
6. Constructing Static Single Assignment (SSA) form (20 p)

Given the following program fragment:

s := 0;
i := 0;
while (i<100){
 s := s + a[i];
 i := i + 1;
}
print(s);

where s, i are local integer variables and a is an integer array with 100 elements.

(a) Construct a Basic Block Graph for this fragment. Fill in sequential code into the basic

blocks. Use may use:
1. Read access from and assignments to local variables (e.g. s :=i assigns the

content of the local variable i to the local variable s),
2. Address constants (assume a0 is the constant address of a[0]) and address

arithmetic (assume an address addresses a Byte and an Integer requires 4
bytes).

3. Load operation to get the Integer content of an address (e.g. Load a0 gets the
content of a0, i.e. it gets a[0]),

4. Integer constants and Integer arithmetic,
5. String constants,
6. Integer comparison (<), and
7. Procedure calls (e.g. call(“print”, s) calls procedure print on actual

parameter s).

Solution:

2

s=0
i=0

1

3

4

i<100

call("print",s)

s=s+Load(a0+i*4)
i=i+1

Basic Block Graph

(b) Construct an SSA representation of this fragment’s Basic Block Graph. Use indices for
the different versions of the local variables. Show both the intermediate situation with

immature φ' node and the final situation.

Solution:

2

s1=0
i1=0

1

3

4

s2=φ’(s1,s3)
i2=φ’(i1,i3)
i2<100

call("print",s2)

s3=s2+Load(a0+i2*4)
i3= i2+1

2

1

3

4

s2=φ(0,s3)
i2=φ(0,i3)
i2<100

call("print",s2)

s3=s2+Load(a0+i2*4)
i3= i2+1

Final SSAIntermediate SSA

(c) Construct the SSA graph with local variables displayed as edges. Name edges after the

corresponding local variable. Use the following nodes for operations:

 φ nodes int/address int/address string int/address Load addr.
 plus multiplicat. constant constant x content

 call nodes (taking the name of the procedure to call and the actual parameter value).

Blocks ending in a conditional jump and an unconditional jump, resp., are denoted by:

resp.

φ + *

< Jump

"string" x

call

Load

< Jump

Hints: Block entries and exits are connected by control edges (use dashed lines). For
blocks ending in a conditional jump, the left exit is the false, the right is the true
exit. Operation entries and exits are connected by data edges (use solid lines). Ignore
memory edges.

Solution:

1

2

3

4

<

Jump

Jump

φ φ

0

100

call

Load

a0 4

+

*

+

1

+

s
i

“print”

(d) Deconstruct the SSA graph.
1. Introduce variables for edges,

2. Remove φ nodes,
3. Determine live variables,
4. Compute the register interference graph,
5. Compute a register allocation by graph coloring.

Solution:

2

1

3

4

s2=φ(0,s3)
i2=φ(0,i3)
i2<100

call("print",s2)

s3=s2+Load(a0+i2*4)
i3= i2+1

2

1

3

4

s2=φ(0,s3)
i2=φ(0,i3)
i2<100

call("print",s2)

s3=s2+Load(a0+i2*4)
i3= i2+1
s2=s3
i2=i3

s2=0
i2=0

Remove φ nodesIntroduce variables for edges

2

1

3

4

i2<100

call("print",s2)

s3=s2+Load(a0+i2*4)
i3= i2+1
s2=s3
i2=i3

s2=0
i2=0

Live Variables

^�`

^s2,i2`

^s2`

^s2,i2`

^s3,i3`
^s3,i2`
^s2,i2`

^s2,i2`
^s2,i3`

^s2,i2`
^s2`
^�`

s2

i2

s3

^�`

^s2,i2`

^s2`

^s2,i2`

^s2,i2`
^s2`
^�`

^s3,i3`
^s3,i2`
^s2,i2`

^s2,i2`
^s2,i3`

1

2

3

4

i3

A possible
Register Interference Graph

&
Graph coloring

7. Data Flow Analyses on SSA form (10 p)

Given the following SSA graph:

1

2

3

4

=

Jump

Jump

φ φ

0

call

4

*

1

+

“print”

(a) Reconstruct a program fragment represented by the graph. What is the value of the

actual argument of the call to “print” ?

Hint: Choose local variable names arbitrarily. Mind the conditional jump that
terminates block 2 jumps to the left (the false exit) on inequality and to the right
(the true exit) on equality.

Solution:

a := 0;
b := 0;
while (a=b){
 a := a + 1;
 b := b * 4;
}
print(a);

The expected value of the actual argument of the call to “print” is: a = 1

(b) Perform context-insensitive data flow analysis. What is the analyzed value of the

actual argument of the call to “print” ?

Hint: Assume the following definitions:

− Abstract Integer values: { ⊥, 0, 1, 2, …, maxint, T} �
− Context-insensitive transfer functions T+ ,T*:

T+,*(⊥, x) = T+,*(x, ⊥) = ⊥
T+,*(T, x) = T+,*(x, T) = T
For a,b ∈ Integer:

 T+(a,b) = a+b (usual Integer addition)
 T*(a,b) = a*b (usual Integer multiplication)

− Context-insensitive meet function:
Tφ(⊥, x) = Tφ(x, ⊥) = x
Tφ(T, x) = Tφ(x, T) = T
Tφ(x, x) = x
Tφ(x, y) = T

Solution:

The analyzed value of the actual argument of the call to “print” is T (don’t know).

=

Jump

Jump

φ φ

0

call

4

*

1

+

“print”

0

0

4

0

�

T

T

T

(c) Perform context-sensitive data flow analysis. What is the analyzed value of the actual
argument of the call to “print” ? What is missing in the analysis for deriving the
actually expected result as in answer to 7 (a)?

Hint: Use the generalization of the data flow values to χ terms and the generalization
of the context-insensitive transfer functions context-sensitive transfer functions.

Solution:

The analyzed value of the actual argument of the call to “print” is χ1(0,T). To
analyze the expected value a = 1 instead, two things need to be added:
− The context sensitivity needs to be increased such that it distinguishes 0, 1 and

more iterations.
− The conditional jump needs to be included in the analysis. In fact, the value

reaching the call to “print” needs to be guarded by the condition.

=

Jump

Jump

φ φ

0

call

4

*

1

+

“print”

0

0

4

0

�

χ1(0,T)

χ1(0,T)

χ1(1,T)

