DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Software Architecture Systems

[Szyperski 21.1+24.1], and references on course home page

0. Motivation: Separate architecture aspect from application
1. Software Architecture Systems: Foundations

2. Case studies: Unicon, CoSy

3. Other architecture systems (some material for self-studies)
4. Modeling Software Architecture with UML and UML 2.0

5. Summary

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Additional Literature (cont.)

Shaw, M., Garlan, D.: Software Architecture — Perspectives for an
Emerging Discipline. Prentice-Hall,1996. Nice introduction.

Clements, Paul C.: A Survey of Archi Description L
Int. Workshop on Software Specification and Design, 1996.

C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture.
Addison-Wesley, 2000. Very nice book on architectural elements in UML.

Rikard Land: A Brief Survey of Software Architecture. MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-57/2002-1-SE, Mélardalen Real-Time
Research Centre, Malardalen University, February, 2002

Martin Alt. On Parallel Compilation. PhD Dissertation, Universitit des
Saarlandes, Saarbriicken, Feb. 1997. (CoSy prototype)

ACE b.V. Amsterdam. CoSy Compilers. System documentation,

Z: Apr. 2003. http://www.ace.nl
D18 Component based softvare. DA, Likspings unherstet. Some sdes by coutesy of e Assmann, DA,/ TU Dresden. Revised by C. Kessler 200
The Ladder of Component and
Composition Systems
Aspect Systems View Systems Software
Composition
Systems
" [iti c it
Aspect Separation Operators Language
Composition Filters | Invasive Composition
AspectiJ Metaclass
Darwin
IArchI!eclure Systems Architecture as Aspect ACME I
XML-based Wrappers for
Web Services Standard Components (later) |
Classical Standard Components -NET CORBA
Component Systems Beans EJB
Object-Oriented Systems Objects as Cogp s
Run-Time Components
Modules as Compile- Modula Ada-85
d Modular Systems Time Components la

[TDDC18 Component-based software. IDA, Linkopings universiet. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007

Additional Literature

D. Garlan and M. Shaw, An Intr ion to Software Archi .
In V. Ambriola and G. Tortora (eds.), Advances in Software Engineering
and Knowledge Engineering, World Scientific Publishing Company,
1993, pp. 1-40. Nice introductory article.

http -2.cs.cmu proj paper_: intro_softarch.html

M. Shaw, P.C. Clements: A Field Guide to Boxology. Preliminary

Classification of A Styles for Y
CMU, April 1996.
i ist.psu. i html

C. Hofmeister, R. L. Nord, D. Soni.

Describing Software Architecture with UML.

In P. Donohoe, editor, Proc. IFIP Working Conference on Software
Architecture, pp. 145-160. Kluwer Academic Publishers, Feb. 1999.

[TDDC18 Gomponent-based software. IDA, Linkopings universitet. Some sidos by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

Examples of Architecture Systems

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.
A i Archi

for e and Tools to Support Them. |EEE
Transactions on Software Engineering, April 1995, pp. 314-335. (UNICON)
i ist.psu. i html

D. C. Luckham and J. Vera. An Event-Based Architecture Definition
Language. IEEE Transactions on Software Engineering, pp. 717--734,
Sept. 1995. (RAPIDE)

(Darwin) http: -dse.doc.ic.ac. Darwin/

Gregory Zelesnik. The UniCon Language User Manual. School of Computer
Science, Carnegie Mellon University Pittsburgh, Pennsylvania

Gregory Zelesnik. The UniCon Language Reference Manual. School of
Computer Science, Carnegie Mellon University Pittsburgh, Pennsylvania

TDDC18 Component-based software. IDA, Linkopings uriversitet, Some sides

Courtesy of Une Assmann, IDA/TU Dresden. Revised by C. Kessier, 200

Software Architecture

= Software architecture

= Structural organization of an application's implementation (code)
into software components and their interconnection

= The first step in producing a software design [Garlan, Shaw 1996]

= Basic ingredients
= Components (modules with interfaces)
= Connectors (abstraction of communication)
= Operators that create systems from subsystems

Y
= Architecture description language (ADL)
= For writing construction plans

TDDCT8 Component based software. IDA, Linkopings unversiel. Some sides e Assmann, IDA TU Dresden. Revised by C. Kessier, 2007 [TDDC18 Component basex

fiware. IDA, Linkopings universiel. Some sidas by courlesy of U

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007.

A Basic Rule for Design ... Separation of Concerns
= .. is to focus on one problem at a time = Different should be
and to forget about others. = so that they can be specified independently
- ionis ion of y detail = Dimensional specifications

= Display and consider only essential information

Specify from different viewpoints

But: different concerns are not always independent of each other
= Interferences

= Consistency issues

= Ordering constraints on application

I

DDC18 Component based software. IDA, Linkopings unversiel. Som

e Assmann, IDA./ TU Dresden. Revised by C. Kessler, 2007. [TDDC18 Component basex wersitel. Some sick

fware. IDA, Linkopings

An Example of Separation of Concems:

Architectural Aspect in Software
Components I

courtesy of Un

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007

Aspects in Architecture

Structure Media plan
B
Ve

e /
H’ \ Water pipe plan
— Ve

Software
Architecture

(Connection of
components)

Code generator

Light plan

7
house ; _ l:l Software configuration
-‘ with glue code
|
for icati
l:l between components
Software Architecture Systems Component Model in
as Composition Systems Architecture Systems

Component model
= Binding points: Ports

Ports = abstract interface points
(events, methods)
= Communication between component instances is split off in connectors: Interface

Transfer (carrier) of the communication is transparent = Ports specify the data-flow into Port Role
= Composition technique and out of a component
= Adaptation and glue code generated from connectors = in(data)
= Aspect separation: application and communication are separated = out(data) (ﬁ’ 0
- i i ? 5
Topology (who communicates with whom?) + Connectors as special 0‘7 P O
= Carrier (how?) communication components 0
= When? = Connectors are attached to
= Scalability (distribution, binding time with dynamic architectures) ports
e . ici Connector
. Composition language: Conpemors are expll_cnly
> o applied per communication
An Architecture Description Language (ADL) Components and connectors are bound
is a simple composition language! together to form a configuration.

a2 |

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Abstract Binding Points: Ports

= Ports from the carrier, but indi where
data has to flow in and out of the component

= To fit to connectors, a legacy system must convert all procedure calls
to ports, i.e., to abstract calls

= Ports have protocols Role

Connectors can be binary or n-ary

Every end is called a role.

Roles fit only to certain types of ports
= Typing of roles and ports.

= The interfaces remain at run time

Connector

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Ports In More Detail

= Input ports are synchronous or asynchronous:

Port
= in(data) N
= get(data) (aka.receive(data)):
Synchronous in port, taking in one data é
= testAndGet(data): ’f’“‘
Asynchronous in port, taking in one data if it is available O‘""
= Output ports are synchronous or asynchronous:

= out(data)
= set(data):
Synchronous out port, putting out one data, waiting until acknowledge
= put(data) (aka.send(data)):
Asynchronous out port, putting out one data, not waiting until acknowledge

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Architectural Styles

e.g. [Garlan/Shaw: Software Architecture, Prentice-Hall 1996]

= Frequently occurring ion topology
(Architectural Design Patterns)
= Pipe-and-Filter
= UNIX shells
= Stream-parallel programming languages
= Client-Server Architecture
= CORBA RPC, Java RMI, ...
= Layered Architecture (aka. Onion Architecture)
= Layered operating systems (UNIX, Windows)
= Multi-tier architectures (e.g. 3-tier: clients / server objects / DB)
= Blackboard Architecture (aka. Repository Architecture)
= Linda [Carriero/Gelernter'96]
= Service discovery repositories, e.g. Jini, CORBA repositories
= CoSy CCMIR

_and more, and combinations of these
=£E

[TDDC18 Component-bas

ware. IDA, Linkopings universitel. Some sidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revisod by C. Kessler, 2007

A Simple Example

= A iption of a small i
in the ADL Acme [Garlan et al., CMU, 2000]

Role
s] callee
ystem simple_cs =
Component client = { Port sendRequest } - -
Component server = { Port receiveRequest } 0 ¢

Connector rpc = { Roles { caller, callee } }
Attachments : {
client.sendRequest to rpc.caller ;
server.receiveRequest to rpc.callee ;
Connector

[TDDC18 Component bas

ware. IDA, Linkopings universtel. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007.

Ports and Services

Service
= Services are groups of ports. Port
= A data serviceis a tuple
[in(data), ..., in(data), out(data), ..., out(data)] out
in

A special case is a call service with one return port:

[in(data), ..., in(data), out(data)]

A property service is a service to access component attributes,
i.e., a simple tuple

[in(data), out(data)]

[TDDC18 Component bas

ware. IDA, Linkopings universtel. Some sidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revisod by C. Kessier, 2007.

Architecture can be Exchanged
Independently of Components

= “Rewiring”

= Reuse of components and architectures is fundamentally improved

Component

Component

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Two Dimensions of Reuse

= Architecture and components can be reused independently of each other

Architecture

Application
Component

v

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Additionally, Connectors have Protocols

= A connector, since it is a precise concept to specify
ication of K must have a protocol

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Call Connector Protocol

= on call services

[TDDC18 Component-based software. IDA, Linkopings universiet. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007

Architecture Descriptions are Reducible

= Components are nested (fractal-like behavior)
= Ports of outer components are called players.

= This type of diagram is now supported in UML 2.0 as component diagram

Component .\\

Component

Player Player

Component

[TDDC18 Gomponent-based software. IDA, Linkopings universitet. Some sidos by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

Set/Get Connector Protocol

= on data services

[TDDC18 Gomponent-based software. IDA, Linkopings universtet. Some sids by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

RPC Connector

= on call services

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Dynamic Call via CORBA DII - Protocol

Client Naming Server
object Request Context OperationDef ORB | object
getipterk

! /_\
Srequest— arguments
vl
—
e ——
r N
- |
v v v

Connectors are
Abstract Communication Buses

Server
component I

|

Role [Role |

Client
component
{Port] ™ {Por]

Connector

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

CORBA is a Simple Architecture System with
Restricted Connectors

Corba: Architecture Systems:
= Client and service provider = Components
= ORB client side, server side = Connectors
= Marshalling, Stub, Skeleton, = Roles
Object Adapter
= Interfaces in IDL = Ports
(not abstracted to data flow)
= static call = procedure call connector

(also distributed)

dynamically reconfigurable
connectors (e.g., in Darwin)
connectors always binary connectors n-ary

Events, callbacks, persistence + Events, callbacks, persistence

dynamic call

as services as connectors
(cannot be exchanged to other (can be exchanged to other
communications) communications)

From Connectors in ADL Specification
Generate Architectural Glue Code

Application
component
Application
\ component
ADL-
compiler
Glue Code

Application I ‘ component

[TDDC18 Gomponent-based software. IDA, Linkopings universitet. Some sidos by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

But we know that already from CORBA:

» CORBA is a simple architecture system with restricted connectors:

IDL Stub IDL Stub IDL skeleton I
‘ ‘ Object adapter ||

|
Marshaling

Corba-ORB-connector

Most Commercial Component Systems Provide
Restricted Forms of Connectors

= It turns out that most i p Y do not offer
connectors as explicit modelling concepts, but

= offer communication mechanisms that can be encapsulated into a
connector component

= For instance, CORBA remote connections can be packed into connectors

—

Client M skeleton o I

Connector

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Architecture Systems

Examples

Unicon [Shaw 95]
Aesop [Garlan95]
Darwin [Kramer 92]
Rapide [L 95], C2
Wright [Garlan/Allen]
ACME [Garlan 2000]

CoSy [ABmann/Alt/vanSomeren'94] www.ace.nl

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

A KWIC Index

every sentence is replicated and | permuted

every sentence is replicated | and permuted
every sentence is replicated and permuted
every sentence | Is replicated and permuted

everysentenceis | replicated | and permuted

every sentence | is replicated and permuted

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

KwiC

/

Caps Shifter

Sorter @,uﬂ

[TDDC18 Component-bas

ware. IDA, Linkopings universiel. Some sidas by courlesy of Uwe

smann, IDA/ TU Dresden. Revised by C. Kessier, 2007.

Example: The KWIC Problem in UNICON
[ISC pp. 74-76]

Example from UniCon distribution
"Keyword in Context" problem (KWIC)

= The KWIC problem is one of the 10 model problems of architecture systems

= Originally proposed by Parnas to illustrate advantages of different designs
[Pamas'72]

= For a text, a KWIC algorithm produces a permuted index

= every sentence is replicated and permuted in its words,
i.e., the words are shifted from left to right.

= every first word of a permutation is entered into an alphabetical index,
the permuted index.

[TDDC18 Component bas

ware. IDA, Linkopings universtel. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007.

The KWIC Problem in Unicon

[TDDC18 Component bas

The components of KWIC work in a pipe-and-filter style
KWIC has ports

= stream input port input,

= and two output ports output and error.

They read text and spit out the permuted index

KWIC is a compound component KWIC
(Components in Unicon can be nested)

= PLAYER definitions define ports of outer components.

= BIND statements connect ports from outer components to ports of inner
components.

USES definitions create instances of components and connectors.
CONNECT statements connect connectors to ports at their roles.

ware. IDA, Linkopings universtel. Some sidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revisod by C. Kessier, 2007.

The KWIC Problem in Unicon

Components
The component caps converts the sentence to uppercase as necessary.
The shifter creates permutations of the sentence.

The req-data provides some data to the merge component which pipes the
generated data to the component sorter.

sorter sorts the shifted sentences

so that they form a keyword-in-context index.

Only connectors in the style of UNIX pipes are used

Other connection kinds can be introduces by only changing the type of
connectors in a USES declaration.

Hence, communication kinds can be exchanged easily, e.g. for

Shared memory, Abstract data types, Message passing [Garlan/Shaw'94]

Y allow for

p! can be easily!

TDDCT8 Component-based software. IDA, Linkpings unversiet. Some ik

KWIC in Unicon

mann, IDA/ TU Dresden. Revised by C. Kessl

CCOMPONENT KWIC
/* This is the interface of KWIC with in- and output ports */
INTERFACE IS TYPE Filter
PLAYER nput IS Streamin SIGNATURE ('ine")

PORTBINDING (stdin) END input I Here come the connections */
PLAYER output IS StreamOut SIGNATURE ('ine) BND input TO caps.input
PORTBINDING (stdout) END output ‘CONNECT caps.output ~ TO P.source
END INTERFACE CONNECT shifterinput TO P.sink
IMPLEMENTATION IS CONNECT shifteroutout - TO Q.source
/* Here come the component definitions */ CONNECT req-dataread TO Risource
USEScaps INTERFACE upcase END caps. ‘CONNECT merge.in TO Rsink
USES shifter INTERFACE cshift END shifter CONNECT mergein2 ~ TO Qsink
USES req-data INTERFACE const-data END req-data I Syntactic sugar for anonymous connections */
USES merge INTERFACE converge ~ END merge ESTABLISH Unix-pipe WITH
USES sorter INTERFACE sort END sorter merge.output AS source
/* Here come the connector definitions */ sorter.input AS sink
USES P PROTOCOL Unix-pipe END P END Unix-pipe
USES Q PROTOCOL Unix-pipe END Q BIND output TO sorter.output
USES R PROTOCOL Unix-pipe END R END IMPLEMENTATION
END KWIC

TDDC18 Component based software. IDA, Linkopngs unversie, Some sik

ACME Studio

mann, IDA/ TU Dresden. Revised by C. Kess!

Tl Fle Edi View lnset Types Toos Window Help JRETE]

Dlz(E] s[w=] 52| & cleme] = F & @
GitalTipss FE |

. @ BrnanyFite (17 Ppe
- D || Fier

Locki [5y] ||y \‘/.m
Cepteh Bl s C

= S::'"‘ &, witePot | Souce
& st
] Representati

-l ogrend!

5

¥ [«]
el & Show selection delals - System Agoregéte-ep PF
Ready |Editing System ‘Aguregate-ep' nDesig| | V.

D18 Component oz

oitware. IDA, Linkopings unverstet. Some

courtesy of Une. Rovised by C. e

Checking and Validating

Checking, analysing

Test of (part of) an architecture with dummy components
Deadlock checking

Liveness checking

. Tools for i y of es

Are all ports bound?

Do all protocols in the connectors fit?

Does the architecture correspond to a certain style ?

Does the architecture fit to a reference architecture?
Parallelism features as deadlocks, fairness, liveness,

Dead parts of the systems: Is everything reachable at run time?

TDDC18 Gomponent-based software. IDA, Linkbpings universiet. Soms si

‘Gourtasy of Unie Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2007.

The Composition Language: ADL

+ Archi (archi ADL)
= ADL-compiler
= XML-Readers/Writers for ADL.

= The i

ity of the i allows for simple overview,
and i

= The architecture is a reducible graph, with all its advantages

= Graphic editing of systems

TDDC18 Component-based software. IDA, Linkopings universitet, Some si

courtesy of Une:

What ADL Offer for the Software Process

mann, IDA/ TU Dresden. Revised by C. Kessler, 2007,

= Support when doing the requirements specification
= Visualization for the customer: architecture graphics better to understand
= Architecture styles classify the nature of a system in simple terms

= Design support
= Simple specification by graphic editors
= Stepwise design and refinement of architectures
= Visual and textual views

= Design of product families is easy
= A reference architecture fixes the commonalities of the product line
= The components express the variability

TDDC18 Component-based software. IDA, Linkopings universitet, Some.

courtesy of Une: Rovised by C. K

What can be generated?

= Glue- and adapter code from connectors and ADL-spe:
= Mapping of the protocols of the components to each other
= Generation of glue code from the connectors

= Simulations of architectures (with dummy components):
= The architecture can be created first
= And tested stand-alone
= Run time estimates are possible (if run times of components are known)

= Test cases for architectures

= Documentation (graphic structure diagrams)

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007 [TDDC18 Component-based software. IDA, Linkopings universiet. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007

Traditional Compiler Structure

= Traditional compiler model: sequential process

text Jtoken: tree| semant. tree ree ICode code
—-| Lexer H Parser |—'|Analy5|s ptimize generatol

= Improvement: Pipelining (by fil I

CoSy

= More modern compiler model with shared symbol table and IR

. . . Coordination Symbol table
A commercial architecture system for compilers data flow i
text S t. . [Code code
""" " Aﬁ;};;s Op"m'ZQ'I"'"””"'|generamr'_.
www.ace.nl T, —
Data Intermediate representation (IR)
=
TODGTB Gomponant based sofvare. IDA, Linkepings iniversfel. Soma sidos by couiesy of U Assmann, IDA / TU Dresden. Revised by C. Kesser, 2007 TODG18 Gomponent based sofvare. IDA, Linkopings uriversial. Somo skdes by coulosy of Uwo Assmann HQD\M:M e C. Kessler, 2007,

A CoSy Compiler with

Repository-Architecture Engine ¢

“Engines”
(compiler tasks)

Parser

Lexer

Modular compiler building block

-
—
. .

Performs a well-defined task ,

Focus on algorithms, not compiler configuration
Optimizer

Parameters are handles on the underlying common IR repository

Execution may be in a separate process or as subroutine call -
the engine writer does not know!

View of an engine class:
the part of the common IR repository that it can access
(scope set by access rights: read, write, create)

Codegen

Examples: Analyzers, Lowerers, Optimizers, Translators, Support

“Blackboard architecture”

D18 Gomponent ba

ware. IDA, Linkopings unierstet. Some siidos by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007. DG18 Component.based software. IDA, Linkopings universiet. Some sides by courtesy of Uwe Assmann, IDA /U Dresden. Fovised by C. Kesslor, 2007

Composite Engines in CoSy A CoSy Compiler

Built from simple engines or from other composite engines
by combining engines in interaction schemes
(Loop, Pipeline, Fork, Parallel, Speculative, ...)

Described in EDL (Engine Description Language)

View defined by the joint effect of constituent engines

Logical view
= A compiler is nothing more than a large composite engine
ENGINE CLASS compile (IN u: mirUNIT) {
PIPELINE
1ror‘ne‘nd) Generated
optimizer (u) access layer
backend (u)

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Hierarchical Components
in the Repository Style (CoSy)

DDC18 Component based software. IDA, Linkopings unversil, Some.

Adapter (Envelope, Container)

- Subarchitecture Compiler
Subarchitecture Middle end
Front end ’7 Optimizer
Trafo
X —I
Parser X

Subarchitecture

’7rl Back end
Code
generator
{_Scheduler |

“ann, IDA/ TU Dresden. Revised by C. Kessler, 2007.

= CoSy for every p an adapter (¢ pe,

= that maps the protocol of the component to that of the environment
(all combinations of interaction schemes are possible)

= Coordination, communication, encapsulation and access to the repository
d

are generated.

C ination code

and enc

e
—

Adapter

(engine envelope) |

Communication

Access to ———

reiosimri

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Appendix:
Survey of Other Architecture
Systems

For self-studies...

= UniCon
= RAPIDE
= Aesop
= Acme
= Darwin

[TDDC18 Component-based software. IDA, Linkopings universiet. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007

Example for CoSy EDL
(Engine Description Language)

ENGINE CLASS optimizer (procedure p) {

= Component classes (engine class) controlflowAnalyser cfa;
commonSubExprEliminator cse;
+ Component instances (engines) loopVariableSimplifier Ivs;
PIPELINE cfa(p); cse(p); lvs(p);
« Basic components i .
ars implomented in G ENGINE CLASS compiler (file f) {
-... Token token;
" Module m;
' :::;’22:1‘;?;"&?":":&({?- skeletons) PIPELINE // lexer takes fle, delivers token stream:
lexer(IN f, OUT token<>);
* SEQUENTIAL 11 Parser delivers a module
= PIPELINE parser(IN token<>, OUT m);
- DATAPARALLEL sema(m);

decompose(m, p<>);

/1 here comes a stream of procedures
// from the module

optimizer(p<>);

backend(p<>);

= SPECULATIVE

EDL can embed automatically
- Single-call-components into pipes

+ p<>means a stream of p-items }

+ EDL can map their protocols to each
other (p vs p<>)

TDDC18 Gomponent-based software. IDA, Linkopings universitel, Som

s by courtesy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007.

Evaluation of CoSy

CoSy is one of the single commercial architecture systems with professional
support

The outer call layers of the compiler are generated from the ADL
= Adapter, coordination, communication, encapsulation
= Sequential and parallel implementation can be exchanged (cf. skeletons)
= There is also a non-commercial prototype
[Martin Alt: On Parallel Compilation. PhD thesis, 1997, Univ. Saarbriicken]
Access layer to the repository must be efficient
(solved by generation of macros)

Because of views, a CoSy-compiler is very simply extensible
= That's why it is expensive
= Reconfiguration of a compiler within an hour

[TDDC18 Gomponent-based software. IDA, Linkopings universtet. Some sids by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

An Example System: UNICON

UNICON supports
= Components in C
= Simple and user-defined connectors

Design Goals
Practical tool for real problems

Uniform access to a large set of connections

Check of architectures (connections) should be possible
Analysis tools

Graphics and Text

Reuse of existing legacy components

Reduce additional run time costs

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Description of Components and Connectors

= Name

Interface p) resp. p)
+ Type ' -
= component: modules, computation, SeqFile, Filter, process, general

= connectors: Pipe, FilelO, procedureCall, DataAccess, PLBandler, RPC,
RTScheduler

Global assertions in form of a feature list (property list)

Collection of
= Players for components
(for ports and port mappings for components of different nesting layers)

= Roles for connectors

The UNICON-compiler generates
= Odin-Files from components and connectors. Odin is an extended Makefile

= Connection code
55

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Supported Role Types For Connector Types

= Pipe: = PLBandler:
= Source fits to Filter.StreamOut, = Participant fits to PLBandle,
SeqFile.ReadNext RoutineDef, RoutineCall,

GlobalDataUse,
GlobalDataDef
= RPC
= Definer fits to (Processl|
Schedprocess).RPCDef
= User fits to (Processl

= Sink fits to Filter.Streamin,
SeqFile.WriteNext
= FilelO:
= Reader fits to modules.ReadFile
= Readee fits to SeqFile.ReadNext

= Writer fits to Modules.WriteFile Schedprocess).RPCCall
= Writee fits to SeqFile. WriteNext = RTScheduler

= ProcedureCall: = Load fits to
= Definer fits to (Computation| Schedprocess.RTLoad

Modules).Routine Def

= User fits to (SharedDatalComputation|
Modules).GlobalDataUse

D18 Component oz

A Filter

ware. IDA, Linkopings universtet. Some

courtesy of Uwe Assmann, IDA. TU Dresden. Rev

COMPONENT Reverser INTERFACE IS

TYPE Filter

PLAYER input IS Streamin SIGNATURE ("line") PORTBINDING (stdin) END input

PLAYER output IS StreamOut SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER
error IS StreamOut SIGNATURE ("line") PORTBINDING (stderr) END error

END INTERFACE

IMPLEMENTATION IS

/* Component instantiations are declared below. */
USES reverse INTERFACE Reverse

USES stack INTERFACE Stack

USES libc INTERFACE Libc

USES datause protocol C-shared-data

J* We will use <establish> statements for the procedure call connections (next page) */

/* Now for the configuration of connectors to players */
/- CONNECTS bind ports to roles */

CONNECT reverse._iob TO datause.user

CONNECT libc._iob TO datause.definer

END IMPLEMENTATION END Reverser

TDDC18 Gomponent-based software. IDA, Linkopings universiet, Some.

by Gourlesy of Une Assmann, IDA/TU Dresden. Revised by C. Kessler, 2007,

Supported Player Types

per Component Type
= Modules: = Filter:
= RoutineDef, RoutineCall, = Streamln, StreamOut
GlobalDataDef,
GlobalDataUse, PLBandle, = Process:

ReadFile, WriteFile . RPCDef, RPCCall

= Computation:

= RoutineDef, RoutineCall,
GlobalDataUse, PLBandle

Schedprocess:
= RPCDef, RPCCall, RTLoad

General:
= Al

= SharedData:

= GlobalDataDef,
GlobalDataUse, PLBandle

= SegFile:
= ReadNext, WriteNext

TDDC18 Component-based software. IDA, Linkopings universitel, Some.

by Courtesy of Uwe Assmann, IDA./ TU Dresden. Revised by C. Kessier, 2007.

A Modules Component

INTERFACE IS
TYPE modules

LIBRARY

PLAYER timeget IS RoutineDef
SIGNATURE ("new_type"; "void")

END timeget

PLAYER timeshow IS RoutineDef
SIGNATURE (; "void")

END timeshow

END INTERFACE

TDDC18 Component-based software. IDA, Linkopings uriversitet, Some sides by courtesy of Uwe Assmann, IDA/TU Dresden. R

/* Establish connections ESTABLISHSs bind connectors to ports */

ESTABLISH C-proc-call WITH reverse.stack_init AS caller stack.stack_init AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.stack_is_empty AS caller stack.stack_is_empty AS definer END C-
roc-call

ESTABLISH C-proc-call WITH reverse.push AS callr stack.push AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.pop AS callr stack.pop AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.exit AS callr libc.exit AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.fgets AS callr libc.gets AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.fprintf AS call libc.fprintf AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.malloc AS callr libc.malloc AS definer END C-proc-cal

ESTABLISH C-proc-call WITH reverse.strcpy AS callr libc.strcpy AS definer END C-proc-call

ESTABLISH C-proc-call WITH reverse.strien AS callr libc.strien AS definer END C-proc-call

/* Lastly, we bind the players in the interface

to players in the implementation. Remember, itis okay to omit the bind of player *error." */
BIND input TO ABSTRACTION MAPSTO (reverse.fgets) END input

BIND output TO ABSTRACTION MAPSTO (reverse.fprintf) END output

END IMPLEMENTATION

END Reverser

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Definition of Connectors

CONNECTOR C-proc-call
protocol IS
TYPE procedureCall
ROLE definer IS Definer
However, the extension of ROLE callr IS Callr
the compilers is complex: END protocol
IMPLEMENTATION IS BUILTIN

In Version 4.0, connectors
can be defined by users

= adelegation class has to be
devem%ed END IMPLEMENTATION
. . END C-proc-call
= the semantic analysis,
= and the architecture analysis CONNECTOR C-shared-data
must be supported. protocol IS

TYPE DataAccess
ROLE definer IS Definer
ROLE user IS User
END protocol
IMPLEMENTATION IS BUILTIN
END IMPLEMENTATION
END C-shared-data

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

A Component with GUI-Annotations

COMPONENT KWIC

INTERFACE IS

TYPE Filter PLAYER input IS Streamin

SIGNATURE ("line") PORTBINDING (stdin) END input PLAYER output IS StreamOut
SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER error IS StreamOut
SIGNATURE ("line") PORTBINDING (stderr) END error

END INTERFACE

IMPLEMENTATION IS
GUI-SCREEN-SIZE ("(is :real-width 800 :width-unit " :real-height 350 :height-unit **)")
DIRECTORY ((is * upcase.uni" ift.uni”
data.uni" " g
sortuni* ix-pipe.uni
*/ust/examples/ reverse-f.u
USES caps INTERFACE upcase
GUI-SCREEN-POSITION (‘(lis :position (@pos 68 123) :player-positions (lis
(cons "input* (cons "left 0.5)) (cons "error* (cons "right 0.6625))
(cons "output* (cons "right 0.3375))))")
END caps (remaining definition owithted)
END IMPLEMENTATION
END KWIC

nann, IDA/ TU Dresden. Rev

D18 Component oz courtesy of U

ware. IDA, Linkopings universtet. Some

Aesop

Connectors are first class language elements
i.e., can be defined by users

= Connectors are classes which can be refined by inheritance

Users can derive their own connectors from system connectors

Aesop supports the definition of architectural styles with fables
= Architectural styles obey rules

[TDDC18 Component-based software. IDA, Linkopings universiet. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007

Attachment of External Libraries

COMPONENT Libc

INTERFACE IS

TYPE modules

LIBRARY PLAYER exit IS RoutineDef

SIGNATURE (‘int"; "void") END exit PLAYER fgets IS RoutineDef

SIGNATURE (‘char **, "int", "struct _iobuf *"; "char *") END fgets PLAYER fprintf IS RoutineDef
SIGNATURE (‘struct _iobuf **, "char **, "char **; "int") END fprintf PLAYER malloc IS RoutineDef
SIGNATURE (“unsigned"; "char *") END malloc PLAYER strcpy IS RoutineDef

SIGNATURE (‘char **, "char *"; "char **) END strcpy PLAYER strlen IS RoutineDef
SIGNATURE (‘char **; "int") END strlen PLAYER _iwhether IS GlobalDataDef

SIGNATURE ('struct _iobuf **) END _iwhether END INTERFACE

IMPLEMENTATION IS
VARIANT libc IN *Ic"
IMPLTYPE (ObjectLibrary)
END libc

END IMPLEMENTATION

END Libc

[TDDC18 Gomponent-based software. IDA, Linkopings universitet. Some sidos by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

RAPIDE

= Luckham/Vera/Meldal. Three Concepts of System Architecture.
Stanford University 1995.

Central idea:

Rapide leaves the object connection architecture, in which the
objects are attached to each other directly, for an interface
connection architecture, in which required and provided interfaces
are related to each other

Specify in a interface not only the required methods, but also the
offered ones (provided and required ports)

Connect the ports in a architecture description (separate)

Advantage: calls can be bound to other ports with different names

Generalizes ports to calls

= Fundamentally more flexible concept for modules!
= Rapide was marketed by a start-up company

ann, IDA/ TU Dresden. R

[TDDC18 Component.based software. IDA, Linkopings universiet. Some siides by courtesy of Uwe.

Pipe-Filter Visual in Aesop

Design Edit Prefersnces Checks Shell PF-Tools

= Tcomponents

& fier

o Connectors.

Tt ot Ll Al

[hs
e
Joutpn

[s
s
2 o

DDGT8 Component base

ware. IDA, Linkopings universiet. Some siides by courlesy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kess!

Aesop Supports Architectural Styles (Fables)

= Design Rule
= A design rule is an element of code with which a class extends a method of
a super class. A design rule consists of the following:
= A pre-check that helps control whether the method should be run or not.
= A post-action
= Environment

= A design environment tailored to a particular architectural style.

Itincludes a set of policies about the style, and a set of tools that work
in harmony with the style, visualization information for tools

I1f something is part of the formal meaning, it should be part of a style
= Ifitis part of the presentation to the user,
it should be part of the environment.

fDDG18 Component bas

ware. IDA, Linkopings universtet. Some siides by courlosy of Uwe Assmann, IDA. TU Dr

ACME Studio as Graphic Environment

o AcmeStudi

demo.acme]
Tl File Edt View liset Iypes Toos Window Help

S
R E e S — |

Global Types FF [
® Bnanfile |3 Ppe
- I || @ Firer
| — e
Capitalize: Foadral G
& stdin ‘Wea el e
o ikPat | Source
& stdout
= Bepveseman
=) Aggegel
B Lowe
D & Meic
S L[J T — |
|t " 651 B e e
=

[Ediing System Aggregate-2p n Dsg|

&N

D18 Component bases

ware. IDA, Linkopings universtet. Some siidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kes

Instance of an ACME System

Dectaro nonamiy propery types has wil b usad by s systom nstance
property Type ShapeT = enum order o (rect, oval, roanchrect, line,
property Tope CORYT = enum arerio black. b, roen. yeHaw e whie ;.
Propery Type VisualzatonT = Recor [y, i, g i

ShapeT; color: ColorT: |

system using
Syoom swmp\ePF FipoFitartam
Declare the components to be used in this design.
the component smooth has a visualization added
Component smecth i = new FilerT extendod it

1/ Associate a value wilh the implementationFile property
property iz VisuaizalonT =[x - th = 100; (et comes with e Uil bype
e~ 7o e ek oen~ bk howTracks : UnixFilterT =

% o UHorT cxiondod i

detectErrors has a visualization added, as wel as a property viz: Visualzaon! = =400,y = 30 widh = 100;
representation thas refers by name o a system that s 5 Shape = rect: solor - black |
cmponent CeISSETr Fler = nw Fll axendod i property g Sy

property iz VisumlzalonT =[x =200,y =50 wdh=100; = "IMPL_HOME/showTracks.c”;

height = 78: shape - rect tolor = bia ¥

Representation r = (
Symam ot ks - 1/ Decare the system's connectors.
port sidout;port st nector firstPipe : PipeT;
e Test th system desarpton’s liced. nector secondPipe : PipeT;
Bindin 1/ Decare the system's attachments/iopology.
stdout o showTracksSubsystem stdout; ttact tofirstPipe source;
‘stdin to showTracksSubsystem.stdin; Attachment detectErrors.stdin to firstPipe sink;
) Attachment detectErrors.stdout to secondPipe. source;
‘Attachment showT racks.stdin to secondPipe.sink:
i

TDDC18 Gomponent-based software. IDA, Linkopings niversiel. Some sides by courlesy of Uwe Assmann, IDA./ TU Dresdan. Revised by C. Kess!

ACME (CMU)

ACME is an format)
to which different ADL can be mapped (UNICON, Aesop,

It consists of abstract syntax specification
= Similar to feature terms (terms with attributes).

Features
= With inheritance

Template SystemlO () : Connector {
Connector {

Roles: { source = SystemIORole();
sink = SystemlORole()

properties: { blockingtype = non-bi

King:

g;

Aesop-style = subroutine-call
}

TDDC18 Gomponent-based software. IDA, Linkopings universitel. Some sides by courlesy of Uwe Assmann, IDA./ TU Dresden. Revised by C. K

Example ACME Pipe/Filter-Family

I/ Describe a simple pipe-fitter family. This family
I definition demonstrates Acme's ability to specify
I/ afamily of architectures as well as individual

J/ Extend the basic filter type with a subclass (inheritance).
I architectural instances. I/ Instances of UnixFilterT will have all of the properties and
I/ ports of instances of FilterT, plus a port and an
I/ An ACME family includes a set of component, J/implementationFile proper
/1 connector, port and role types that define Component Type UnixFilterT extends FilterT with {
//the design vocabulary provided by the family. Port stther;
property implementationFile : String;
Family PipeFilterFam = { ¥
I/ Declare component types

// A component type definition in ACME allows J/ Declare the pipe connector type. Like component types,

I/'a connector type aso describes required structure.
o defne the structure required by the type. Connector Type PipeT = {
I/ This structure is defined using the same Roles { source; sink;

syntax property bufferSize : int;
I/ as an instance of a component. ;:

Component Type FilterT = i Declare some property types that can be used by systems
I/ Alfilters define at least two ports Il designed for the PipeFilterFam family

Ports (stdin; stdout; }; property Type StringMsgFormatT
property throughput : int; -

ecord [sizeiint; msg:String; J;
:

property Type TasksT =
enin order to {sort, transform, split, merge};

TDDC18 Gomponent-based software. IDA, Linkopings universitel. Some sides by courlesy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kess!

London Ambulance System in ACME

calliwfoChannel

incidentUpdate Chamme!
incidentinfoRequest

mapRequest!

mapRequestz
dispatchRequestChannel

DDGT8 Component base

ware. IDA, Linkopings universfel. Some siides by courlosy of Uwe Assmann, IDA| TU Dresden. Revis

London Ambulance System in ACME

property Type FlowDirectionT = enin order to { fromzto, to2from J;
‘Connector Type MessagePassChannelT = {

Roles { fromRole; toRole; };

property msgFlow : FlowDirectionT;

Conneclor Type RPC_T = { Roles { clientEnd; serverEnd; };

J/Instance based example - simple LAS architecture:
i

Component dispatcher = { Port receiveDispatchRequest; }
Component mapServer =
Ports { requestPortt; requestPortz; }

] declare system connectors
)/ message

System LAS =
‘Gomponent calntry = { Port sendCallMsg; J;
‘Component incidentMgr =
Ports { mapRequest; incidentinfoRequests;
‘sendincidentinfo; receiveCallMsg; }
3
‘Component resourceMgr =
Ports { mapRequest; incidentinfoRequest;
receivelncidentinio; sendDispatchRequest; }

3

1/ RPC connnectors

‘Connector incidentinfoRequest : RPC_T = {
Roles { dientEnd; serverEnd; }

3
‘Connector mapRequest! : RPC_T = (
Roles { clientEnd; serverEnd; }

3
‘Connector mapRequest2 : RPC_T = {
Roles { clientEnd; serverEnd; }

fDDG18 Component bas

ware. IDA, Linkopings universfol. Some siides.

Connector calllnfoChannel : MessagePassChannelT = {
Roles { fromRole; toRole; }
property msgFlow : FlowDirectionT = from2to;

Connector incidentUpdateChannel :
MessagePassChannelT = {
Roles { fromRole; toRole; }
property msgFlow : FlowDirectionT = from2to;

3
Connector dispatchRequestChannel :
MessagePassChannelT = {
Roles { fromRole; toRole;
property msgFlow : FlowDirectionT = from2to;
i3

y courtesy of Uwe Assmann, IDA/ TU D

Darwin (Imperial College)

Components
= Primitive and composed

= Components can be recursively specified or iterated by index range
= Components can be parameterized

Ports
= In, out (required, provided)

= Ports can be bound implicitly and in sets

Graphic or textual edits

D18 Component bases

ware. IDA, Linkopings universtet. Some siides by courlosy of Uwe Assmann, IDA, TU Dresden. Revis

Several versions available (C++, Java)

Simple Producer/Consumer in Text

Component Flowcontrol {
consumer: Consumer;
producer: Producer;
send: Sender
rec: Receiver;

Bind
producer.out -- send.user;
timer.ticks -- send.ticks;
net.cout -- send.control;
send.commout net.din;
net.dout -- rec.commin;
rec.control -- net.cin;
rec.user -- consumer.in;

TDDC18 Gomponent-based software. IDA, Linkopings riversiel, Some sides by courlesy of Uwe Assmann, IDA/TU Dresden. e

5/ C. Kess

London Ambulance System in ACME (cont.)

Il incidentinfoPath attachments /I pcRequests attachments

Attachments { Attachments {
1/ calls to incident_manager 1/ calls to map server
lintry.sendCallMsg to calllnfoChannel.fromRole; quest to map clientEnd;
IIMsg to callinfoChannel.toRole; apServer.req 1 o mapRequest!.serverEnd;
//incident updates to resource manager quest to mapl dlientEnd;

incidentMgr.sendincidentinfo
toincidentUpdateChannel.fromRole;
resourceMgr.receivelncidentinfo
toincidentUpdateChannel.toRole;
J dispatch requests to dispatcher
resourceMgr.sendDispatchRequest
to dispatchRequestChannel fromRole;
dispatcher.receiveDispatchRequest
to dispatchRequestChannel toRole;

mapServer.requestPort2 to mapRequest2. serverEnd;
J incident info from incident_mgr
resourceMgr.incidentinfoRequest to
incidentinfoRequest clientEnd;
incidentMgr.incidentinfoRequests to
incidentinfoRequest serverEnd;

TDDC18 Component-based software. IDA, Linkopings uriverstel, Some sides by courtesy of Uwe Assmann, IDA./TU Dresden. R

Simple Producer/Consumer

producer consumer

user

commout commin user

ticks control control

TDDC18 Component-based software. IDA, Linkopings uriversitet, Some sides by courtesy of Une Assmann, IDA./TU Dresden. Revi

Architectural Languages in
UML

Hofmeister, Nord, Soni:
Describing Software Architecture with UML.
1999

DDGT8 Componentbased software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uvie

ssmann, IDA/ TU Dresdan. Fevisad by C. Kes:

Architecture Languages versus UML

So far, archi and were research toys
(except CoSy)

“I have to learn UML anyway, should | also learn an ADL??”
= Learning curve for the standard developer

= Standard?

= Development environments?

This changes with UML 2.0

D18 Gomponent based

ware. IDA, Linkopings unerstet. Som courtesy of U

ssmann, IDA/ TU Dresden. Revised by C. Kes:

Background: Stereotypes in UML

= A stereotypeis a UML i il at modeling time.
It represents a subclass of an existing modeling element (->metalevel)
with the same form (attributes and relationships)

but with a different intent, maybe special constraints.

<<person>> <<person>> 8
Student Student 8
someMethod() someMethod ‘ Student

= To permit limited graphi ion of the UML ion as well,

a graphic icon or a graphic marker (such as texture or color)
can be associated with a stereotype.

= A ism for i izing UML without changing it.

ﬂtaﬂon Guide, 1997] T

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

UML model for image processing example

ImagePipeline
port

\

\ metngr

pipeline

*

sender sendzr

ClientiServer connector

recener Tecenvar

x
stageControl Framer] stageControl Imager|
j . - . '<| framed
packetin packeﬂnj [\magvﬂu{ (on ImagePipe - lmagvlnj [\mage‘)“‘ «\ Output

st

source

[TDDC18 Component-base

fiware. IDA, Linkopings universiel. Some sidas by courlesy of U

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007.

The Hofmeister Model of Architecture

[Hofmeister/Nord/Soni'99] is the first article that has propagated the idea
of specifying an architecture language with UML

Conceptual view: Functionality + interaction (components, ports, connectors)
Module view: Layering, modules and their interconnections

Execution view: runtime architecture (mapping modules to time and resources)
Code view: division of systems into files

Describe these single views in UML

= UML allows the definition of stereotypes
= Model connectors and ports, modules, runtime components with stereotypes

= Map them to icons, so that the UML specification looks similar to a
specification in a architecture system

[TDDC18 Component based software. IDA, Linkopings

versiel. Some sic

 courtesy of Un

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007

Modeling software architectures in UML

Example scenario: [Hofmeister/Nord/Soni'99]

= Digital camera
produces sequence of image frames,
flattened into a stream of pixel data

selects, starts, adjusts an image acquisition procedure

Image processing pipeline
= Framer: Restore complete image frames from pixel stream
= Imager: One or more image transformation(s)

Display images

[TDDC18 Gomponent-based software. IDA, Linkopings universtet. Some sids by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

Modeling software architecture in UML
with the Hofmeister/Nord/Soni approach

For conceptual view: Class diagram

= Comp ports, sarea ype of Class:
<<component>>, <<port>>, <<connector>>

Use special symbols for ports and connectors

Omit the stereotype for components and show their
associations with their ports by nesting

Roles are a stereotype of Association:
<<role>>

= shown as labels on port-connector associations
= Default multiplicity is 1

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Modeling software architecture in UML

= For modeling protocols,
use UML S i or State

Protocol for Packetin port:

<<protocol>>
RequestDataPacket

" P p /subscribe

Incoming incoming

messages | packet(pd) ‘ ‘
J 1

outgoing)
Outgoing subscribe /desubscribe
messages | desubscribe
requestPacket

|
=

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Component Diagrams in UML 2.0

= Components can be nested

Robot

Arm Engine

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Services

= Ports can be grouped to Services

In[Position] RobotArm

In[Veloc]

In[Angle]

OutfPiece]

ToDCTe:

Component-bas

Component Diagrams in UML 2.0

[TDDC18 Component bas

Idea has been taken over by UML 2.0:

= "a componentis a self-contained unit that encapsulates
the state and behavior of a number of classifiers.

= ... Acomponent specifies a formal contract of services ...”
= Provided and required interfaces

= Substitutable

= Run-time representation of one or several classes

= Source or binary code

Difference to UML classes:
= No inheritance

New symbols
= Components, component instances
= New UML element, not a stereotype

ware. IDA, Linkopings universiel. Some sides by courtosy of Uwe Assmann, IDA/ TU Dres:

<<executable>>
Student.class

[_Jkalle:StudentClass

profileName
I points: integer

den. Revised by C. Kessler, 2007.

—9 LADOKentry

—0 Profile

ware. IDA, Linkopings universtel. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007.

Ports in UML 2.0 Component Diagrams

= Ports in UML 2.0 are port objects
(gates, interaction points) that
govern the communication of a PickUp
component

= Ports may be simple
(only data-flow, data service)
= inorout DeliverPosition

= Ports may be complex services

= Then, they implement a provided
or required interface

pickup

Topet

8 Component-bas

Connectors in UML 2.0

= Connectors become special associations, marked up
stereotypes, that link ports

RobotArm

ware. IDA, Linkopings universtel. Some sidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revisod by C. Kessier, 2007.

by

Robot

Arm <<call>>

=l

TDDCT8 Component based software. IDA, Linkopings unversiel. Some sides

‘ourtesy of Uwe Assmann, IDA./ TU Dresden. Revised by C. Kesslar, 2007.

Simple Producer/Consumer in UML 2.0

Producer Consumer
1

in

Sender Network

Receiver

commout din dout ~ commin

control cout cin

control

D18 Gomponent based

Rule of Thumb for Architectural Design with
UML 2.0

‘courtesy of Uwe Assmann, IDA./ TU Dresden. Revised by C. Kessler, 2007.

Start the design with data
ports and services

Develop connectors

In a second step,
fix control flow

= push-pull
= Refine connectors

In a third step,

introduce synchronization
= Parallel/sequential

= Refine connectors

Architecture Systems as Composition
Systems

Component Model Composition Technique

Adaptation and glue code by connectors.

Source or binary components

Binding points: ports Scaling by exchange of connectors

Architectural language

Composition Language

[TDDC18 Component basex

fiware. IDA, Linkopings universiel. Some sidas by courlesy of U

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007.

Exchangeability of Connectors

The more complex the interface N
of the port, the more difficult it In[Position] | RobotArm

is to exchange the connectors O\{

ul
= Data-flow ports and data)
services abstract from many Out[Piece]
details O

Complex ports fix more details
SetterGetter[Piece]

Only with data services and
property services, connectors
have best exchangeability

MovePiece

[TDDC18 Component basex wersitel. Some sick

fware. IDA, Linkopings

nann, IDA/ TU Dresden. Revised by C. Kessler, 2007

Architecture Systems:
Summary

= How to evaluate architecture systems as composition systems?
= Component model
= Composition technique
= Composition language

[TDDC18 Gomponent-based software. IDA, Linkopings universtet. Some sids by courtosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessier, 2007.

ADL: Mechanisms for Modularization

Component concepts

Clean language-, interfaces and component concepts

New type of component: connectors

Secrets:
Connectors hide

= Communication transfer
= Partner of the communication
= Distribution

= Par isati on

Standardization: still pending

DDC18 Componentbased software. IDA, Linkopngs unversiel. Some sides by courtesy of Unie Assmann, IDA/ TU Dresden. Fovised by C. Kesslor, 2007

Architecture Systems - Component Model

Secrets
Types
Development
environments
Distribution
Location transparence
Business
services Contracts
Wright
Binding points
Ports
Infrastructure
o Parameterization
Versioning

UML genericity

DDG18 Component based software. IDA, Linkopngs unversiet. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

Architecture Systems —
Composition Technique and Language

Adaptation
.
Product quality

Connectors
I: Software process
Architecture language

Architecture is separated

Aspect Separation Metacomposition

Fully scalable distribution Scalability

DDG18 Component based software. IDA, Linkopngs unversiel. Somo sikdes by courtesy of Uwe Assmann, IDA / TU Dresden. Fovised by C. Kesslor, 2007

How the Future Will Look Like

. of pts (with MOF in UML)
will replace architecture languages

= The attempts to describe architecture concepts with UML are promising

Model-driven architecture
= Increasingly popular, also in embedded / realtime domain

We should think more about general software composition
mechanisms

= Adaptation by glue is only a simple way of composing components
(... see invasive composition)

[TDDC18 Component-bas

[TDDC18 Component bas

ware. IDA, Linkopings universitel. Some sidos by courlosy of Uwe Assmann, IDA. TU Dresden. Revisod by C. Kessler, 2007

ADL: Mechanisms for Adaptation

= Many types of glue code possible

Connectors generate glue code: very good!

= User definable connectors allow for specific glue

= Tools analyze the interfaces

and derive the necessary adaptation code automatically

Mechanisms for aspect separation.
2 major aspects are distinguished:
= Architecture

(sub-aspects: topology, hierarchy, communication carrier)

= Application functionality

= An ADL- iler is only a

y weaver

= Aspects are not weaved together but encapsulated in glue code

What Have We Learned?

ware. IDA, Linkopings universtel. Some sides by courlosy of Uwe Assmann, IDA. TU Dresden. Revised by C. Kessler, 2007.

. i provide an important step

Y
forward in software engineering

= For the first time, software architecture becomes visible

= Concepts can be applied in UML already today

= Architectural languages are the most advanced form of
ition gy so far

D 6 &

Components

i 8.

Composition
recipe

—~ o

Component-based
applications

