment).

45

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Code Coverage
(test coverage metrics)

Levels of Coverage:
Statement/Line/Basic block/Segment Coverage
Decision (Branch) Coverage
Condition Coverage
Decision/Condition Coverage
Path Coverage

46

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Statement Coverage

Begin
if (y >= 0)

then y = 0;
abs = y;
end;

test case-1 (yes):
input: y = ?
expected result: ?
actual result: ?

begin

y >= 0

y = 0

abs = y

yes

no

47

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

What is Wrong with Line Coverage
Steve Cornett (Bullseye testing technology)

Software developers and testers commonly use line coverage
because of its simplicity and availability in object code
instrumentation technology.

Of all the structural coverage criteria, line coverage is the
weakest, indicating the fewest number of test cases.

Bugs can easily occur in the cases that line coverage cannot
see.

The most significant shortcoming of line coverage is that it
fails to measure whether you test simple if statements with a
false decision outcome. Experts generally recommend to only
use line coverage if nothing else is available. Any other
measure is better.

48

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Branch Coverage

begin

y >= 0

y = 0

abs = y

yes

no

test case-1 (yes):
input: y = 0
expected result: 0
actual result: 0

test case-2 (no):
input: y = ?
expected result: ?
actual result: ?

Begin
if (y >= 0)

then y = 0;
abs = y;
end;

9

… more conditions?

50

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case-1 (T,F):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (F,T):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

51

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Decision/Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case-1 (T,T,yes):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (F,F,no):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

52

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Path Coverage

A path is a sequence of branches, or conditions.

A path corresponds to a test case, or a set of inputs.

In code coverage testing, branches have more importance than
the blocks they connect.

Bugs are often sensitive to branches and conditions.

53

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Path with loops

a

b c
d

e a

c,b,d d

e

54

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Path Coverage (cont.)

All possible execution paths

Question: How do we know how many paths to look
for?

Answer: The computation of cyclomatic complexity

10

55

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Computation of cyclomatic complexity

Cyclomatic complexity has a foundation in graph theory and is
computed in the following ways:

1. Cyclomatic complexity V(G), for a flow graph, G, is defined as:

V(G) = E – N + 2P
E: number of edges
N: number of nodes
P: number of disconnected parts of the graph

2. Cyclomatic complexity V(G), for a flow graph, G, with only binary
decisions, is defined as:

V(G) = b + 1
b: number of binary decision

56

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Examples of Graphs and calculation of McCabe’s
Complexity Metric

E=, N= , P=
V=

E= , N= , P=
V=

E= , N= , P=
V=

E= , N= , P=
V=

E= , N= , P=
V=

57

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

1. V(G) = E – N + 2P

E = ?
N = ?
P =

V(G) = ?

2. V(G) = b + 1

b = ?

V(G) = ?

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

58

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Applicability and Limitation

Control flow testing is the cornerstone of unit testing. It should
be used for all modules of code that cannot be tested
sufficiently through reviews and inspections.

Its limitation are that the tester must have sufficient
programming skill to understand the code and its control flow.

Control flow testing can be very time consuming because of all
modules and basic paths that comprise a system.

59

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

2. Data Flow Testing

Data flow testing focuses on the points at which
variables receive values and the points at which
these values are used (or referenced). It detects
improper use of data values due to coding errors.

60

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Define/Reference Anomalies

Early data flow analyses often centered on a set of
faults that are known as define/reference anomalies.

A variable that is defined but never used (referenced)
A variable that is used but never defined
A variable that is defined twice before it is used

11

61

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

dd: defined and defined again – not invalid but suspicious
du: defined and used – perfectly correct
dk: defined and then killed – not invalid but probably a
programming error
ud: used and defined – acceptable
uu: used and used again – acceptable
uk: used and killed – acceptable
kd: killed and defined – acceptable
ku: killed and used – a serious defect
kk: killed and killed – probably a programming error.

62

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Definitions

du-path: a definition-use path (du-path) with respect
to variable v is a path in PATHS(P) such that, for
some v in V, there are defined and usage nodes
DEF(v, m) and USE(v, n) such that m and n are initial
and final nodes of the path.

63

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Data Flow Graphs

define x

use y
kill z

kill z
use x
define z

kill y
define z

define y
use z

define x
use x
use z

use y
use z

define x

use x
define x
use x

Control flow graph annotated with define-use-kill
information for x, y, z

• ~d: the variable does not exist, then it is defined
• ~u: the variable does not exist, then it is used
• ~k: the variable does not exist, then it is killed

64

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

All-Paths

All-DU-Paths

All-Uses

All-Defs

All P-Uses/some C-UsesAll C-Uses/some P-Uses

All-P-Uses

All-Edges

All-Nodes

Hierarchy of data flow coverage metrics

Branch

Statement

65

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Applicability and Limitations
(data-flow testing)

It should be used for all modules of code that cannot be tested
sufficiently through reviews and inspections.

Tester must have sufficient programming skill

Can be very time consuming

66

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Part III
Module Testing

(Integration testing)

12

67

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Integration Testing

1. Top-down
2. Bottom-up
3. Big-bang
4. Sandwich

68

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Unit & Integration Testing

Objective: to ensure that code implemented the design
properly.

Design SpecificationCode = System

69

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

70

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Components

Component
to be
tested

driver

stub stub Test
cases

Boundary conditions
independent paths
interface
...

71

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

A

B

FE

D

G

C

72

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

1. Top-down
A

B

FE

D

G

C

13

73

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

2. Bottom-up
A

B

FE

D

G

C

74

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

3. Big-bang
A

B

FE

D

G

C

75

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

4. Sandwich
A

B

FE

D

G

C

Target level B,C,D

76

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Part IV
System Testing

77

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

System Testing Steps
Function testing / Thread testing
Performance testing
Acceptance testing
Installation testing

Test Automation
Termination Problem

78

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Objective: to ensure that the system does what the
customer wants it to do.

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

System Testing

14

79

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Unit
test

C
om

po
ne

nt
 c

od
e

Integration
test

Tested components

Design Specification

Unit
test

C
om

po
ne

nt
 c

od
e

Tested components

Integrated modules

80

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Function
test

Performance
test

Acceptance
test

Installation
test

In
te

gr
at

ed
 m

od
ul

es

Fu
nc

tio
ni

ng
 s

ys
te

m
s

V
er

ifi
ed

 v
al

id
at

ed
so

ftw
ar

e

System functional requirements Other software requirements

A
cc

ep
te

d
sy

st
em

System
In
Use!

Customer requirements spec. User environment

81

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Function testing/Thread testing

A function test checks that the integrated system performs its function as
specified in the requirement

Guidelines
use a test team independent of the designers and programmers
know the expected actions and output
test both valid and invalid input
never modify the system just to make testing easier
have stopping criteria

(testing one function at a time)
functional requirements

82

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Cause-and-Effect-Graph
(test case generation from req.)

causes: inputs
effects: outputs and transformations
causes-and-effect graph:

boolean graph reflecting causes and effects relationships
is a formal language into which a natural language specification
is translated

83

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

a b

Identity: if a then b b

a

c

And: if (a and b) then c

b

a

c

d

Or: if (a or b or c) then d

a b

Identity: if (not a) then b

Basic cause-effect graph symbols 84

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Specification: the character in column 1 must be an “A” or a “B”. The character in
column 2 must be a digit. In this situation, the file update is made. If the first
character is incorrect, message X12 is issued. If the second character is not a
digit, message X13 is issued.

Causes
C1: character in column 1 is “A”
C2: character in column 1 is “B”
C3: character in column 2 a digit

Effects
E1: update made
E2: message X12 is issued
E3:message X13 is issued

15

85

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Sample cause-effect graph

2

1

11

3 E3

E1

E2Intermediate node

86

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Decision table for cause-and effect graph

1000Effect E3

0100Effect E2

0011Effect E1

0X11Cause 3

X010Cause 2

X001Cause 1

Test 4Test 3Test 2Test 1

87

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Performance Testing
nonfunctional requirements

Stress tests
Volume tests
Configuration tests
Compatibility tests
Regression tests
Security tests
Timing tests

Environment tests
Quality tests
Recovery tests
Maintenance tests
Documentation tests
Human factors tests /
usability tests

88

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Acceptance Testing
customers, users need

Benchmark test: a set of special test cases

Pilot test: everyday working
Alpha test: at the developer’s site, controlled environment
Beta test: at one or more customer site.

Parallel test: new system in parallel with previous one

89

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Installation Testing
users site

Acceptance test at developers site
installation test at users site,

otherwise may not be needed!!

90

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Test Automation

Automating parts of the testing process can provide long-term
benefits to organization, such as:

reducing the amount of time it takes to execute a suite of tests
reducing the tester’s involvement in executing tests
facilitating regression testing
allowing for the simulation of hundreds of users
avoiding human mistakes by having tools control repetitive and
tedious tasks

Test automation refers to two key testing activities:
Executing the tests
Evaluating the output

16

91

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Automated Testing Tools

Code Analysis tools
Static, Dynamic

Test execution tools
Capture-and-Replay
Stubs & Drivers
Comparators

Test case generator

92

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Termination Problem
How decide when to stop testing

The main problem for managers!

Termination takes place when
• resources (time & budget) are over
• found the seeded faults
• some coverage is reached

93

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Part I: Introduction, Testing process

Part II: Unit Testing:
Black-box Testing
1. Exhaustive testing
2. Equivalence class testing (Equivalence Partitioning)
3. Boundary value analysis
4. Decision table testing

White-box Testing

• Control Flow Testing
1. Statement/Line/Basic block/Segment Coverage
2. Decision (Branch) Coverage
3. Condition Coverage
4. Decision/Condition Coverage
5. Path Coverage

• Data Flow Testing

Summary - What have we learned today? (1/2) 94

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

Summary - What have we learned today? (2/2)

Part III: Module Testing (Integration Testing)
Top-down
Bottom-up
Big-bang
Sandwich

Part IV: System Testing

95

Part I
Introduction,
Testing Process

Part II
Unit Testing:
Black-box, White-box

Mariam Kamkar
marka@ida.liu.se

Part III
Module Testing
(Integration testing)

Part IV
System Testing

