DATA FLOW ANALYSIS [ASU1e Ch. 10.5-6] [ALSU2e Ch. 9.2-4] [Muchnick Ch. 8]

Conservative approximation to global information on data flow properties that are relevant for optimizations
\rightarrow MAY-problems vs. MUST-problems

Examples: - Constant Propagation Analysis

Has var always the same constant value at this point?

- Reaching Definitions

Which definitions of var may be relevant for this use?

- local (BB)
- global (CFG) using "effects" of entire BB's (summary info)
forward vs. backward, iterative vs. interval-based vs. structured...
- interprocedural

Example: Reaching Definitions

Definition d of variable $v: \quad d: v \leftarrow \ldots$
d reaches a point p in CFG
if there is a path $d \rightarrow^{*} p$ in CFG (excl. d, p)
that contains no kill of d (= reassignment of v)
NB: Whether a specific definition d actually reaches a specific program point p is undecidable in the formal
 sense!
(program behavior may e.g. depend on run-time input)
\rightarrow conservative approximation
MAY-REACH or MUST-REACH, depending on the application.

Example: Reaching Definitions (cont.)

Definition d of variable v : $d: v \leftarrow \ldots$
d reaches a point p in CFG if there is a path $d \rightarrow^{*} p$ in CFG (excl. d, p) that contains no kill of d (= reassignment of v)

Summarize the effect of each basic block (which can be analyzed locally):

- A basic block B generates (contains) some definitions
- A basic block B kills all definitions d^{\prime} that write any variable v defined in B.
- A definition d that is not killed by a basic block B is preserved by B.

Background: Bitvector representation of sets

Given: Finite global set (universe) U
Any subset $S \subseteq U$ can be represented as a bitvector b_{S}
with $b_{S}[i]=1$ iff the i th element of U is in S.
Example:
$U=\{a, b, c, d, e, f, g, h\}$
$S=\{a, d, e\}$ has bitvector representation $b_{S}=\langle 10011000\rangle$.
If clear from the context, we simplify the notation, using S for b_{S} :

$$
S=\langle 10011000\rangle .
$$

Here: Consider bitvector representation of sets of definitions
i.e., the universe $U=$ the set of all definitions in the program
= set of all CFG nodes (e.g. MIR statements) writing to some variable.

Example (cont.): Bitvector Representation of Definitions; GEN sets

Example (cont.): Bitvector Representation of Definitions; KILL sets

Example: Reaching definitions with bitvector representation

$R \operatorname{Din}(B)=\langle 00100010\rangle \quad(1=$ def. reaches entry of $B)$
Certainly, $R \operatorname{Din}($ entry $)=\langle 00000000\rangle$
$R \operatorname{Din}(B)$ for $B \neq$ entry ?

Effect of a node B in CFG on definitions d reaching it:
 described by 2 sets $\operatorname{GEN}(B), \operatorname{KILL}(B)$:

$$
\begin{array}{ll}
G E N(B)=\langle 11100000\rangle & (1 \text { iff } B \text { generates this definition }) \\
\operatorname{KILL}(B)=\langle 11100110\rangle & (1 \text { iff } B \text { kills this definition })
\end{array}
$$

$\operatorname{RDout}(B)=\langle 111 ? ? 00 ?\rangle \quad(1=$ def. reaches end of $B, ?=$ bit as in $R \operatorname{Din}(B)$
Example: $R \operatorname{Din}(B)=\langle 10001101\rangle$ and effect of B as above

$$
\Longrightarrow \operatorname{RDout}(B)=\langle 11101001\rangle
$$

Example (cont.): Reaching Definitions — Dataflow Equations

Flow functions - Effect of a basic block B on any $R \operatorname{Din}(B)$:
Set equation:

$$
\begin{array}{ll}
\operatorname{RDout}(B)=\operatorname{GEN}(B) \cup(\operatorname{RDin}(B)-\operatorname{KILL}(B)) & \forall B \\
\operatorname{RDout}(B)=\operatorname{GEN}(B) \vee(\operatorname{RDin}(B) \wedge \overline{\operatorname{KILL}(B)}) & \forall B
\end{array}
$$

Effect of joining control flow paths:
Set equation: $\quad \operatorname{RDin}(B)=\underset{P \in \operatorname{Pred}(B)}{\bigcup} \operatorname{RDout}(P) \quad \forall B$ (for MUST-REACH: \cap)
Bitvector equation: $\operatorname{RDin}(B)=\underset{P \in \operatorname{Pred}(B)}{\bigvee} \operatorname{RDout}(P) \quad \forall B$ (for MUST-REACH: \wedge)

Reaching Definitions is a forward flow problem:

- BB flow functions specify outgoing property as function of ingoing
- Information propagates through CFG in direction from entry towards exit

Iterative computation of Reaching Definitions

Algorithm: (Fixed-point iteration)

- For MAY-Reach we initialize

$$
\begin{aligned}
R \operatorname{Din}((\text { entry }) & =\{ \}=\langle 00000000\rangle \\
R \operatorname{Din}(B)=\{ \} & =\langle 00000000\rangle \\
& \text { for all other } B
\end{aligned}
$$

- Iterate,
applying the equations
to $R \operatorname{Din}(B), R D o u t(B)$ for all B until no more changes occur.

Example: see whiteboard

Example (cont.): Iterative computation of Reaching Definitions

First iteration:

```
\(R \operatorname{Din}(\) entry \()=\langle 00000000\rangle\)
    RDout \((\widehat{\text { entry }})=\langle 00000000\rangle\)
\(R \operatorname{Din}(B 1)=\langle 00000000\rangle\)
    \(R \operatorname{Dout}(B 1)=\langle 11100000\rangle\) - changed!
\(R \operatorname{Din}(B 2)=\langle 11100000\rangle\)
    \(R D\) out \((B 2)=\langle 11100000\rangle\)
\(R \operatorname{Din}(B 3)=\langle 11100000\rangle\)
    \(R D o u t(B 3)=\langle 11110000\rangle\)
\(\operatorname{RDin}(B 4)=\langle 11110000\rangle\)
    \(R \operatorname{Dout}(B 4)=\langle 11110000\rangle\)
\(R \operatorname{Din}(B 5)=\langle 11110000\rangle\)
    \(R D o u t(B 5)=\langle 11110000\rangle\)
\(R \operatorname{Din}(B 6)=\langle 11110000\rangle\)
    \(R D o u t(B 6)=\langle 10001111\rangle\)
\(R D i n(\) exit \()=\langle 11110000\rangle\)
    \(R\) Dout \((\) exit \()=\langle 11110000\rangle\)
```


Example (cont.): Iterative computation of Reaching Definitions

Second iteration:

```
\(R \operatorname{Din}(\) entry \()=\langle 00000000\rangle\)
    \(R\) Dout \((\overline{\text { entry }})=\langle 00000000\rangle\)
\(R \operatorname{Din}(B 1)=\langle 00000000\rangle\)
    \(R D o u t(B 1)=\langle 11100000\rangle\)
\(R \operatorname{Din}(B 2)=\langle 11100000\rangle\)
    \(R D o u t(B 2)=\langle 11100000\rangle\)
\(R \operatorname{Din}(B 3)=\langle 11100000\rangle\)
    RDout \((B 3)=\langle 11110000\rangle\)
\(R \operatorname{Din}(B 4)=\langle 11111111\rangle\) - changed!
    \(R \operatorname{Dout}(B 4)=\langle 11111111\rangle\)
\(R \operatorname{Din}(B 5)=\langle 11111111\rangle\)
    \(R D o u t(B 5)=\langle 11111111\rangle\)
\(R \operatorname{Din}(B 6)=\langle 11111111\rangle\)
    \(R \operatorname{Dout}(B 6)=\langle 10001111\rangle\)
\(R D i n(\) exit \()=\langle 11111111\rangle\)
    \(\operatorname{RDout}(\underline{\text { exit }})=\langle 11111111\rangle\)
```


Example (cont.): Iterative computation of Reaching Definitions

Third iteration:

```
\(R \operatorname{Din}(\) entry \()=\langle 00000000\rangle\)
    RDout \((\widehat{\text { entry }})=\langle 00000000\rangle\)
\(R \operatorname{Din}(B 1)=\langle 00000000\rangle\)
    \(R D o u t(B 1)=\langle 11100000\rangle\)
\(R \operatorname{Din}(B 2)=\langle 11100000\rangle\)
    \(R D\) out \((B 2)=\langle 11100000\rangle\)
\(R \operatorname{Din}(B 3)=\langle 11100000\rangle\)
    \(R D o u t(B 3)=\langle 11110000\rangle\)
\(R \operatorname{Din}(B 4)=\langle 11111111\rangle\)
    \(R D o u t(B 4)=\langle 11111111\rangle\)
\(R \operatorname{Din}(B 5)=\langle 11111111\rangle\)
    \(R D o u t(B 5)=\langle 11111111\rangle\)
\(R \operatorname{Din}(B 6)=\langle 11111111\rangle\)
    \(\operatorname{RDout}(B 6)=\langle 10001111\rangle\)
\(R D i n(\) exit \()=\langle 11111111\rangle\)
    \(R \operatorname{Dout}(\underline{\text { exit }})=\langle 11111111\rangle\)
```


No more change - done!

Why does this work?

Underlying theory:

- Posets, least upper bounds, semilattices, lattices
- Monotone flow functions
- Data flow analysis framework
- Meet-over-all-paths
- Convergence theorems for iterative data flow analysis

Posets

A relation \sqsubseteq on a set L defines a partial order on L
if, for all x, y and z in L,

1. $x \sqsubseteq x \quad$ (reflexive),
2. If $x \sqsubseteq y$ and $y \sqsubseteq x$ then $x=y \quad$ (antisymmetric), and
3. If $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z \quad$ (transitive).

The pair (L, \sqsubseteq) is called a poset or partially ordered set.

Notation: $x \sqsubset y$ iff $x \sqsubseteq y$ and $x \neq y$.

Example: $L=2^{S}$ for a set $S, \sqsubseteq=\supseteq$

Interpretation in data flow analysis: $x \sqsubseteq y$ means " x is not more precise than y "

Least upper bound, greatest lower bound

Given poset (L, \sqsubseteq).
A greatest lower bound (glb) of any two elements $x, y \in L$ is an element $g \in L$ such that

1. $g \sqsubseteq x$,
2. $g \sqsubseteq y$, and
3. for any $z \in L$ with $z \sqsubseteq x$ and $z \sqsubseteq y, z \sqsubseteq g$.

Example: For $\left(2^{S}, \supseteq\right)$, glb is set union (\cup).
Analogously: Least upper bound (lub).

A poset (L, \sqsubseteq) where any two elements in L have a greatest lower bound in L (i.e., closedness under glb) is a necessary condition for a semilattice.

Semilattice

A semilattice (L, \sqcap) consists of a set L and a binary meet operator Π such that for all $x, y \in L$,

1. $x \sqcap x=x$ (meet is idempotent),
2. $x \sqcap y=y \sqcap x$ (meet is commutative),
3. $x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z \quad$ (meet is associative),

and there is a top element $\mathrm{T} \in L$ such that
4. for all $x \in L, \quad \top \sqcap x=x$.

Optionally, a semilattice may also have a bottom element $\perp \in L$ with for all $x \in L, \quad \perp \sqcap x=\perp$.

Example 1: $\left(2^{S}, \cup\right)$ is a semilattice with $T=\{ \}$ and $\perp=S$.
Example 2: $\left(2^{S}, \cap\right)$ is a semilattice with $T=S$ and $\perp=\{ \}$.

Semilattice and partial order

A semilattice (L, \sqcap) implicitly defines a partial order \sqsubseteq where, for all $x, y \in L$,

$$
x \sqsubseteq y \text { iff } x \sqcap y=x .
$$

The glb is just the \sqcap operator.

Example 1: $\left(2^{s}, \cup\right)$ implicitly defines partial order \supseteq.
Example 2: $\left(2^{S}, \cap\right)$ implicitly defines partial order \subseteq.

Note: $\perp \sqsubseteq x \sqsubseteq \top$ for all $x \neq \top, x \neq \perp$.
Interpretation: \top is most precise information, \perp is most imprecise information.

Lattice

Lattice (L, \sqcap, \sqcup)

- set L of values
- meet operation \sqcap, join operation $\sqcup \quad$ where
(1) for all $x, y \in L$ ex. unique $z, w \in L: x \sqcap y=z, x \sqcup y=w$
(2) for all $x, y \in L: x \sqcap y=y \sqcap x, x \sqcup y=y \sqcup x$
(3) for all $x, y, z \in L:(x \sqcap y) \sqcap z=x \sqcap(y \sqcap z),(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$ (associativity)
(4) there are two unique elements of $L: \quad \quad \top$ "top": $\quad \forall x \in L, x \sqcup \top=\top$
\perp "bottom": $\forall x \in L, x \sqcap \perp=\perp$
(5) often also distributivity of \sqcap, \sqcup given

Example: Bitvector Lattice

Bitvector lattice: $L=B V^{3}, \Pi=$ union/bitwise OR, $\sqcup=$ inters./bitwise AND

meet $x \sqcap y$: follow paths in L from x, y downwards until they meet (greatest lower bound w.r.t. $\sqsubseteq) ~$
join $x \sqcup y$: follow paths in L from x, y upwards until they join (least upper bound w.r.t. ■)

Lattices: Monotonicity, Height; Termination
$f: L \rightarrow L$
is monotone iff $\forall x, y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
Example:
$f: B V^{3} \rightarrow B V^{3}$ with $f\left(\left\langle x_{1} x_{2} x_{3}\right\rangle\right)=\left(x_{1} 1 x_{3}\right)$ for all $x_{1}, x_{2}, x_{3} \in B V$ is monotone.
$g: B V^{1} \rightarrow B V^{1}$ with $g(\langle 0\rangle)=\langle 1\rangle$ and $g(\langle 1\rangle)=\langle 0\rangle$ is not monotone.

Height of (L, \sqcap, \sqcup)
$=$ length of longest strictly ascending chain in L
$=$ max. $n: \exists x_{1}, x_{2}, \ldots, x_{n} \in L$ with $\perp=x_{1} \sqsubseteq x_{2} \sqsubseteq \ldots \sqsubseteq x_{n}=\top$
Example:
Height of $B V^{3}$ is 4 .

Finite height + Monotonicity \Rightarrow Termination of the fixed-point iteration

Flow functions

Flow functions specify the effect of a programming language construct as a mapping $L \rightarrow L$.
E.g., in Reaching Definitions:

BB B_{1} generates d_{1}, d_{2}, d_{3}, kills $d_{1}, d_{2}, d_{3}, d_{6}, d_{7}$:

$$
\begin{aligned}
& F_{B_{1}}\left(\left\langle x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}\right\rangle\right)=\left\langle 11 x_{4} x_{5} 00 x_{8}\right\rangle \\
& F_{B_{3}}\left(\left\langle x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}\right\rangle\right)=\left\langle x_{1} x_{2} x_{3} 1 x_{5} x_{6} x_{7} 0\right\rangle \\
& F_{B_{6}}\left(\left\langle x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}\right\rangle\right)=\left\langle x_{1} 0001111\right\rangle \\
& F_{B_{j}}=i d \text { for all } j \notin\{1,3,6\}
\end{aligned}
$$

Flow functions must be monotone. (otherwise the fixed-point iteration algorithm could oscillate)

Fixed points

Fixed point of a function $f: L \rightarrow L$ is a $z \in L$ with $f(z)=z$

- Solution to a set of data flow equations
- In general not unique!

Example:
$f: B V \rightarrow B V$ with $f(0)=0$ and $f(1)=1$
has 2 fixed points: 0 and 1 .

Reaching definitions (see above):
iterate until $f(R \operatorname{Din}(B))=R \operatorname{Din}(B) \forall B$ where $f=$ composition of all flow functions and equations.

The ideal solution

Ideal solution (IDEAL) to the data flow equations (for forward problems):

- begin with initial information Init at entry
- apply composition of flow functions along all really possible paths from entry to each CFG node B and compose these results by the meet operator:

$$
\begin{aligned}
& F_{p}=F_{B_{n}} \circ \ldots \circ F_{B_{1}} \\
& \operatorname{IDEAL}(B)=\prod_{p \in \operatorname{Paths}(B)} F_{p}(\text { Init })
\end{aligned}
$$

similarly for backward problems

Meet over all paths (MOP)

Meet-over-all-paths (MOP) solution to data flow equations (for forward problems):

- begin with initial information Init at entry
- apply composition of flow functions along all possible paths from entry to each CFG node B and compose these results by the meet operator:

$$
\begin{aligned}
& F_{p}=F_{B_{n}} \circ \ldots \circ F_{B_{1}} \\
& M O P(B)=\prod_{p \in \text { Paths }(B)} F_{p}(\text { Init })
\end{aligned}
$$

similarly for backward problems

MOP vs. IDEAL

A solution in is safe if $\operatorname{in}(B) \sqsupseteq I D E A L[B] \forall B$
A solution in is incorrect if in $(B) \sqsubset I D E A L[B]$ for some B
BUT: IDEAL is statically undecidable!
The exact subset of the paths really taken at run time
is not statically known. E.g., an else branch or loop may never be executed.
$\operatorname{IDEAL}(B)=$ Meet over all paths to B possibly taken at run time $\operatorname{NEVER}(B):=$ Meet over all remaining paths to B (never executed)

The most precise solution is $\operatorname{IDEAL}(B)$,
but $\operatorname{MOP}(B)=\operatorname{IDEAL}(B) \sqcap N E V E R(B)$,
i.e., $\operatorname{MOP}(B) \sqsubseteq I D E A L(B)$.

MOP is the best solution that we could compute statically.

Fixed point solutions of the dataflow equations

Goal: find the maximum fixed point (MFP) solution (maximal w.r.t. information, i.e., also w.r.t. $\sqsubseteq, ~ a n d ~ s t i l l ~ s a f e) ~(~) ~$

Theorem [Kildall'73]

If all flow functions distributive over \sqcap, \sqcup
i.e., $\forall x, y, f(x \sqcap y)=f(x) \sqcap f(y)$ and $f(x \sqcup y)=f(x) \sqcup f(y)$,
\Rightarrow iterative DFA computes MFP, and MFP $=$ MOP

Theorem [Kam/Ullman'75]
If all flow functions monotone but not necessarily distributive
\Rightarrow iterative DFA computes MFP but not necessarily the MOP solution

Iterative Data Flow Analysis [Kildall'73]
given: CFG $G=(N, E)$, Lattice (L, \sqcap, \sqcup)
dataflow equations

$$
\begin{aligned}
& \operatorname{in}(B)= \begin{cases}\operatorname{Init} & \text { for } B=\text { entry } \\
\prod_{P \in \operatorname{Pred}(B)} \text { out }(P) & \text { otherwise }\end{cases} \\
& \operatorname{out}(B)=F_{B}(\operatorname{in}(B))
\end{aligned}
$$

or, by substitution,

$$
\operatorname{in}(B)= \begin{cases}\text { Init } & \text { for } B=\text { entry } \\ \prod_{P \in \operatorname{Pred}(B)} F_{P}(\operatorname{in}(P)) & \text { otherwise }\end{cases}
$$

Init is usually \top (for \sqcap) or \perp (for \sqcup)

Iterative DFA: Worklist algorithm (1)

- Implements the fixed-point algorithm above
- Maintain a worklist of blocks B
whose predecessors' in values have changed in the last iteration
- worklist contains initially all BB's (except entry)
- iterate applying the dataflow equations
until no more changes occur

Observation: maximal effect on forwarding information if BB's in worklist are processed in topological order
\rightarrow start with reverse postorder
\rightarrow queue as worklist
$\Rightarrow A+2$ iterations for a (sub-)CFG with A back edges [Hecht/Ullman'75]

Worklist_It (N, entry, F, DFin, Init)
Set $<$ Node $>N$;
Node entry;
Functions $F:$ Node $\times L \rightarrow L$;
Function DFin: Node \rightarrow;
L Init; // (L, \sqcap) is the (semi-)lattice
L totaleffect, effectP;
List $<$ Node $>W \leftarrow N-\{$ entry $\}$;
DFin $($ entry $) \leftarrow$ Init ;
for each $B \in N$ do
$\operatorname{DFin}(B) \leftarrow \top$;
repeat
$B \leftarrow W$.delete_first_element(); totaleffect $\leftarrow \top$;
for each $P \in \operatorname{Pred}(B)$ do
effectP $\leftarrow F(P, \operatorname{DFin}(P))$;
totaleffect \leftarrow totaleffect \sqcap effectP;
if $\operatorname{DFin}(B) \neq$ totaleffect then
DFin $(B) \leftarrow$ totaleffect;
$W \leftarrow W \cup \operatorname{Succ}(B)$;
until $W=\emptyset$;
return DFin;

Survey of some data flow problems

classified by:

- information to be computed
- direction of information flow: forward / backward / bidirectional
- lattices used, meanings attached to lattice elements etc.

Reaching Definitions
forward, bitvector (1 bit per definition of a variable)
Available Expressions
forward, bitvector (1 bit per definition of an expression)

Live Variables
backward, bitvector (1 bit per use of a variable)

Survey of some data flow problems (cont.)

Upwards Exposed Uses

backward, bitvector (1 bit per use of a variable)
Copy-Propagation Analysis
forward, bitvector (1 bit per copy assignment)
Constant-Propagation Analysis
forward, ICP ${ }^{n}$ (or similar)
1 lattice value per def., symbolic execution
Partial Redundancy Analysis
[Morel,Renvoise'81] bidirectional, bitvector (1 bit per expression computation)
[Knoop/Rüthing/Steffen’92] "Lazy Code Motion"

Available Expressions

An expression, say $x+y$, is available at a point p if:
(1) every path from the entry node to p evaluates $\mathrm{x}+\mathrm{y}$, and
(2) after the last evaluation prior to reaching p, there are no subsequent assignments to x or y .

We say that a basic block kills expression $\mathrm{x}+\mathrm{y}$
if it may assign x or y , and does not subsequently recompute $\mathrm{x}+\mathrm{y}$.

Live Variables

A variable is live at a program point p if there is a path from p to any use of v that does not contain a definition of v.

Flow problem: backward, bitvector (1 bit per use of a variable)

Upwards Exposed Uses

A use u of a variable v is upwards exposed at a program point p if there is a path from p to u that does not contain a definition of v.

Flow problem: backward, bitvector (1 bit per use of a variable)

Copy Propagation Analysis

A copy statement $x \leftarrow y$ assigns variable y to v.
Can we safely replace all occurrences of x by y, in order to eliminate the copy statement and variable x completely?

Flow problem: forward, bitvector (1 bit per copy assignment)

Constant Propagation Analysis

Flow problem: forward analysis, using $I C P^{n}$ (or similar)
(1 lattice value per definition, symbolic execution)

Partial Redundancy Elimination

bidirectional, bitvector: 1 bit per expression computation

[Morel,Renvoise'81] bidirectional, bitvector (1 bit per expression computation) [Knoop/Rüthing/Steffen'92] "Lazy Code Motion"
[Dhamdhere'02] "PRE made easy"

DU chains, UD chains, Webs
sparse representation of dataflow information about variables:

- DU-chain connects a definition to all uses it may reach
- UD-chain connects a use to all definitions that may reach it implemented as lists

Web for a variable v
= maximal union of intersecting DU-chains for v
useful in global register allocation (count as one live range)

DU, UD chains are implicitly given in SSA form (\rightarrow).

Web Construction Example

5 webs (sets of intersecting DU-chains):

$$
\begin{aligned}
& \{\langle\langle x,\langle B 2,1\rangle\rangle,\{\langle B 4,1\rangle,\langle B 5,1\rangle\}\rangle, \\
& \\
& \quad\langle\langle x,\langle B 3,1\rangle\rangle,\{\langle B 5,1\rangle\}\rangle\} \\
& \{\langle\langle\langle,\langle B 4,1\rangle\rangle, 0\} \\
& \{\langle\langle z,\langle B 5,1\rangle\rangle, 0\} \\
& \{\langle\langle x,\langle B 5,2\rangle\rangle,\{\langle B 6,1\rangle\}\rangle\} \\
& \{\langle\langle z,\langle B 6,1\rangle\rangle, 0\}
\end{aligned}
$$

Structural Dataflow Analysis - Example: Reaching Definitions

Data Flow Analysis: Summary

- Gather global information about data flow properties
- Safe under- / overestimation, depending on intended transformations
- Propagation over the CFG \rightarrow iterative data flow analysis, implemented with the Worklist algorithm
- Lattice theory:

Monotonicity + Finite height \Rightarrow Termination of fixed-point iteration

- Various data flow problems and methods
- DU / UD chains, webs
- Structural dataflow analysis

Data Flow Analysis, further topics and outlook:

- Further DFA methods (interval / structural analysis)
- Array data flow analysis [Feautrier'91], [Maydan/Hennessy/Lam'91]
- DFA for pointers and heap data structures
- SSA form
- Generators for Data Flow Analyzers, e.g. Sharlit [Tjiang/Hennessy'92], PAG [Martin'98]

