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Outline

Towards (semi-)automatic parallelization of sequential programs

▪ Data dependence analysis for loops

▪ Dependence tests

▪ Some loop transformations

▪ Loop invariant code hoisting, loop unrolling,
loop fusion, loop interchange, loop blocking and tiling,
scalar expansion, and more

▪ Static loop parallelization

▪ Idiom recognition

▪ Run-time loop parallelization

▪ Doacross parallelization

▪ Inspector-executor method

▪ If time permits: thread-level speculation
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Foundations:   Control and Data Dependence

▪ Consider statements S, T  in a sequential program  (S=T possible)

▪ Scope of analysis is typically a function, i.e. intra-procedural analysis

▪ Assume that a control flow path S … T is possible

▪ Can be done at arbitrary granularity (instructions, operations, 
statements, compound statements, program regions)

▪ Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

▪ Control dependence  S → T,
if the fact whether T is executed may depend on S
(e.g. condition)

▪ Implies that relative execution order S → T
must be preserved when restructuring the program

▪ Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

S:  if (…) {

…

T:       …

…

}

Example:
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Foundations:   Control and Data Dependence

▪ Data dependence S → T,  
if statement S may execute (dynamically) before T
and both may access the same memory location
and at least one of these accesses is a write

▪ Means that execution order ”S before T” must 
be preserved when restructuring the program

▪ In general, only a conservative over-estimation 
can be determined statically

▪ flow dependence:   (RAW, read-after-write)

S may write a location z that T may read

▪ anti dependence:   (WAR, write-after-read)

S may read a location x that T may overwrite

▪ output dependence:   (WAW, write-after-write)

both S and T may write the same location

S:   z = … ;

…

T:   … = ..z.. ;

Example:

(flow dependence)
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Dependence Graph

▪ (Data, Control, Program) Dependence Graph:  

Directed graph, consisting of all statements  as vertices 

and all (data, control, any) dependences as edges.
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Data Dependence Graph

▪ Data dependence graph for straight-line code (”basic 

block”, no branching) is always acyclic, because relative 

execution order of statements is forward only.

▪ Data dependence graph for a loop:

▪ Dependence edge S→T if a dependence may exist for 

some pair of instances (iterations) of S, T

▪ Cycles possible

▪ Loop-independent versus loop-carried dependences

(assuming that we know statically 

that arrays a and b do not intersect)

Example:
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Example

Data dependence graph:
S1

S2

(Iterations unrolled)

(assuming that we statically know that

arrays A, X, Y, Z do not intersect, 

otherwise there might be further

dependences)
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Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations, 

including automatic parallelization:

▪ High execution frequency 

▪ Most computation done in (inner) loops

▪ Even small optimizations can have large impact

(cf. Amdahl’s Law)

▪ Regular, repetitive behavior

▪ compact  description

▪ relatively simple to analyze statically

▪ Well researched
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Data Dependence Analysis – Overview

▪ Important for loop optimizations, vectorization and parallelization, 

instruction scheduling, data cache optimizations

▪ Conservative approximations to disjointness of pairs of memory accesses

▪ weaker than data-flow analysis

▪ but generalizes nicely to the level of individual array element

▪ Loops, loop nests

▪ Iteration space

▪ Array subscripts in loops

▪ Index space

▪ Dependence testing methods

▪ Data dependence graph

▪ Data + control dependence graph

▪ Program dependence graph
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Precedence relation between statements



12 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Iteration Space
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Example

Data dependence graph:
S1

S2

(Iterations unrolled)

(assuming that we statically know that

arrays A, X, Y, Z do not intersect, 

otherwise there might be further

dependences)
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Loop Normalization
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Dependence Distance and Direction
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Dependence Equation System
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Linear Diophantine Equations
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Dependence Testing, 1:  GCD-Test



19 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

For multidimensional arrays?
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Survey of Dependence Tests
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▪ Move loop invariant computations out of loops

▪ Modify the order of iterations or parts thereof

Goals:   

▪ Improve data access locality

▪ Faster execution

▪ Reduce loop control overhead

▪ Enhance possibilities for loop parallelization or vectorization 

Only transformations that preserve the program semantics (its 
input/output behavior) are admissible

▪ Conservative (static) criterium: preserve data dependences

▪ Need data dependence analysis for loops      (→ DF00100)

Loop Optimizations – General Issues
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Some important loop transformations

▪ Loop normalization

▪ Loop parallelization

▪ Loop invariant code hoisting

▪ Loop interchange

▪ Loop fusion vs. Loop distribution / fission

▪ Strip-mining / loop tiling / blocking vs. Loop linearization

▪ Loop unrolling, unroll-and-jam

▪ Loop peeling

▪ Index set splitting, Loop unswitching

▪ Scalar replacement, Scalar expansion

▪ Later: Software pipelining

▪ More: Cycle shrinking, Loop skewing, ...
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Loop Invariant Code Hoisting

▪ Move loop invariant code out of the loop

▪ Compilers can do this automatically if they can statically 

find out what code is loop invariant

▪ Example:

for (i=0;  i<10;  i++)

a[i] = b[i]  + c / d;

tmp = c / d;

for (i=0;  i<10;  i++)

a[i] = b[i]  + tmp;
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Loop Unrolling

▪ Loop unrolling 

▪ Can be enforced with compiler options e.g. –funroll=2

▪ Example:

☺ Reduces loop overhead (total # comparisons, branches, increments)  

☺ Longer loop body may enable further local optimizations

(e.g. common subexpression elimination, 

register allocation, instruction scheduling,

using SIMD instructions)  

 longer code

for (i=0; i<50; i++) {

a[i] = b[i];

}

for (i =0; i<50; i+=2) {

a[i] = b[i];

a[i+1] = b[i+1];

}

Unroll

by 2:

→ Exercise:  Formulate the unrolling rule for statically unknown upper loop limit
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Loop Unrolling
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Loop Unrolling with Unknown Upper Bound
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Loop Unroll-And-Jam
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Loop Peeling
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....

j

i

Loop Interchange (1)

▪ For properly nested loops 
(statements in innermost loop body only) 

▪ Example 1:

▪ Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

▪ Can help with subsequent vectorization of innermost loops

for (j=0;  j<M;  j++)

for (i=0;  i<N;  i++)

a[ i ][ j ] = 0.0 ;

for (i=0;  i<N;  i++)

for (j=0;  j<M;  j++)

a[ i ][ j ] = 0.0 ;

....

j

i

a[0][0]

a[N-1][0]

a[0][0] a[0][M-1]row-wise 

storage of

2D-arrays 

in C, Java

a[N-1][0]

old iteration order

new iteration order
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Recall: 

Loop-Carried Data Dependences

▪ Recall:  Data dependence S → T,  
if operation S may execute (dynamically) before operation T
and both may access the same memory location
and at least one of these accesses is a write

▪ In general, only a conservative over-estimation can be determined 
statically.  

▪ Data dependence S→T is called loop carried by a loop L
if the data dependence S→T may exist for instances of S and T
in different iterations of L.

▪ Example:

→ partial order between the operation instances resp. iterations

S:  z = … ;

…

T:  … = ..z.. ;

L:  for (i=1; i<N; i++) {

Ti:       …  =  x[ i-1 ];

Si:       x[ i ] = …;

}

T1

S1

i=1

T2

S2

i=2

T3

S3

i=3

TN-1

SN-1

i=N-1

…

Iteration space:
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Loop Interchange (2)

▪ Be careful with loop carried data dependences! 

▪ Example 2:

▪ Interchanging the loop headers would violate the partial iteration order 

given by the data dependences  

for (j=1;  j<M;  j++)

for (i=0;  i<N;  i++)

a[i][j] =…a[i+1][j-1]...;

for (i=0;  i<N;  i++)

for (j=1;  j<M;  j++)

a[i][j] =…a[i+1][j-1]…;

Iteration (j,i) reads 

location a[i+1][j-1] that 

was written in an earlier

iteration, (i-1,j+1)

j

i

Iteration (i,j) reads

location a[i+1][j-1], 

that will be over-

written in a later

iteration (i+1,j-1)

i

jIteration  

space:

old iteration order new iteration order



33C. Kessler, IDA, Linköping University

i

j

Loop Interchange (3)

▪ Be careful with loop-carried data dependences! 

▪ Example 3:

▪ Generally: Interchanging loop headers is only admissible if loop-carried 

dependences have the same direction for all loops in the loop nest

(all directed along or all against the iteration order)

for (j=1;  j<M;  j++)

for (i=1;  i<N;  i++)

a[i][j] =…a[i-1][j-1]...;

OK
for (i=1;  i<N;  i++)

for (j=1;  j<M;  j++)

a[i][j] =…a[i-1][j-1]…;

Iteration (j,i) reads 

location a[i-1][j-1] that 

was written in earlier

iteration (j-1,i-1) 

j

i

Iteration (i,j) reads

location a[i-1][j-1] 

that was written in 

earlier iteration 

(i-1,j-1)

Iteration  

space:

old iteration order new iteration order
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Loop Fusion

▪ Merge subsequent loops with same header  

▪ Safe if neither loop carries a (backward) dependence

▪ Example:

☺ Can improve data access locality

and reduces number of branches

for (i=0;  i<N;  i++)

a[ i ] = … ;

for (i=0;  i<N;  i++)

… = … a[ i ] … ;

for (i= 0;  i<N;  i++) {

a[ i ] = … ;

… = … a[ i ] … ;

}

OK –

Read of a[i] still after 

write of a[i], for all i

For N sufficiently large, 

a[i] will no longer be in

the cache at this time
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Loop Fusion 

– Index variable name does not matter

j  N  (if downwards exposed)
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Special Case:  Kernel Fusion for GPU

Serial Kernel Fusion Parallel Kernel Fusion
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Loop Distribution   (a.k.a. Loop Fission)
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Loop Iteration Reordering

j-loop carries a dependence, its

iteration order must be preserved

Example:
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Loop Parallelization

j-loop carries a dependence, its

iteration order must be preserved

Example:

Example:

Loop parallelization

Principle:  Parallelize outermost loop(s),  vectorize innermost loop(s)  
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Remark on Loop Parallelization

▪ Introducing temporary copies of arrays can remove some 

antidependences to enable automatic loop parallelization

▪ Example:

for (i=0; i<n; i++)

a[i] = a[i] + a[i+1];

▪ The loop-carried dependence can be eliminated:

for (i=0; i<n; i++)

aold[i+1] = a[i+1];

for (i=0; i<n; i++)

a[i] = a[i] + aold[i+1];

Parallelizable loop

Parallelizable loop
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Strip Mining / Loop Blocking

for (i=0; i<n; i++)

a[i] = b[i] + c[i];

Loop blocking with block size s

for (ii=0; ii<n; ii+=s)     // loop over blocks

for (i=ii; i<min(ii+s,n); i++)  // loop within block

a[i] = b[i] + c[i];

Reverse transformation:  Loop linearization
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Loop (Nest) Tiling

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = b[i][j] + c[j][i];

Loop nest tiling with tile size s x s  - Step 1:  loop blocking 

for (ii=0; ii<n; ii+=s)     // loop over blocks

for (i=ii; i<min(ii+s,n); i++)  // loop within block

for (jj=0; jj<m; jj+=s) // loop over blocks

for (j=jj; j<min(jj+s,m); j++) // loop within blk

a[i][j] = b[i][j] + c[j][i];
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Loop (Nest) Tiling

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = b[i][j] + c[j][i];

Loop nest tiling with tile size s x s  - Step 2: Loop interchange 

for (ii=0; ii<n; ii+=s)     // loop over blocks

for (jj=0; jj<m; jj+=s)   // loop over blocks

for (i=ii; i<min(ii+s,n); i++) // loop within block

for (j=jj; j<min(jj+s,m); j++) // loop within blk

a[i][j] = b[i][j] + c[j][i];

Tiling = loop blocking for multiple loop headers in a loop nest

+ loop interchange

→ loops scanning a tile become innermost loops

Goal:  increase locality;  support vectorization (vector registers)
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Tiled Matrix-Matrix Multiplication  (1)

▪ Matrix-Matrix multiplication   C = A x B

here for square (n x n) matrices C, A, B, with n large (~103):

▪ Ci j =  S k=1..n A i k B k j for all i, j = 1...n

▪ Standard algorithm for Matrix-Matrix multiplication

(here without the initialization of C-entries to 0):

for (i=0; i<n; i++)

for (j=0;  j<n;  j++)

for (k=0;  k<n;  k++)

C[i][j] += A[i][k] * B[k][j];

A B

i

k

k

j

Good spatial locality on A, C

Bad spatial locality on B

(many capacity misses)
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Tiled Matrix-Matrix Multiplication  (2)

▪ Block each loop by block size S  

(choose S so that a block of A, B, C fit in cache together), 

then interchange loops

▪ Code after tiling:

for (ii=0; ii<n; ii+=S)

for (jj=0;  jj<n;  jj+=S)

for (kk=0;  kk<n;  kk+=S)

for (i=ii;  i < ii+S;  i++)

for (j=jj;  j < jj+S;  j++)

for (k=kk;  k < kk+S;  k++)

C[i][j] += A[i][k] * B[k][j];

kk

ii

k
k

jj
k

i k

j
k

Good spatial locality 

for A, B and C
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Loop (Nest) Tiling  (cont.)

▪ Beware: Tiling is not always semantics-preserving

▪ Dependences could lead to unschedulable code

for i = 1, ..., 4

for j = 1, ..., 4

S(i,j):           A[i][j] = x*A[i-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];  

Example:

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

Tiling

2x2 ???

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

NO!
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Remark on Locality Transformations

▪ An alternative can be to change the data layout rather than the 
control structure of the program

▪ Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off over 
several subsequent computations

Finding the best layout for all multidimensional arrays is a 
NP-complete optimization problem   [Mace, 1988]

▪ Example: Recursive array layouts that preserve locality

Morton-order layout

Hierarchically tiled arrays

▪ In the best case, can make computations cache-oblivious

▪ Performance largely independent of cache size

▪ Further example: AOS vs. SOA layout for images on CPU/GPU
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Loop Nest Flattening / Linearization
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Index Set Splitting
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Loop Unswitching
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Scalar Expansion / Array Privatization
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Idiom recognition and algorithm replacement

C. Kessler: Pattern-driven

automatic parallelization. 

Scientific Programming, 1996.

A. Shafiee-Sarvestani,  

E. Hansson, C. Kessler: 

Extensible recognition of 

algorithmic patterns in DSP 

programs for automatic

parallelization. Int. J. on 

Parallel Programming, 2013.
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Polyhedral / Polytope Model

▪ Researched since late 1980s (with earlier roots),
still active (see e.g. IMPACT workshop series), tensor computations

▪ Compact representation of the loop nest iteration space of d
perfectly nested loops as the points of a polytope (polyhedron) in Zd

▪ Usually, loop normalization to obtain stride +1

▪ E.g. in 2D: rectangular, triangular, trapezoidal, etc.

▪ Loop bounds must be affine (linear) functions 
of the indexes of outer loops (or constant)

▪ The polytope is the intersection of halfspaces over Zd

▪ The faces of the polytope are defined by the bounds of the loops 

▪ Can apply described loop transformations as dependences allow

▪ Can often be described as unimodular linear mappings 

▪ Parallelism and scheduling options can be determined statically

▪ constrained by the data dependences 

▪ Schedule = space-time mapping of iterations to parallel processors and time 
axis must be affine.

▪ Code generator (eg. cloog, MLIR lowering) generates code (nest of d for-loops) 
that scans the polyhedron, given index bound parameters and a schedule

i

j

for i = 1 to N

for j = min(i,M) to M

loopbody( i, j )
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Polyhedral Example: 

Loop Nest Skewing and Parallelization

i

j

for i = 1 to N

for j = 1 to M

a[i,j] = f( a[i-1,j], a[i, j-1] )

skewing:

time

procs.

mapping/

scheduling:

j

i

forall proc = 1 to N

for time = min(proc, N) to max(M+proc, M+N-1)

a[i,j] = f( a[time-1, proc-1], a[time-1, proc] )

(assuming here for simplicity that 

we have procs = N parallel 

processing units to use. If not, 

apply strip mining / tiling ...)

generate

HIR/src code:
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Remark on static analyzability (1)

▪ Static dependence information is always a (safe) 

overapproximation of the real (run-time) dependences

▪ Finding out the real ones exactly is statically undecidable!

▪ If in doubt, a dependence must be assumed 

→ may prevent some optimizations or parallelization

▪ One main reason for imprecision is aliasing, i.e. the program 

may have several ways to refer to the same memory location

▪ Example:   Pointer aliasing
void mergesort ( int *a, int n )

{  …

mergesort ( a,  n/2 );

mergesort ( a + n/2, n-n/2 );

…

}

How could a static analysis

tool (e.g., compiler) know

that the two recursive 

calls read and write

disjoint subarrays of a?
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Remark on static analyzability (2)

▪ Static dependence information is always a (safe) 

overapproximation of the real (run-time) dependences

▪ Finding out the latter exactly is statically undecidable!

▪ If in doubt, a dependence must be assumed 

→ may prevent some optimizations or parallelization

▪ Another reason for imprecision are statically unknown values

that imply whether a dependence exists or not

▪ Example:  Unknown dependence distance
// value of K statically unknown

for ( i=0; i<N; i++ )

{  …

S:   a[i] = a[i] + a[K];

…

}

Loop-carried dependence

if K < N. 

Otherwise, the loop is

parallelizable.
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Outlook:  Runtime Parallelization
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Goal of run-time parallelization

▪ Typical target:  irregular loops

for ( i=0; i<n; i++)

a[i]  =  f ( a[ g(i) ], a[ h(i) ], ... );

▪ Array index expressions g, h... depend on run-time data

▪ Iterations cannot be statically proved independent

(and not either dependent with distance +1)

▪ Principle:

At runtime, inspect g, h ... to find out the real dependences 

and compute a schedule for partially parallel execution

▪ Can also be combined with speculative parallelization
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Overview

▪ Run-time parallelization of irregular loops

▪ DOACROSS parallelization  

▪ Inspector-Executor Technique  (shared memory)

▪ Inspector-Executor Technique  (message passing) *

▪ Privatizing DOALL Test *

▪ Speculative run-time parallelization of irregular loops *

▪ LRPD Test *

▪ General Thread-Level Speculation

▪ Hardware support *

* = not covered in this lecture. See the references.
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DOACROSS Parallelization

▪ Useful if loop-carried dependence distances are unknown, but often > 1

▪ Allow independent subsequent loop iterations to overlap

▪ Bilateral synchronization between really-dependent iterations

Example:

for ( i=0; i<n; i++)
a[i]  =  f ( a[ g(i) ], ... );

sh float aold[n];
sh flag done[n];   // flag (semaphore) array
forall i in 0..n-1   {   // spawn n threads, one per iteration

done[i] = 0;
aold[i] = a[i];    // create a copy

}
forall i in 0..n-1  {   // spawn n threads, one per iteration

if (g(i) < i)   wait until done[ g(i) ] );
a[i]  =  f ( a[ g(i) ], ... );
set( done[i] );

else
a[i]  =  f ( aold[ g(i) ], ... );  set done[i];

}
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Inspector-Executor Technique  (1)

▪ Compiler generates 2 pieces of customized code for such loops:  

▪ Inspector

▪ calculates values of index expression 

by simulating whole loop execution

 typically, based on sequential version of the source loop

(some computations could be left out)

▪ computes implicitly the real iteration dependence graph

▪ computes a parallel schedule as (greedy) wavefront traversal of the 

iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

▪ Executor

▪ follows this schedule to execute the loop
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Inspector-Executor Technique  (2)

▪ Source loop:

for ( i=0; i<n; i++)
a[i]  =  f ( a[ g(i) ], a[ h(i) ], ... );

▪ Inspector:

int wf[n];  // wavefront indices
int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0;   // init.
for (i=0; i<n; i++) {

wf[i] = max ( wf[ g(i) ], wf[ h(i) ], ... ) + 1;
depth = max ( depth, wf[i] );

}

▪ Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor
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Inspector-Executor Technique  (3)

Example:     

for (i=0; i<n; i++)

a[i] = ... a[ g(i) ] ...;

Executor:

float aold[n];  // buffer array

aold[1:n] = a[1:n];

for (w=0; w<depth; w++)

forall (i in {0..n-1}: wf[i] == w)  {

// start task/thread where wf[i] == w:  

a1 = (g(i) < i)? a[g(i)] : aold[g(i)];

...  // similarly, a2 for h etc.

a[i] =  f ( a1, a2, ... );

} // wait for all threads of round w

i 0 1 2 3 4 5

g(i) 2 0 2 1 1 0

wf[i] 0 1 0 2 2 1

g(i)<i ? no yes no yes yes yes

2

1

00 2

1 5

3 4

iteration (flow) dependence graph

(depth=3)
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Inspector-Executor Technique  (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:

▪ Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

▪ amortizes inspector overhead across repeated executions

▪ Parallelize the inspector using doacross parallelization 
[Saltz,Mirchandaney’91]

▪ Parallelize the inspector using sectioning  [Leung/Zahorjan’91]

▪ compute processor-local wavefronts in parallel, concatenate

▪ trade-off schedule quality (depth) vs. inspector speed

▪ Parallelize the inspector using bootstrapping  [Leung/Z.’91]

▪ Start with suboptimal schedule by sectioning, 
use this to execute the inspector → refined schedule
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Some references on Dependence Analysis, 

Loop optimizations and Transformations

▪ H. Zima, B. Chapman:  Supercompilers for Parallel and Vector
Computers.  Addison-Wesley / ACM press, 1990.

▪ M. Wolfe: High-Performance Compilers for Parallel Computing. 
Addison-Wesley, 1996.

▪ R. Allen, K. Kennedy:  Optimizing Compilers for Modern 
Architectures. Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

▪ C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

▪ A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for 
automatic paral-lelization. Int. J. on Parallel Programming, 
2013.
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Some references on Dependence Analysis, 

Loop optimizations and Transformations

▪ H. Zima, B. Chapman:  Supercompilers for Parallel and Vector Computers.  
Addison-Wesley / ACM press, 1990.

▪ M. Wolfe: High-Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

▪ R. Allen, K. Kennedy:  Optimizing Compilers for Modern Architectures. 
Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

▪ C. Kessler: Pattern-driven automatic parallelization. 
Scientific Programming 5:251-274, 1996.

▪ A. Shafiee-Sarvestani, E. Hansson, C. Kessler: 
Extensible recognition of algorithmic patterns in DSP programs for automatic
parallelization. Int. J. on Parallel Programming, 2013.

Frameworks

▪ Polly

▪ Cloog

▪ PluTo polyhedral transformation framework:
An automatic parallelizer and locality optimizer for affine loop nests
http://pluto-compiler.sourceforge.net/
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Polyhedral Compilation Frameworks

▪ Closely related to (parametric) integer programming

▪ PIPS, PIPlib

▪ Paul Feautrier: Dataflow Analysis of Array and Scalar References. 
International Journal of Parallel Programming, 1991

▪ and many others

More recent work e.g.  

▪ Polly for LLVM: https://polly.llvm.org/

▪ PluTo

▪ U. Bondhugula, PhD thesis, 2008: 
https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

▪ Cloog

▪ for code generation (scanning a polyhedron, given iteration domain 
bounds and a schedule)

▪ http://www.cloog.org

▪ Polybench polyhedral benchmark suite

▪ Annual IMPACT workshop series at HiPEAC conference
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Some references on run-time parallelization

▪ R. Cytron:  Doacross: Beyond vectorization for multiprocessors.   Proc. ICPP-1986

▪ D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

▪ R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley:  Principles of run-time support 
for parallel processors,  Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

▪ J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman:   Runtime Scheduling and 
Execution of Loops on Message Passing Machines,   Journal on Parallel and Distr. Computing
8 (1990): 303-312.

▪ J. Saltz, R. Mirchandaney:  The preprocessed doacross loop.   Proc. ICPP-1991 Int. Conf. on 
Parallel Processing.

▪ S. Leung, J. Zahorjan:  Improving the performance of run-time parallelization.  Proc. ACM 
PPoPP-1993, pp. 83-91.

▪ Lawrence Rauchwerger, David Padua:  The Privatizing DOALL Test: A Run-Time Technique 
for DOALL Loop Identification and Array Privatization.   Proc. ACM Int. Conf. on 
Supercomputing, July 1994, pp. 33-45.

▪ Lawrence Rauchwerger, David Padua:   The LRPD Test: Speculative Run-Time Parallelization 
of Loops with Privatization and Reduction Parallelization.   Proc. ACM SIGPLAN PLDI-95, 
1995, pp. 218-232.
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