Trees: Basic terminology (1)

Examples for tree structures

+ genealogic trees
(successors of a person)
+ hierarchical classification systems in science and engineering
+ hierarchical organization diagrams
(company: departments, divisions, groups, employees)
+ structured documents
(book: chapters, sections, subsections, paragraphs, ...)
+ expression trees
\qquad
Trees: Basic terminology (3)

Formal (inductive) definition of a tree:

All trees are characterized by the following construction rules:

- A single node, with no edges, is a tree.
- Let $T_{1}, \ldots, T_{k}(k \geq 1)$ be trees with no nodes in common.

Let r_{i} denote the root of T_{i}, for $1 \leq i \leq k$.
Let r be a new node.
Then there is a tree T consisting of all nodes and edges of T_{1}, \ldots, T_{k}, the new node r, and the edges $\left(r, r_{1}\right), \ldots,\left(r, r_{k}\right)$.

Remarks on the second rule:
r is the root of the new tree T.
r_{1}, \ldots, r_{k} are children of r and siblings of each other.
T_{1}, \ldots, T_{k} are the subtrees of T.
k is the degree of r.

Trees: Basic terminology (2)

Tree $=$ set of nodes and edges, $T=(V, E)$.

Nodes $v \in V$ store data items in a parent-child relationship.
A parent-child relation between nodes u and v is shown as a directed edge $(u, v) \in E$, from u to v. $E \subset V \times V$

Each node in a tree T has at most one parent node:

$$
\forall v \in V:|\{(u, v) \in E: u \in V\}| \leq 1
$$

There is exactly one node that has no parent: the root of T.
The degree of a node $v \in V$ is the number of its children: $|\{(v, w) \in E: w \in V\}|$ A node that has no children is called a leaf node.

[^0]Trees: Basic terminology (4)

```
path }\pi=(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{l}{})\mathrm{ in }T=(V,E)\mathrm{ from }\mp@subsup{v}{1}{}\mathrm{ to }\mp@subsup{v}{l}{}\mathrm{ with length l-1
    if }\mp@subsup{v}{i}{}\inV\foralli,1\leqi\leql, and ( vi,vi+1)\inE\foralli,1\leqi<
ancestors of a node v\inV: {u\inV:\exists path from u to v in T}
successors of a node v\inV:\quad{w\inV:\exists path from v to w in T}
depth d(v) of a node v\inV
    length of longest path from the root to v
height h(v) of a node v\inV
    length of longest path from v}\mathrm{ to a successor of v
height }h(T)\mathrm{ of tree T = height of the root of T
```

Special kinds of trees

Ordered tree: linear order among the children of each node
Binary tree: ordered tree with degree ≤ 2 for each node
\Rightarrow left child, right child
Empty binary tree (Λ) : binary tree with no nodes
Full binary tree: nonempty; degree is either 0 or 2 for each node
Fact: number of leaves $=1+$ number of interior nodes (proof by induction)
Perfect binary tree: full, all leaves have the same depth
Fact: number of leaves $=2^{h}$ for a perfect binary tree of height h
(proof by induction on h)
Complete binary tree: approximation to perfect for $2^{h} \leq n<2^{h+1}-1$
Forest: finite set of trees, i.e., multiple roots possible

$$
\text { TDDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals. Page } 19 \quad \text { C. Kessler, IDA, Linkōipings Universitet, } 2001 .
$$

Operations on an entire tree T :
Size (T) returns number of nodes of T
$\operatorname{Root}(T)$ returns root node of T
$\operatorname{IsRoot}(v, T)$ returns true iff v is root of T
Depth (v, T) returns depth of v in T
Height (v, T) returns height of v in T
$\operatorname{Depth}(T)$ returns length of longest path in T
$\operatorname{Height}(T)$ returns height of the root of T

ADT Tree (1)

Domain: tree nodes, maybe associated with additional information

Operations on a single tree node v :

Parent(v) returns parent of v, or Λ if v root Children(v) returns set of children of v, or Λ if v leaf FirstChild(v) returns first child of v, or Λ if v leaf LeftChild(v), RightChild(v) returns left / right child of v, or Λ if not existing RightSibling(v) returns right sibling of v, or Λ if v is a rightmost child $\operatorname{LeftSibling}(v)$ returns left sibling of v, or Λ if v is a leftmost child $\operatorname{IsLeaf}(v)$ returns true iff v is a leaf
TDDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals. Page 20 C. Kessler, IDA, Linkopings Universitet, 2001.

Tree representations (1): using pointers

Type Tnode denotes a pointer to a structure storing node information:

record node_record

nchilds: integer
child: table $<$ Tnode $>$ [1..nchilds]
info: infotype
For binary trees:
2 pointers per node, $L C$ and $R C$

Alternatively, the pointers to a node's children can be stored in a linked list.
If required, a "backward" pointer to the parent node can be added.
Insertion and deletion take constant time.

Tree representations (2): array indexing

For a complete binary tree holds:

There is exactly one complete binary tree with n nodes.
Implicit representation of edges: Numbering of nodes \rightarrow index positions

$$
\begin{aligned}
& \text { LeftChild }(i): 2 i+1 \\
& \quad(\text { none if } 2 i+1 \geq n)
\end{aligned}
$$

RightChild(i): $2 i+2$
(none if $2 i+1 \geq n$)
IsLeaf($(i): 2 i+1>n$
LeftSibling $(i): i-1$ (none if $i=0$ or i odd)
RightSibling(i): $i+1$
(none if $i=n-1$ or i even)
Parent $(i):\lfloor(i-1) / 2\rfloor$ (none if $i=0$)
Depth(i): $\left\lfloor\log _{2}(i+1)\right\rfloor$
$\operatorname{Height}(i):\left\lfloor\log _{2}((n+1) /(i+1))\right\rfloor$

Tree traversals (1)

Regard a tree T as a building:
nodes as rooms, edges as doors, root as entry
How to explore an unknown (acyclic) labyrinth and get out again?
Proceed by always keeping a wall to the right!

Generic tree traversal routine:

procedure visit (node v)

\{ explore subtree rooted at v \}
for all $u \in \operatorname{Children}(v)$ do visit(u)

Call visit $(\operatorname{Root}(T))$

each node in T will be visited exactly once (proof by induction)

Implementing Sets and Dictionaries as Binary Search Trees

A binary search tree (BST) is a binary tree such that:

- Information associated with a node includes a key,
\rightarrow linear ordering of nodes determined by keys.
- The key of each node is:
greater than the keys of all left descendants, and smaller than the keys of all right descendants.

output v

inorder_visit($R C(v)$)

[^0]: DDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals.

