
TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Software Architecture Systems

���������	 ��
����
��� ��� ���������� �� ������ ���� ����

�
 ���	���	�� �������� ����	������� ������ ���� ���!	���	��

�
 ����"��� #���	������� ������� $������	���

�
 %��� ����	�� &�	���� %���

'
 (���� ����	������� �������)���� �����	�! ��� ��!�*����	��+

�
 ����!	�� ����"��� #���	������� "	�� &�, ��� &�, �
�

-
 �������
2

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Additional Literature

� D. Garlan and M. Shaw, An Introduction to Software Architecture.
In V. Ambriola and G. Tortora (eds.), Advances in Software Engineering
and Knowledge Engineering, World Scientific Publishing Company,
1993, pp. 1-40. Nice introductory article.
http://www-2.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/intro_softarch.html

� M. Shaw, P.C. Clements: A Field Guide to Boxology. Preliminary
Classification of Architectural Styles for Software Systems.
CMU, April 1996.
http://citeseer.ist.psu.edu/shaw96field.html

� C. Hofmeister, R. L. Nord, D. Soni.
Describing Software Architecture with UML.
In P. Donohoe, editor, Proc. IFIP Working Conference on Software
Architecture, pp. 145-160. Kluwer Academic Publishers, Feb. 1999.

3

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Additional Literature (cont.)

� Shaw, M., Garlan, D.: Software Architecture – Perspectives for an
Emerging Discipline. Prentice-Hall,1996. Nice introduction.

� Clements, Paul C.: A Survey of Architecture Description Languages.
Int. Workshop on Software Specification and Design, 1996.

� C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture.
Addison-Wesley, 2000. Very nice book on architectural elements in UML.

� Rikard Land: A Brief Survey of Software Architecture. MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-57/2002-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, February, 2002

� Martin Alt. On Parallel Compilation. PhD Dissertation, Universität des
Saarlandes, Saarbrücken, Feb. 1997. (CoSy prototype)

� ACE b.V. Amsterdam. CoSy Compilers. System documentation,
 Apr. 2003. http://www.ace.nl 4

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Examples of Architecture Systems

� Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, April 1995, pp. 314-335. (UNICON)
http://citeseer.ist.psu.edu/shaw95abstractions.html

� D. C. Luckham and J. Vera. An Event-Based Architecture Definition
Language. IEEE Transactions on Software Engineering, pp. 717--734,
Sept. 1995. (RAPIDE)

� (Darwin) http://www-dse.doc.ic.ac.uk/Software/Darwin/

� Gregory Zelesnik. The UniCon Language User Manual. School of Computer
Science, Carnegie Mellon University Pittsburgh, Pennsylvania

� Gregory Zelesnik. The UniCon Language Reference Manual. School of
Computer Science, Carnegie Mellon University Pittsburgh, Pennsylvania

5

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
ACME

Aspect/J Invasive Composition
Metaclass Composition

Standard Components

Architecture as Aspect

Aspect Separation
Composition
Operators

Composition
Language

Object-Oriented Systems C++ JavaObjects as
Run-Time Components

Modular Systems Modula Ada-85Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Component and
Composition Systems

XML-based Wrappers for
Standard ComponentsWeb Services (later)

6

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Software Architecture

� Software architecture
� Structural organization of an application's implementation (code)

into software components and their interconnection
� The first step in producing a software design [Garlan, Shaw 1996]

� Basic ingredients
� Components (modules with interfaces)
� Connectors (abstraction of communication)
� Operators that create systems from subsystems

� Software architecture systems
� Architecture description language (ADL)

� For writing construction plans

7

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A Basic Rule for Design ...

� ... is to focus on one problem at a time
and to forget about others.

� Abstraction is neglection of unnecessary detail
� Display and consider only essential information

8

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Separation of Concerns

� Different concerns should be separated
� so that they can be specified independently

� Dimensional specifications

� Specify from different viewpoints

� But: different concerns are not always independent of each other
� Interferences
� Consistency issues
� Ordering constraints on application

9

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Structure
Media plan

Light plan Water pipe plan

Integrated
house

Aspects in Architecture

10

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Application
Components

Software
Architecture

(Connection of
components)

Code generator

An Example of Separation of Concerns:
Architectural Aspect in Software

Components

Software configuration

with glue code
for communication
between components

11

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Software Architecture Systems
as Composition Systems

� Component model
� Binding points: Ports

� Communication between component instances is split off in connectors:
Transfer (carrier) of the communication is transparent

� Composition technique
� Adaptation and glue code generated from connectors

� Aspect separation: application and communication are separated

� Topology (who communicates with whom?)
� Carrier (how?)
� When?

� Scalability (distribution, binding time with dynamic architectures)

� Composition language:
An Architecture Description Language (ADL)
is a simple composition language!

12

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Connector

Port

Interface

Role

Component Model in
Architecture Systems

� Ports = abstract interface points
(events, methods)

� Ports specify the data-flow into
and out of a component
� in(data)
� out(data)

� Connectors as special
communication components
� Connectors are attached to

ports
� Connectors are explicitly

applied per communication
Components and connectors are bound

together to form a configuration.

13

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Abstract Binding Points: Ports

� Ports abstract from the concrete carrier, but indicate where
data has to flow in and out of the component

� To fit to connectors, a legacy system must convert all procedure calls
to ports, i.e., to abstract calls

� Ports have protocols

� Connectors can be binary or n-ary

� Every end is called a role.

� Roles fit only to certain types of ports
= Typing of roles and ports.

� The interfaces remain at run time Connector

Role

14

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A Simple Example

� A description of a small example architecture
in the ADL Acme [Garlan et al., CMU, 2000]

 System simple_cs = {
 Component client = { Port sendRequest }
 Component server = { Port receiveRequest }
 Connector rpc = { Roles { caller, callee } }
 Attachments : {
 client.sendRequest to rpc.caller ;
 server.receiveRequest to rpc.callee ;
 }
 }

Connector

Po
rt

Role
callee

client server
rpc

15

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Ports In More Detail

� Input ports are synchronous or asynchronous:
� in(data)

� get(data) (aka. receive(data)):
Synchronous in port, taking in one data

� testAndGet(data):
Asynchronous in port, taking in one data if it is available

� Output ports are synchronous or asynchronous:
� out(data)

� set(data):
Synchronous out port, putting out one data, waiting until acknowledge

� put(data) (aka. send(data)):
Asynchronous out port, putting out one data, not waiting until acknowledge

Port

in
out

16

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Ports and Services

� Services are groups of ports.

� A data service is a tuple

 [in(data), ..., in(data), out(data), ..., out(data)]

� A special case is a call service with one return port:

 [in(data), ..., in(data), out(data)]

� A property service is a service to access component attributes,
 i.e., a simple tuple

 [in(data), out(data)]

Service

Port

out
in

17

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architectural Styles
e.g. [Garlan/Shaw: Software Architecture, Prentice-Hall 1996]

� Frequently occurring connection topology patterns
(Architectural Design Patterns)
� Pipe-and-Filter

� UNIX shells
� Stream-parallel programming languages

� Client-Server Architecture
� CORBA RPC, Java RMI, ...

� Layered Architecture (aka. Onion Architecture)
� Layered operating systems (UNIX, Windows)
� Multi-tier architectures (e.g. 3-tier: clients / server objects / DB)

� Blackboard Architecture (aka. Repository Architecture)
� Linda [Carriero/Gelernter'96]
� Service discovery repositories, e.g. Jini, CORBA repositories
� CoSy CCMIR

 and more, and combinations of these
18

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture can be Exchanged
Independently of Components

Port 2

Port 1

PortPort Component

Component

Component

� “Rewiring”

� Reuse of components and architectures is fundamentally improved

19

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Two Dimensions of Reuse

� Architecture and components can be reused independently of each other

Architecture

Application
Component

Application
Component

20

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Descriptions are Reducible

Player Component

Component

Component

� Components are nested (fractal-like behavior)

� Ports of outer components are called players.

� This type of diagram is now supported in UML 2.0 as component diagram

Player

21

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Additionally, Connectors have Protocols

� A connector, since it is a precise concept to specify
communication of components, must have a protocol

SubjectObserver

register

Observer

register

notify
notify

unregister

unregister

22

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Set/Get Connector Protocol

� on data services

ServerClient

get<Field>

set<Field>(value)

23

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Call Connector Protocol

� on call services

ServerClient

call(data)

initialize

return value

24

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

RPC Connector

� on call services

ServerClient

call data

initialize

return value

25

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Dynamic Call via CORBA DII - Protocol

������

������

	
��
�

��
����

�����
����
��

�������

���
�������

����
�

������ ����
���
��� ���

����
���

�������

��������

�
����

������

����

�������

arguments

26

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

From Connectors in ADL Specification
Generate Architectural Glue Code

 ��!��������

 �"#

��������

 ��!�������
� %��� ����

 �����
���

�����
�
�

 �����
���

�����
�
�

 �����
���

�����
�
�

 �����
���

�����
�
�

27

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

����
�

�����
�
�

����

������

�����
�
�

&���

Connectors are
Abstract Communication Buses

&���

&���

��

�����

����

28

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

But we know that already from CORBA:

����
�

'
�

������

�((

����
�

�

��" ���� ��" �������
��" ����

����
#���#��

�����

������
�
����

)
��!
��
�
)
��!
��
�

� CORBA is a simple architecture system with restricted connectors:

29

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

CORBA is a Simple Architecture System with
Restricted Connectors

Corba:
� Client and service provider
� ORB client side, server side
� Marshalling, Stub, Skeleton,

Object Adapter
� Interfaces in IDL

(not abstracted to data flow)
� static call

� dynamic call

� connectors always binary
� Events, callbacks, persistence

as services
(cannot be exchanged to other
communications)

Architecture Systems:
� Components
� Connectors
� Roles

� Ports

� procedure call connector
(also distributed)

� dynamically reconfigurable
connectors (e.g., in Darwin)

� connectors n-ary
� Events, callbacks, persistence

as connectors
(can be exchanged to other
communications)

30

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Most Commercial Component Systems Provide
Restricted Forms of Connectors

� It turns out that most commercial component systems do not offer
connectors as explicit modelling concepts, but
� offer communication mechanisms that can be encapsulated into a

connector component
� For instance, CORBA remote connections can be packed into connectors

������ ����
�	����
� �
��
������� ������� �������������

Connector

31

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Systems

Examples

� Unicon [Shaw 95]
� Aesop [Garlan95]
� Darwin [Kramer 92]
� Rapide [Luckham95], C2 [Medvedovic]
� Wright [Garlan/Allen]
� ACME [Garlan 2000]

� CoSy [Aßmann/Alt/vanSomeren'94] www.ace.nl

32

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Example: The KWIC Problem in UNICON
[ISC pp. 74-76]

� Example from UniCon distribution

� "Keyword in Context" problem (KWIC)

� The KWIC problem is one of the 10 model problems of architecture systems

� Originally proposed by Parnas to illustrate advantages of different designs
[Parnas'72]

� For a text, a KWIC algorithm produces a permuted index

� every sentence is replicated and permuted in its words,
i.e., the words are shifted from left to right.

� every first word of a permutation is entered into an alphabetical index,
the permuted index.

33

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A KWIC Index

 every sentence is replicated and permuted
..

 every sentence is replicated and permuted

..

 every sentence is replicated and permuted
..

every sentence is replicated and permuted
..

 every sentence is replicated and permuted
..

 every sentence is replicated and permuted

34

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

The KWIC Problem in Unicon

� The components of KWIC work in a pipe-and-filter style
� KWIC has ports

� stream input port input,

� and two output ports output and error.
They read text and spit out the permuted index

� KWIC is a compound component KWIC
(Components in Unicon can be nested)
� PLAYER definitions define ports of outer components.

� BIND statements connect ports from outer components to ports of inner
components.

� USES definitions create instances of components and connectors.
� CONNECT statements connect connectors to ports at their roles.

35

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

�����

����

�	
�	

���	

���
��

������
�

�

�

��
��

�

����

�����

36

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

The KWIC Problem in Unicon

� Components
� The component caps converts the sentence to uppercase as necessary.
� The shifter creates permutations of the sentence.
� The req-data provides some data to the merge component which pipes the

generated data to the component sorter.
� sorter sorts the shifted sentences

so that they form a keyword-in-context index.

� Only connectors in the style of UNIX pipes are used
� Other connection kinds can be introduces by only changing the type of

connectors in a USES declaration.
� Hence, communication kinds can be exchanged easily, e.g. for

Shared memory, Abstract data types, Message passing [Garlan/Shaw'94]

� Architecture systems allow for scalable communication:
binding procedures can be exchanged easily!

37

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

COMPONENT KWIC
 /* This is the interface of KWIC with in- and output ports */

 INTERFACE IS TYPE Filter
 PLAYER input IS StreamIn SIGNATURE ("line")

 PORTBINDING (stdin) END input
 PLAYER output IS StreamOut SIGNATURE ("line")

 PORTBINDING (stdout) END output
 END INTERFACE

 IMPLEMENTATION IS
 /* Here come the component definitions */
 USES caps INTERFACE upcase END caps

 USES shifter INTERFACE cshift END shifter
 USES req-data INTERFACE const-data END req-data

 USES merge INTERFACE converge END merge
 USES sorter INTERFACE sort END sorter

 /* Here come the connector definitions */
 USES P PROTOCOL Unix-pipe END P

 USES Q PROTOCOL Unix-pipe END Q
 USES R PROTOCOL Unix-pipe END R

 /* Here come the connections */

 BIND input TO caps.input
 CONNECT caps.output TO P.source

 CONNECT shifter.input TO P.sink
 CONNECT shifter.output TO Q.source

 CONNECT req-data.read TO R.source
 CONNECT merge.in1 TO R.sink

 CONNECT merge.in2 TO Q.sink
 /* Syntactic sugar for anonymous connections */
 ESTABLISH Unix-pipe WITH

 merge.output AS source
 sorter.input AS sink

 END Unix-pipe
 BIND output TO sorter.output

 END IMPLEMENTATION
END KWIC

KWIC in Unicon

38

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

The Composition Language: ADL

� Architecture language (architectural description language, ADL)
� ADL-compiler
� XML-Readers/Writers for ADL.

� The reducibility of the architecture allows for simple overview,
evolution, and documentation
� The architecture is a reducible graph, with all its advantages

� Graphic editing of systems

39

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

ACME Studio

40

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

What ADL Offer for the Software Process

� Support when doing the requirements specification
� Visualization for the customer: architecture graphics better to understand
� Architecture styles classify the nature of a system in simple terms

� Design support
� Simple specification by graphic editors
� Stepwise design and refinement of architectures
� Visual and textual views

� Design of product families is easy
� A reference architecture fixes the commonalities of the product line
� The components express the variability

41

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Checking and Validating

� Checking, analysing
� Test of (part of) an architecture with dummy components
� Deadlock checking
� Liveness checking

� Validation: Tools for consistency of architectures
� Are all ports bound?
� Do all protocols in the connectors fit?
� Does the architecture correspond to a certain style ?
� Does the architecture fit to a reference architecture?
� Parallelism features as deadlocks, fairness, liveness,
� Dead parts of the systems: Is everything reachable at run time?

42

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

What can be generated?

� Glue- and adapter code from connectors and ADL-specifications

� Mapping of the protocols of the components to each other

� Generation of glue code from the connectors

� Simulations of architectures (with dummy components):

� The architecture can be created first

� And tested stand-alone

� Run time estimates are possible (if run times of components are known)

� Test cases for architectures

� Documentation (graphic structure diagrams)

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

CoSy

# �������	�! ����	������� ������ ��� ����	!���

"""
���
�!

44

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Traditional Compiler Structure

� Traditional compiler model: sequential process

� Improvement: Pipelining (by files/modules, classes, functions)

� More modern compiler model with shared symbol table and IR

Lexer Parser
Semant.
Analysis Optimizer

Code
generator

text code

Lexer Parser
Semant.
Analysis Optimizer

Code
generator

text code

Symbol table

Intermediate representation (IR)

tokens tree
ext.
tree

ext.
tree

Data fetch/store

Coordination
data flow

45

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A CoSy Compiler with
Repository-Architecture

Lexer

Parser

Semantics

Optimizer

Transformation

Codegen

“Blackboard architecture”

“Engines”
(compiler tasks)

Common
intermediate representation
repository 46

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Engine

� Modular compiler building block

� Performs a well-defined task

� Focus on algorithms, not compiler configuration

� Parameters are handles on the underlying common IR repository

� Execution may be in a separate process or as subroutine call -
 the engine writer does not know!

� View of an engine class:
 the part of the common IR repository that it can access
 (scope set by access rights: read, write, create)

Examples: Analyzers, Lowerers, Optimizers, Translators, Support

47

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Composite Engines in CoSy

� Built from simple engines or from other composite engines
by combining engines in interaction schemes
(Loop, Pipeline, Fork, Parallel, Speculative, ...)

� Described in EDL (Engine Description Language)

� View defined by the joint effect of constituent engines

� A compiler is nothing more than a large composite engine

ENGINE CLASS compile (IN u: mirUNIT) {
 PIPELINE
 frontend (u)
 optimizer (u)
 backend (u)
}

48

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

�.

Optimizer
II

Parser

Optimizer
I

Generated
access layer

Logical view

Generated Factory

A CoSy Compiler

Logical view

49

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Subarchitecture
Back end

Hierarchical Components
in the Repository Style (CoSy)

Subarchitecture
Front end

Lexer

Parser

Subarchitecture
Middle end

Semantics OptimizerTrafo

Scheduler

Code
generator

Compiler

50

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Example for CoSy EDL
(Engine Description Language)

� Component classes (engine class)

� Component instances (engines)

� Basic components
are implemented in C

� Interaction schemes (cf. skeletons)
form complex connectors

� SEQUENTIAL

� PIPELINE

� DATAPARALLEL

� SPECULATIVE

� EDL can embed automatically
� Single-call-components into pipes

� p<> means a stream of p-items

� EDL can map their protocols to each
other (p vs p<>)

������ ����� 	
��
���� �
�	������
 � �
�	���	���	��������� ����
�	

	�����
����
����	� ����
�		
!���������

������ �"��

#�#����� ����
�� ����
�� �"��
��
$
������ ����� �	

���� � ���� � � �

%%%% &	'�� �	'���
(����
�
#�#�����)) �� �� ��'�� ����* ����"��� �	'�� �����
+

�� ��� �� �* ,-& �	'��./ ��
)) #����� ����"��� �
	����

������ �� �	'��./* ,-&
 ��
��
��
 ��
���	

	���
*
./ ��
)) 0��� �	
�� � �����
 	�
�	�������
)) ��	
 �0�
	����

	
��
�����
./ ��
���'����
./ ��

$

51

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Adapter (Envelope, Container)

���
���
���1��� ��"��	
��

�	

�������	�
�	��

�		�������	� �	��
��� ����
������	�

������ �	
��
	���	��

� CoSy generates for every component an adapter (envelope, container)
� that maps the protocol of the component to that of the environment

(all combinations of interaction schemes are possible)
� Coordination, communication, encapsulation and access to the repository

are generated.

52

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Evaluation of CoSy

� CoSy is one of the single commercial architecture systems with professional
support

� The outer call layers of the compiler are generated from the ADL

� Adapter, coordination, communication, encapsulation

� Sequential and parallel implementation can be exchanged (cf. skeletons)

� There is also a non-commercial prototype
[Martin Alt: On Parallel Compilation. PhD thesis, 1997, Univ. Saarbrücken]

� Access layer to the repository must be efficient
(solved by generation of macros)

� Because of views, a CoSy-compiler is very simply extensible
� That's why it is expensive
� Reconfiguration of a compiler within an hour

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Appendix:
Survey of Other Architecture
Systems
� For self-studies...

� UniCon
� RAPIDE
� Aesop
� Acme
� Darwin

54

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

An Example System: UNICON

� UNICON supports
� Components in C
� Simple and user-defined connectors

� Design Goals
� Practical tool for real problems
� Uniform access to a large set of connections
� Check of architectures (connections) should be possible
� Analysis tools
� Graphics and Text
� Reuse of existing legacy components
� Reduce additional run time costs

55

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Description of Components and Connectors

� Name

� Interface (component) resp. protocol (connector)

� Type
� component: modules, computation, SeqFile, Filter, process, general
� connectors: Pipe, FileIO, procedureCall, DataAccess, PLBandler, RPC,

RTScheduler

� Global assertions in form of a feature list (property list)

� Collection of
� Players for components

(for ports and port mappings for components of different nesting layers)
� Roles for connectors

� The UNICON-compiler generates
� Odin-Files from components and connectors. Odin is an extended Makefile
� Connection code

56

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Supported Player Types
per Component Type

� Modules:
� RoutineDef, RoutineCall,

GlobalDataDef,
GlobalDataUse, PLBandle,
ReadFile, WriteFile

� Computation:
� RoutineDef, RoutineCall,

GlobalDataUse, PLBandle

� SharedData:
� GlobalDataDef,

GlobalDataUse, PLBandle

� SeqFile:
� ReadNext, WriteNext

� Filter:
� StreamIn, StreamOut

� Process:
� RPCDef, RPCCall

� Schedprocess:
� RPCDef, RPCCall, RTLoad

� General:
� All

57

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Supported Role Types For Connector Types

� Pipe:
� Source fits to Filter.StreamOut,

SeqFile.ReadNext
� Sink fits to Filter.StreamIn,

SeqFile.WriteNext
� FileIO:

� Reader fits to modules.ReadFile
� Readee fits to SeqFile.ReadNext
� Writer fits to Modules.WriteFile
� Writee fits to SeqFile.WriteNext

� ProcedureCall:
� Definer fits to (Computation|

Modules).RoutineDef
� User fits to (SharedData|Computation|

Modules).GlobalDataUse
�

� PLBandler:
� Participant fits to PLBandle,

RoutineDef, RoutineCall,
GlobalDataUse,
GlobalDataDef

� RPC
� Definer fits to (Process|

Schedprocess).RPCDef
� User fits to (Process|

Schedprocess).RPCCall
� RTScheduler

� Load fits to
Schedprocess.RTLoad

58

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A Modules Component

INTERFACE IS

 TYPE modules

 LIBRARY
 PLAYER timeget IS RoutineDef
 SIGNATURE ("new_type"; "void")
 END timeget
 PLAYER timeshow IS RoutineDef
 SIGNATURE (; "void")
 END timeshow

END INTERFACE

59

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A Filter

COMPONENT Reverser INTERFACE IS
TYPE Filter
PLAYER input IS StreamIn SIGNATURE ("line") PORTBINDING (stdin) END input
PLAYER output IS StreamOut SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER
error IS StreamOut SIGNATURE ("line") PORTBINDING (stderr) END error
END INTERFACE

IMPLEMENTATION IS
/* Component instantiations are declared below. */
USES reverse INTERFACE Reverse
USES stack INTERFACE Stack
USES libc INTERFACE Libc
USES datause protocol C-shared-data

/* We will use <establish> statements for the procedure call connections (next page) */

/* Now for the configuration of connectors to players */
/* CONNECTs bind ports to roles */
CONNECT reverse._iob TO datause.user
CONNECT libc._iob TO datause.definer
END IMPLEMENTATION END Reverser

60

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

/* Establish connections ESTABLISHs bind connectors to ports */
ESTABLISH C-proc-call WITH reverse.stack_init AS caller stack.stack_init AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.stack_is_empty AS caller stack.stack_is_empty AS definer END C-
proc-call
ESTABLISH C-proc-call WITH reverse.push AS callr stack.push AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.pop AS callr stack.pop AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.exit AS callr libc.exit AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.fgets AS callr libc.fgets AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.fprintf AS callr libc.fprintf AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.malloc AS callr libc.malloc AS definer END C-proc-cal
ESTABLISH C-proc-call WITH reverse.strcpy AS callr libc.strcpy AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.strlen AS callr libc.strlen AS definer END C-proc-call

/* Lastly, we bind the players in the interface
to players in the implementation. Remember, it is okay to omit the bind of player "error." */
BIND input TO ABSTRACTION MAPSTO (reverse.fgets) END input
BIND output TO ABSTRACTION MAPSTO (reverse.fprintf) END output
END IMPLEMENTATION
END Reverser

61

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Definition of Connectors

CONNECTOR C-proc-call
 protocol IS
 TYPE procedureCall
 ROLE definer IS Definer
 ROLE callr IS Callr
 END protocol
 IMPLEMENTATION IS BUILTIN
 END IMPLEMENTATION
END C-proc-call

CONNECTOR C-shared-data
 protocol IS
 TYPE DataAccess
 ROLE definer IS Definer
 ROLE user IS User
 END protocol
 IMPLEMENTATION IS BUILTIN
 END IMPLEMENTATION
END C-shared-data

� In Version 4.0, connectors
can be defined by users

� However, the extension of
the compilers is complex:
� a delegation class has to be

developed,
� the semantic analysis,
� and the architecture analysis

must be supported.

62

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Attachment of External Libraries

COMPONENT Libc
INTERFACE IS
TYPE modules
LIBRARY PLAYER exit IS RoutineDef
SIGNATURE ("int"; "void") END exit PLAYER fgets IS RoutineDef
SIGNATURE ("char *", "int", "struct _iobuf *"; "char *") END fgets PLAYER fprintf IS RoutineDef
SIGNATURE ("struct _iobuf *", "char *", "char *"; "int") END fprintf PLAYER malloc IS RoutineDef
SIGNATURE ("unsigned"; "char *") END malloc PLAYER strcpy IS RoutineDef
SIGNATURE ("char *", "char *"; "char *") END strcpy PLAYER strlen IS RoutineDef
SIGNATURE ("char *"; "int") END strlen PLAYER _iwhether IS GlobalDataDef
SIGNATURE ("struct _iobuf *") END _iwhether END INTERFACE

IMPLEMENTATION IS
 VARIANT libc IN "-lc"
 IMPLTYPE (ObjectLibrary)
 END libc
END IMPLEMENTATION
END Libc

63

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

A Component with GUI-Annotations

COMPONENT KWIC
INTERFACE IS
TYPE Filter PLAYER input IS StreamIn
SIGNATURE ("line") PORTBINDING (stdin) END input PLAYER output IS StreamOut
SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER error IS StreamOut
SIGNATURE ("line") PORTBINDING (stderr) END error
END INTERFACE

IMPLEMENTATION IS
GUI-SCREEN-SIZE ("(lis :real-width 800 :width-unit "" :real-height 350 :height-unit "")")
DIRECTORY ("(lis "/usr/examples/ upcase.uni" "/usr/examples/cshift.uni"
 "/usr/examples/ data.uni" "/usr/examples/converge.uni"
 "/usr/examples/ sort.uni" "/usr/examples/unix-pipe.uni"
 "/usr/examples/ reverse-f.uni")")
USES caps INTERFACE upcase
GUI-SCREEN-POSITION ("(lis :position (@pos 68 123) :player-positions (lis
 (cons "input" (cons `left 0.5)) (cons "error" (cons `right 0.6625))
 (cons "output" (cons `right 0.3375))))")
END caps (remaining definition owithted)
END IMPLEMENTATION
END KWIC

64

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

RAPIDE

� Luckham/Vera/Meldal. Three Concepts of System Architecture.
Stanford University 1995.

� Central idea:
Rapide leaves the object connection architecture, in which the
objects are attached to each other directly, for an interface
connection architecture, in which required and provided interfaces
are related to each other

� Specify in a interface not only the required methods, but also the
offered ones (provided and required ports)

� Connect the ports in a architecture description (separate)
� Advantage: calls can be bound to other ports with different names
� Generalizes ports to calls

� Fundamentally more flexible concept for modules!
� Rapide was marketed by a start-up company

65

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Aesop

� Connectors are first class language elements
i.e., can be defined by users
� Connectors are classes which can be refined by inheritance

� Users can derive their own connectors from system connectors

� Aesop supports the definition of architectural styles with fables
� Architectural styles obey rules

66

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Pipe-Filter Visual in Aesop

67

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Aesop Supports Architectural Styles (Fables)

� Design Rule
� A design rule is an element of code with which a class extends a method of

a super class. A design rule consists of the following:
� A pre-check that helps control whether the method should be run or not.
� A post-action

� Environment
� A design environment tailored to a particular architectural style.

� It includes a set of policies about the style, and a set of tools that work
in harmony with the style, visualization information for tools

� If something is part of the formal meaning, it should be part of a style
� If it is part of the presentation to the user,

it should be part of the environment.

68

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

ACME (CMU)

� ACME is an exchange language (exchange format)
to which different ADL can be mapped (UNICON, Aesop, ...).

� It consists of abstract syntax specification
� Similar to feature terms (terms with attributes).

� With inheritance

Template SystemIO () : Connector {
Connector {
 Roles: { source = SystemIORole();
 sink = SystemIORole()
 }
 properties: { blockingtype = non-blocking;
 Aesop-style = subroutine-call
 }
 }
}

Features

69

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

ACME Studio as Graphic Environment

70

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Example ACME Pipe/Filter-Family

// Describe a simple pipe-filter family. This family
// definition demonstrates Acme's ability to specify
// a family of architectures as well as individual
// architectural instances.

// An ACME family includes a set of component,
// connector, port and role types that define
// the design vocabulary provided by the family.

Family PipeFilterFam = {
 // Declare component types.
 // A component type definition in ACME allows
you
 // to define the structure required by the type.
 // This structure is defined using the same
syntax
 // as an instance of a component.
 Component Type FilterT = {
 // All filters define at least two ports
 Ports { stdin; stdout; };
 property throughput : int;
 };

 // Extend the basic filter type with a subclass (inheritance).
 // Instances of UnixFilterT will have all of the properties and
 // ports of instances of FilterT, plus a port and an
 // implementationFile property
 Component Type UnixFilterT extends FilterT with {
 Port stther;
 property implementationFile : String;
 };

 // Declare the pipe connector type. Like component types,
 // a connector type aso describes required structure.
 Connector Type PipeT = {
 Roles { source; sink; };
 property bufferSize : int;
 };
 // Declare some property types that can be used by systems
 // designed for the PipeFilterFam family
 property Type StringMsgFormatT
 = Record [size:int; msg:String;];
 property Type TasksT =
 enin order to {sort, transform, split, merge};
};

71

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Instance of an ACME System

// Declare non-family property types thas will be used by this system instance.
property Type ShapeT = enum order to { rect, oval, roand-rect, line, arrow };
property Type ColorT = enum order to { black, blue, green, yellow, red, white };
property Type VisualizationT = Record [x, y, width, height : int;
 shape : ShapeT; color : ColorT;];

// Describe an instance of a system using the PipeFilterFam family.
System simplePF : PipeFilterFam = {
 // Declare the components to be used in this design.
 // the component smooth has a visualization added
 Component smooth : FilterT = new FilterT extended with {
 property viz : VisualizationT = [x = 20; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 };
 // detectErrors has a visualization added, as well as a
 // representation thas refers by name to a system that is
 // defined elsewhere.
 Component detectErrors : FilterT = new FilterT extended with {
 property viz : VisualizationT = [x = 200; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 Representation r = {
 System showTracksSubsystem = {
 port stdout; port stdin;
 // ... the rest of the system description is ellided...
 };
 Bindings {
 stdout to showTracksSubsystem.stdout;
 stdin to showTracksSubsystem.stdin;
 }
 }
 };

 // Associate a value with the implementationFile property
 // that comes with the UnixFilterT type.
 Component showTracks : UnixFilterT =
 new UnixFilterT extended with {
 property viz : VisualizationT = [x = 400; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 property implementationFile : String
 = "IMPL_HOME/showTracks.c";
 };

 // Declare the system's connectors.
 Connector firstPipe : PipeT;
 Connector secondPipe : PipeT;

 // Declare the system's attachments/topology.
 Attachment smooth.stdout to firstPipe.source;
 Attachment detectErrors.stdin to firstPipe.sink;
 Attachment detectErrors.stdout to secondPipe.source;
 Attachment showTracks.stdin to secondPipe.sink;
}

72

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

London Ambulance System in ACME

73

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

London Ambulance System in ACME

 property Type FlowDirectionT = enin order to { from2to, to2from };
 Connector Type MessagePassChannelT = {
 Roles { fromRole; toRole; };
 property msgFlow : FlowDirectionT;
 };
 Connector Type RPC_T = { Roles { clientEnd; serverEnd; } };

 // Instance based example - simple LAS architecture:
// declare system components (none of which are typed)

System LAS = {
 Component callntry = { Port sendCallMsg; };
 Component incidentMgr = {
 Ports { mapRequest; incidentInfoRequests;
 sendIncidentInfo; receiveCallMsg; }
 };
 Component resourceMgr = {
 Ports { mapRequest; incidentInfoRequest;
 receiveIncidentInfo; sendDispatchRequest; }
 };
 // RPC connnectors
 Connector incidentInfoRequest : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };
 Connector mapRequest1 : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };
 Connector mapRequest2 : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };

 Component dispatcher = { Port receiveDispatchRequest; };
 Component mapServer = {
 Ports { requestPort1; requestPort2; }
 };
 // declare system connectors
 // message passing connectors
 Connector callInfoChannel : MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };
 Connector incidentUpdateChannel :
MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };
 Connector dispatchRequestChannel :
MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };

74

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

London Ambulance System in ACME (cont.)

// incidentInfoPath attachments

 Attachments {

 // calls to incident_manager

 callntry.sendCallMsg to callInfoChannel.fromRole;

 incidentMgr.receiveCallMsg to callInfoChannel.toRole;

 // incident updates to resource manager

 incidentMgr.sendIncidentInfo

 to incidentUpdateChannel.fromRole;

 resourceMgr.receiveIncidentInfo

 to incidentUpdateChannel.toRole;

 // dispatch requests to dispatcher

 resourceMgr.sendDispatchRequest

 to dispatchRequestChannel.fromRole;

 dispatcher.receiveDispatchRequest

 to dispatchRequestChannel.toRole;

 };

// rpcRequests attachments

 Attachments {

 // calls to map server

 incidentMgr.mapRequest to mapRequest1.clientEnd;

 mapServer.requestPort1 to mapRequest1.serverEnd;

 resourceMgr.mapRequest to mapRequest2.clientEnd;

 mapServer.requestPort2 to mapRequest2.serverEnd;

 // incident info from incident_mgr

 resourceMgr.incidentInfoRequest to

 incidentInfoRequest.clientEnd;

 incidentMgr.incidentInfoRequests to

 incidentInfoRequest.serverEnd;

 };

 }

75

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Darwin (Imperial College)

� Components
� Primitive and composed
� Components can be recursively specified or iterated by index range
� Components can be parameterized

� Ports
� In, out (required, provided)
� Ports can be bound implicitly and in sets

� Several versions available (C++, Java)

� Graphic or textual edits

76

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Simple Producer/Consumer

producer consumer

out in

send

user

ticks

commout

control

timer

ticks

net

din

cout

dout

cin

rec

commin

control

user

77

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Simple Producer/Consumer in Text

�����
�
� ���*��
���� +

��
�����, ��
�����-

��������, &�������-

��
�, ��
���
���, ��������-

��, 	��-

�����, .����-

��
�

��������/��� ## ��
�/����-
�����/����� ## ��
�/�����-

��/���� ## ��
�/��
����-

��
�/������� ##
��/��
-

��/���� ## ���/�����
-

���/��
���� ##
��/��
-
���/���� ## ��
�����/�
-

0

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architectural Languages in
UML

/����	����� 0���� ���	

1����	2	�� ����"��� #���	������� "	�� &�,

�333

79

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Languages versus UML

� So far, architecture systems and languages were research toys
(except CoSy)

� “I have to learn UML anyway, should I also learn an ADL??”
� Learning curve for the standard developer
� Standard?
� Development environments?

� This changes with UML 2.0

80

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

The Hofmeister Model of Architecture

� [Hofmeister/Nord/Soni'99] is the first article that has propagated the idea
of specifying an architecture language with UML

� Conceptual view: Functionality + interaction (components, ports, connectors)
� Module view: Layering, modules and their interconnections
� Execution view: runtime architecture (mapping modules to time and resources)
� Code view: division of systems into files

� Describe these single views in UML

� UML allows the definition of stereotypes
� Model connectors and ports, modules, runtime components with stereotypes
� Map them to icons, so that the UML specification looks similar to a

specification in a architecture system

81

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Background: Stereotypes in UML

� A stereotype is a UML modeling element introduced at modeling time.
It represents a subclass of an existing modeling element (->metalevel)
with the same form (attributes and relationships)
but with a different intent, maybe special constraints.

 <<person>> <<person>>
 Student Student

 someMethod() someMethod

� To permit limited graphical extension of the UML notation as well,
a graphic icon or a graphic marker (such as texture or color)
can be associated with a stereotype.

� A mechanism for extending/customizing UML without changing it.

� [UML Notation Guide, 1997]

Student

<<call>>

82

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Modeling software architectures in UML

Example scenario: [Hofmeister/Nord/Soni'99]

� Digital camera
produces sequence of image frames,
flattened into a stream of pixel data

� Image acquisition system
selects, starts, adjusts an image acquisition procedure

� Image processing pipeline
� Framer: Restore complete image frames from pixel stream
� Imager: One or more image transformation(s)

� Display images

83

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

UML model for image processing example

connector

port

component

84

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Modeling software architecture in UML
with the Hofmeister/Nord/Soni approach

� For conceptual view: Class diagram

� Components, ports, connectors are a stereotype of Class:
<<component>>, <<port>>, <<connector>>

� Use special symbols for ports and connectors

� Omit the stereotype for components and show their
associations with their ports by nesting

� Roles are a stereotype of Association:
<<role>>
� shown as labels on port-connector associations
� Default multiplicity is 1

85

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Modeling software architecture in UML

� For modeling protocols,
use UML Sequence diagram or State diagram

<<protocol>>
RequestDataPacket

 incoming
packet(pd)

 outgoing
subscribe
desubscribe
requestPacket

/subscribe
/requestPacket

packet(pd)

/desubscribe

Incoming
messages

Outgoing
messages

Protocol for PacketIn port:

86

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Component Diagrams in UML 2.0

� Idea has been taken over by UML 2.0:
� ”a component is a self-contained unit that encapsulates

the state and behavior of a number of classifiers.
� ... A component specifies a formal contract of services ...”
� Provided and required interfaces
� Substitutable
� Run-time representation of one or several classes
� Source or binary code

� Difference to UML classes:
� No inheritance

� New symbols
� Components, component instances
� New UML element, not a stereotype

<<executable>>
Student.class

LADOKentry

Profile

kalle:StudentClass

: profileName

points: integer

87

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Component Diagrams in UML 2.0

� Components can be nested

Robot

Arm Engine

88

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Ports in UML 2.0 Component Diagrams

� Ports in UML 2.0 are port objects
(gates, interaction points) that
govern the communication of a
component

� Ports may be simple
(only data-flow, data service)
� in or out

� Ports may be complex services
� Then, they implement a provided

or required interface

RobotArmPickUp

pickup

DeliverPosition

89

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Services

� Ports can be grouped to Services

RobotArmIn[Position]

Out[Piece]

In[Veloc]

In[Angle]

90

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Connectors in UML 2.0

� Connectors become special associations, marked up by
stereotypes, that link ports

Robot

Arm Engine<<call>>

91

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Simple Producer/Consumer in UML 2.0

Producer Consumer

out in

Sender

user

ticks

commout

control

Timer

ticks

Network

din

cout

dout

cin

Receiver
commin

control

92

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Exchangeability of Connectors

� The more complex the interface
of the port, the more difficult it
is to exchange the connectors

� Data-flow ports and data
services abstract from many
details

� Complex ports fix more details

� Only with data services and
property services, connectors
have best exchangeability

RobotArmIn[Position]

SetterGetter[Piece]

Out[Piece]

MovePiece

93

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Rule of Thumb for Architectural Design with
UML 2.0

� Start the design with data
ports and services

� Develop connectors

� In a second step,
fix control flow
� push-pull
� Refine connectors

� In a third step,
introduce synchronization
� Parallel/sequential
� Refine connectors

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Systems:
Summary

� How to evaluate architecture systems as composition systems?
� Component model
� Composition technique
� Composition language

95

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Systems as Composition
Systems

%�������� ����! %�����	�	�� 4����	5��

%�����	�	�� ,�������

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

96

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

ADL: Mechanisms for Modularization

� Component concepts

� Clean language-, interfaces and component concepts

� New type of component: connectors

� Secrets:
Connectors hide

� Communication transfer
� Partner of the communication
� Distribution

� Parameterisation: depends on language

� Standardization: still pending

97

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Systems - Component Model

Parameterization

Binding points

Contracts
Business
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution

Ports

UML genericity

Wright

Location transparence

98

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

 ADL: Mechanisms for Adaptation

� Connectors generate glue code: very good!
� Many types of glue code possible
� User definable connectors allow for specific glue
� Tools analyze the interfaces

and derive the necessary adaptation code automatically

� Mechanisms for aspect separation.
2 major aspects are distinguished:
� Architecture

(sub-aspects: topology, hierarchy, communication carrier)
� Application functionality

� An ADL-compiler is only a rudimentary weaver
� Aspects are not weaved together but encapsulated in glue code

99

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

Architecture Systems –
Composition Technique and Language

Connectors

Architecture language

Architecture is separated

Fully scalable distribution Scalability

Adaptation

MetacompositionAspect Separation

Extensibility Software process

Connection
Product quality

100

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

What Have We Learned?

� Software architecture systems provide an important step
forward in software engineering
� For the first time, software architecture becomes visible

� Concepts can be applied in UML already today

� Architectural languages are the most advanced form of
blackbox composition technology so far

Composition
recipe

 Components

Component-based
applications

101

TDDC18 Component-based software. IDA, Linköpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2007.

How the Future Will Look Like

� Metamodels of architecture concepts (with MOF in UML)
will replace architecture languages
� The attempts to describe architecture concepts with UML are promising

� Model-driven architecture
� Increasingly popular, also in embedded / realtime domain

� We should think more about general software composition
mechanisms
� Adaptation by glue is only a simple way of composing components

(... see invasive composition)

