TDDB56 DALGOPT-D – Lecture 5: Trees, binary search trees, tree traversals.

Page 13

C. Kessler, IDA, Linköpings Universitet, 2001.

C. Kessler, IDA, Linköpings Universitet, 2001.

Trees: Basic terminology (1)

Examples for tree structures:

- + genealogic trees (successors of a person)
- + hierarchical classification systems in science and engineering
- + hierarchical organization diagrams (company: departments, divisions, groups, employees)
- + structured documents

(book: chapters, sections, subsections, paragraphs, ...)

+ expression trees

Trees: Basic terminology (2)

Tree = set of nodes and edges, T = (V, E).

C. Kessler, IDA, Linköpings Universitet, 2001

Nodes $v \in V$ store data items in a *parent-child* relationship.

A parent-child relation between nodes u and v is shown as a *directed edge* $(u, v) \in E$, from u to v. $E \subset V \times V$

Page 14

Each node in a tree T has at most one parent node:

 $\forall v \in V : |\{(u,v) \in E : u \in V\}| \le 1$

TDDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals

There is exactly one node that has no parent: the root of T.

The *degree* of a node $v \in V$ is the number of its children: $|\{(v, w) \in E : w \in V\}|$

Page 16

A node that has no children is called a *leaf node*.

TDDB56 DALGOPT-D – Lecture 5: Trees, binary search trees, tree traversals.

Trees: Basic terminology (3)

Formal (inductive) definition of a tree:

All trees are characterized by the following construction rules:

- A single node, with no edges, is a tree.
- Let $T_1, ..., T_k$ ($k \ge 1$) be trees with no nodes in common. Let r_i denote the root of T_i , for $1 \le i \le k$.

```
Let r be a new node.
```

Then there is a tree *T* consisting of all nodes and edges of $T_1, ..., T_k$, the new node *r*, and the edges $(r, r_1), ..., (r, r_k)$.

Page 15

Remarks on the second rule:

r is the root of the new tree T.

 $r_1, ..., r_k$ are *children* of *r* and *siblings* of each other.

 $T_1,...,T_k$ are the *subtrees* of *T*.

k is the *degree* of *r*.

Trees: Basic terminology (4)

path $\pi = (v_1, v_2, ..., v_l)$ in T = (V, E) from v_1 to v_l with length l - 1if $v_i \in V \ \forall i, \ 1 \le i \le l$, and $(v_i, v_{i+1}) \in E \ \forall i, \ 1 \le i < l$

ancestors of a node $v \in V$: $\{u \in V : \exists \text{ path from } u \text{ to } v \text{ in } T\}$

successors of a node $v \in V$: $\{w \in V : \exists \text{ path from } v \text{ to } w \text{ in } T\}$

```
depth d(v) of a node v \in V
```

length of longest path from the root to v

height h(v) of a node $v \in V$

length of longest path from v to a successor of vheight h(T) of tree T = height of the root of T C. Kessler, IDA, Linköpings Universitet, 2001

C. Kessler, IDA, Linköpings Universitet, 2001

Special kinds of trees

Ordered tree: linear order among the children of each node

Binary tree: ordered tree with degree ≤ 2 for each node

 \Rightarrow left child, right child

Empty binary tree (Λ): binary tree with no nodes

Full binary tree: nonempty; degree is either 0 or 2 for each node Fact: number of leaves = 1 + number of interior nodes (proof by induction)

Page 17

Perfect binary tree: full, all leaves have the same depth

Fact: number of leaves = 2^h for a perfect binary tree of height *h* (proof by induction on *h*)

Complete binary tree: approximation to perfect for $2^{h} \le n < 2^{h+1} - 1$

Forest: finite set of trees, i.e., multiple roots possible

TDDB56 DALGOPT-D – Lecture 5: Trees, binary search trees, tree traversals.	Page 19	
TDDB56 DALGOPT-D – Lecture 5: Trees, binary search trees, tree traversals.	Page 19	

ADT Tree (2)

Operations on an entire tree *T*:

Size(T) returns number of nodes of TRoot(T) returns root node of TIsRoot(v,T) returns true iff v is root of TDepth(v,T) returns depth of v in THeight(v,T) returns height of v in TDepth(T) returns length of longest path in THeight(T) returns height of the root of T

ADT Tree (1)

Domain: tree nodes, maybe associated with additional information

Page 18

Operations on a single tree node *v*:

Parent(v)returns parent of v, or Λ if v rootChildren(v)returns set of children of v, or Λ if v leafFirstChild(v)returns first child of v, or Λ if v leafLeftChild(v), RightChild(v)returns left / right child of v, or Λ if not existingRightSibling(v)returns right sibling of v, or Λ if v is a rightmost childLeftSibling(v)returns left sibling of v, or Λ if v is a leftmost childIsteaf(v)returns true iff v is a leaf

. .

C. Kessler, IDA, Linköpings Universitet, 2001

Tree representations (1): using pointers

TDDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals

Type **Tnode** denotes a **pointer** to a structure storing node information:

Page 20

record node_record

nchilds: integer
child: table<Tnode> [1..nchilds]
info: infotype

For binary trees: 2 pointers per node, *LC* and *RC*

Alternatively, the pointers to a node's children can be stored in a linked list.

If required, a "backward" pointer to the parent node can be added.

Insertion and deletion take constant time.

C. Kessler, IDA, Linköpings Universitet, 2001

Tree representations (2): array indexing

For a complete binary tree holds:

There is exactly one complete binary tree with *n* nodes.

Implicit representation of edges: Numbering of nodes \rightarrow index positions

Page 21

Page 23

0 1 2 3 4 5 6 7 8 9 10 11

```
\begin{split} & \textit{LeftChild}(i): 2i+1 \\ & (\text{none if } 2i+1 \geq n) \\ & \textit{RightChild}(i): 2i+2 \\ & (\text{none if } 2i+1 \geq n) \\ & \textit{IsLeaf}(i): 2i+1 > n \\ & \textit{LeftSibling}(i): i-1 \\ & (\text{none if } i=0 \text{ or } i \text{ odd}) \\ & \textit{RightSibling}(i): i+1 \\ & (\text{none if } i=n-1 \text{ or } i \text{ even}) \\ & \textit{Parent}(i): \lfloor (i-1)/2 \rfloor \text{ (none if } i=0) \\ & \textit{Depth}(i): \lfloor \log_2(i+1) \rfloor \\ & \textit{Height}(i): \lfloor \log_2((n+1)/(i+1)) \rfloor \end{split}
```

C. Kessler, IDA, Linköpings Universitet, 2001.

C. Kessler, IDA, Linköpings Universitet, 2001

n

Page 22

Tree traversals (1)

Regard a tree T as a building:

nodes as rooms, edges as doors, root as entry

How to explore an unknown (acyclic) labyrinth and get out again? Proceed by always keeping a wall to the right!

Generic tree traversal routine:

```
procedure visit (node v)
{ explore subtree rooted at v }
for all u \in Children(v) do
visit(u)
```

Call visit(Root(T)):

each node in T will be visited exactly once (proof by induction)

Page 24

TDDB56 DALGOPT-D – Lecture 5: Trees, binary search trees, tree traversals.

C. Kessler, IDA, Linköpings Universitet, 2001

(6)

Implementing Sets and Dictionaries as Binary Search Trees

A binary search tree (BST) is a binary tree such that:

- Information associated with a node includes a key,
 → linear ordering of nodes determined by keys.
- The key of each node is:

greater than the keys of all left descendants, and smaller than the keys of all right descendants.

Tree traversals (2)

```
procedure preorder_visit ( node v )
```

TDDB56 DALGOPT-D - Lecture 5: Trees, binary search trees, tree traversals.

```
output v { before any of the subtree nodes are output }
for all u ∈ Children(v) do
    preorder_visit(u)
```

```
procedure postorder_visit ( node v )
```

```
for all u \in Children(v) do
```

```
postorder\_visit(u)
```

```
output v \in \{ \text{ after all of the subtree nodes have been output } \}
```

```
procedure inorder_visit (node v) { only for binary trees }
```

```
inorder_visit(LC(v))
```

```
output v
```

```
inorder_visit(RC(v))
```