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Trees: Basic terminology (1)

Examples for tree structures:

+ genealogic trees

(successors of a person)

+ hierarchical classification systems in science and engineering

+ hierarchical organization diagrams

(company: departments, divisions, groups, employees)

+ structured documents

(book: chapters, sections, subsections, paragraphs, ...)

+ expression trees
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Trees: Basic terminology (2)

Tree = set of nodes and edges, T = (V;E).

Nodes v2V store data items in a parent-child relationship.

A parent-child relation between nodes u and v is shown as a directed edge

(u;v) 2 E, from u to v. E �V�V

Each node in a tree T has at most one parent node:

8v2V : jf(u;v) 2 E : u2Vgj � 1

There is exactly one node that has no parent: the root of T.

The degree of a node v2V is the number of its children: jf(v;w)2E : w2Vgj

A node that has no children is called a leaf node.
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Trees: Basic terminology (3)

Formal (inductive) definition of a tree:

All trees are characterized by the following construction rules:

� A single node, with no edges, is a tree.

� Let T1; :::;Tk (k� 1) be trees with no nodes in common.
Let ri denote the root of Ti, for 1� i � k.
Let r be a new node.
Then there is a tree T consisting of all nodes and edges of T1; :::;Tk,
the new node r, and the edges (r; r1), ..., (r; rk).

Remarks on the second rule:

r is the root of the new tree T.

r1; :::; rk are children of r and siblings of each other.

T1,...,Tk are the subtrees of T.

k is the degree of r.
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Trees: Basic terminology (4)

path π = (v1;v2; :::;vl) in T = (V;E) from v1 to vl with length l �1

if vi 2V 8i; 1� i � l , and (vi;vi+1) 2 E 8i; 1� i < l

ancestors of a node v2V: fu2V : 9 path from u to v in Tg

successors of a node v2V: fw2V : 9 path from v to w in Tg

depth d(v) of a node v2V

length of longest path from the root to v

height h(v) of a node v2V

length of longest path from v to a successor of v

height h(T) of tree T = height of the root of T
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Special kinds of trees

Ordered tree: linear order among the children of each node

Binary tree: ordered tree with degree � 2 for each node

) left child, right child

Empty binary tree (Λ): binary tree with no nodes

Full binary tree: nonempty; degree is either 0 or 2 for each node

Fact: number of leaves = 1 + number of interior nodes (proof by induction)

Perfect binary tree: full, all leaves have the same depth

Fact: number of leaves = 2h for a perfect binary tree of height h

(proof by induction on h)

Complete binary tree: approximation to perfect for 2h� n< 2h+1�1

Forest: finite set of trees, i.e., multiple roots possible
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ADT Tree (1)

Domain: tree nodes, maybe associated with additional information

Operations on a single tree node v:

Parent(v) returns parent of v, or Λ if v root

Children(v) returns set of children of v, or Λ if v leaf

FirstChild(v) returns first child of v, or Λ if v leaf

LeftChild(v), RightChild(v) returns left / right child of v, or Λ if not existing

RightSibling(v) returns right sibling of v, or Λ if v is a rightmost child

LeftSibling(v) returns left sibling of v, or Λ if v is a leftmost child

IsLeaf(v) returns true iff v is a leaf
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ADT Tree (2)

Operations on an entire tree T:

Size(T) returns number of nodes of T

Root(T) returns root node of T

IsRoot(v;T) returns true iff v is root of T

Depth(v;T) returns depth of v in T

Height(v;T) returns height of v in T

Depth(T) returns length of longest path in T

Height(T) returns height of the root of T
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Tree representations (1): using pointers

Type Tnode denotes a pointer to a structure storing node information:

record node record
nchilds: integer
child: table<Tnode> [1..nchilds]
info: infotype

For binary trees:
2 pointers per node, LC and RC

LC RC

RCRCLC

RightChildLeftChild

Alternatively, the pointers to a node’s children can be stored in a linked list.

If required, a “backward” pointer to the parent node can be added.

Insertion and deletion take constant time.
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Tree representations (2): array indexing

For a complete binary tree holds:

There is exactly one complete binary tree with n nodes.

Implicit representation of edges: Numbering of nodes ! index positions

0 1 2 3 4 5 6 7 8 9 10 11

0

1

3 4

7 8 9 10

2

5 6

11

LeftChild(i): 2i+1
(none if 2i+1� n)

RightChild(i): 2i+2
(none if 2i+1� n)

IsLeaf(i): 2i+1> n
LeftSibling(i): i�1

(none if i = 0 or i odd)
RightSibling(i): i+1

(none if i = n�1 or i even)
Parent(i): b(i�1)=2c (none if i = 0)
Depth(i): blog2(i+1)c

Height(i): blog2((n+1)=(i+1))c
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Tree traversals (1)

Regard a tree T as a building:

nodes as rooms, edges as doors, root as entry

How to explore an unknown (acyclic) labyrinth and get out again?

Proceed by always keeping a wall to the right!

Generic tree traversal routine:

procedure visit ( nodev )

f explore subtree rooted at v g

for all u2 Children(v) do
visit(u)

Call visit( Root(T) ):

0

1

3 4

7 8 9 10

2

5 6

11

each node in T will be visited exactly once (proof by induction)
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Tree traversals (2)

procedure preordervisit ( nodev )

output v f before any of the subtree nodes are output g

for all u2 Children(v) do

preordervisit(u)

procedure postordervisit ( nodev )

for all u2 Children(v) do

postordervisit(u)

output v f after all of the subtree nodes have been output g

procedure inorder visit ( nodev ) f only for binary trees g

inorder visit(LC(v))

output v

inorder visit(RC(v))
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Implementing Sets and Dictionaries as Binary Search Trees

A binary search tree (BST) is a binary tree such that:

� Information associated with a node includes a key,

! linear ordering of nodes determined by keys.

� The key of each node is:
greater than the keys of all left descendants, and
smaller than the keys of all right descendants.

LC RC

RCRCLC 25

34

41
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