
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Optimization and Parallelization

of Sequential Programs

Introduction to Data Dependence Analysis

Christoph Kessler

IDA / PELAB

Linköping University

Sweden

2 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Outline

Towards (semi-)automatic parallelization of sequential programs

▪ Data dependence analysis for loops

▪ Dependence tests

▪ Some loop transformations

▪ Loop invariant code hoisting, loop unrolling,
loop fusion, loop interchange, loop blocking and tiling,
scalar expansion, and more

▪ Static loop parallelization

▪ Idiom recognition

▪ Run-time loop parallelization

▪ Doacross parallelization

▪ Inspector-executor method

▪ If time permits: thread-level speculation

3C. Kessler, IDA, Linköping University

Foundations: Control and Data Dependence

▪ Consider statements S, T in a sequential program (S=T possible)

▪ Scope of analysis is typically a function, i.e. intra-procedural analysis

▪ Assume that a control flow path S … T is possible

▪ Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

▪ Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

▪ Control dependence S → T,
if the fact whether T is executed may depend on S
(e.g. condition)

▪ Implies that relative execution order S → T
must be preserved when restructuring the program

▪ Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

S: if (…) {

…

T: …

…

}

Example:

4C. Kessler, IDA, Linköping University

Foundations: Control and Data Dependence

▪ Data dependence S → T,
if statement S may execute (dynamically) before T
and both may access the same memory location
and at least one of these accesses is a write

▪ Means that execution order ”S before T” must
be preserved when restructuring the program

▪ In general, only a conservative over-estimation
can be determined statically

▪ flow dependence: (RAW, read-after-write)

S may write a location z that T may read

▪ anti dependence: (WAR, write-after-read)

S may read a location x that T may overwrite

▪ output dependence: (WAW, write-after-write)

both S and T may write the same location

S: z = … ;

…

T: … = ..z.. ;

Example:

(flow dependence)

5C. Kessler, IDA, Linköping University

Dependence Graph

▪ (Data, Control, Program) Dependence Graph:

Directed graph, consisting of all statements as vertices

and all (data, control, any) dependences as edges.

6C. Kessler, IDA, Linköping University

Data Dependence Graph

▪ Data dependence graph for straight-line code (”basic

block”, no branching) is always acyclic, because relative

execution order of statements is forward only.

▪ Data dependence graph for a loop:

▪ Dependence edge S→T if a dependence may exist for

some pair of instances (iterations) of S, T

▪ Cycles possible

▪ Loop-independent versus loop-carried dependences

(assuming that we know statically

that arrays a and b do not intersect)

Example:

7C. Kessler, IDA, Linköping University

Example

Data dependence graph:
S1

S2

(Iterations unrolled)

(assuming that we statically know that

arrays A, X, Y, Z do not intersect,

otherwise there might be further

dependences)

8C. Kessler, IDA, Linköping University

Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations,

including automatic parallelization:

▪ High execution frequency

▪ Most computation done in (inner) loops

▪ Even small optimizations can have large impact

(cf. Amdahl’s Law)

▪ Regular, repetitive behavior

▪ compact description

▪ relatively simple to analyze statically

▪ Well researched

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Data Dependence Analysis

for Loops

A more formal introduction

10 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Data Dependence Analysis – Overview

▪ Important for loop optimizations, vectorization and parallelization,

instruction scheduling, data cache optimizations

▪ Conservative approximations to disjointness of pairs of memory accesses

▪ weaker than data-flow analysis

▪ but generalizes nicely to the level of individual array element

▪ Loops, loop nests

▪ Iteration space

▪ Array subscripts in loops

▪ Index space

▪ Dependence testing methods

▪ Data dependence graph

▪ Data + control dependence graph

▪ Program dependence graph

11 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Precedence relation between statements

12 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Iteration Space

13 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Example

Data dependence graph:
S1

S2

(Iterations unrolled)

(assuming that we statically know that

arrays A, X, Y, Z do not intersect,

otherwise there might be further

dependences)

14 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Normalization

15 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Dependence Distance and Direction

16 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Dependence Equation System

17 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Linear Diophantine Equations

18 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Dependence Testing, 1: GCD-Test

19 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

For multidimensional arrays?

20 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Survey of Dependence Tests

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Loop Transformations

and Parallelization

22C. Kessler, IDA, Linköping University

▪ Move loop invariant computations out of loops

▪ Modify the order of iterations or parts thereof

Goals:

▪ Improve data access locality

▪ Faster execution

▪ Reduce loop control overhead

▪ Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

▪ Conservative (static) criterium: preserve data dependences

▪ Need data dependence analysis for loops (→ DF00100)

Loop Optimizations – General Issues

23 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Some important loop transformations

▪ Loop normalization

▪ Loop parallelization

▪ Loop invariant code hoisting

▪ Loop interchange

▪ Loop fusion vs. Loop distribution / fission

▪ Strip-mining / loop tiling / blocking vs. Loop linearization

▪ Loop unrolling, unroll-and-jam

▪ Loop peeling

▪ Index set splitting, Loop unswitching

▪ Scalar replacement, Scalar expansion

▪ Later: Software pipelining

▪ More: Cycle shrinking, Loop skewing, ...

24C. Kessler, IDA, Linköping University

Loop Invariant Code Hoisting

▪ Move loop invariant code out of the loop

▪ Compilers can do this automatically if they can statically

find out what code is loop invariant

▪ Example:

for (i=0; i<10; i++)

a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;

25C. Kessler, IDA, Linköping University

Loop Unrolling

▪ Loop unrolling

▪ Can be enforced with compiler options e.g. –funroll=2

▪ Example:

☺ Reduces loop overhead (total # comparisons, branches, increments)

☺ Longer loop body may enable further local optimizations

(e.g. common subexpression elimination,

register allocation, instruction scheduling,

using SIMD instructions)

 longer code

for (i=0; i<50; i++) {

a[i] = b[i];

}

for (i =0; i<50; i+=2) {

a[i] = b[i];

a[i+1] = b[i+1];

}

Unroll

by 2:

→ Exercise: Formulate the unrolling rule for statically unknown upper loop limit

26 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Unrolling

27 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Unrolling with Unknown Upper Bound

28 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Unroll-And-Jam

29 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Peeling

30C. Kessler, IDA, Linköping University

....

j

i

Loop Interchange (1)

▪ For properly nested loops
(statements in innermost loop body only)

▪ Example 1:

▪ Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

▪ Can help with subsequent vectorization of innermost loops

for (j=0; j<M; j++)

for (i=0; i<N; i++)

a[i][j] = 0.0 ;

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[i][j] = 0.0 ;

....

j

i

a[0][0]

a[N-1][0]

a[0][0] a[0][M-1]row-wise

storage of

2D-arrays

in C, Java

a[N-1][0]

old iteration order

new iteration order

31C. Kessler, IDA, Linköping University

Recall:

Loop-Carried Data Dependences

▪ Recall: Data dependence S → T,
if operation S may execute (dynamically) before operation T
and both may access the same memory location
and at least one of these accesses is a write

▪ In general, only a conservative over-estimation can be determined
statically.

▪ Data dependence S→T is called loop carried by a loop L
if the data dependence S→T may exist for instances of S and T
in different iterations of L.

▪ Example:

→ partial order between the operation instances resp. iterations

S: z = … ;

…

T: … = ..z.. ;

L: for (i=1; i<N; i++) {

Ti: … = x[i-1];

Si: x[i] = …;

}

T1

S1

i=1

T2

S2

i=2

T3

S3

i=3

TN-1

SN-1

i=N-1

…

Iteration space:

32C. Kessler, IDA, Linköping University

Loop Interchange (2)

▪ Be careful with loop carried data dependences!

▪ Example 2:

▪ Interchanging the loop headers would violate the partial iteration order

given by the data dependences

for (j=1; j<M; j++)

for (i=0; i<N; i++)

a[i][j] =…a[i+1][j-1]...;

for (i=0; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i+1][j-1]…;

Iteration (j,i) reads

location a[i+1][j-1] that

was written in an earlier

iteration, (i-1,j+1)

j

i

Iteration (i,j) reads

location a[i+1][j-1],

that will be over-

written in a later

iteration (i+1,j-1)

i

jIteration

space:

old iteration order new iteration order

33C. Kessler, IDA, Linköping University

i

j

Loop Interchange (3)

▪ Be careful with loop-carried data dependences!

▪ Example 3:

▪ Generally: Interchanging loop headers is only admissible if loop-carried

dependences have the same direction for all loops in the loop nest

(all directed along or all against the iteration order)

for (j=1; j<M; j++)

for (i=1; i<N; i++)

a[i][j] =…a[i-1][j-1]...;

OK
for (i=1; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i-1][j-1]…;

Iteration (j,i) reads

location a[i-1][j-1] that

was written in earlier

iteration (j-1,i-1)

j

i

Iteration (i,j) reads

location a[i-1][j-1]

that was written in

earlier iteration

(i-1,j-1)

Iteration

space:

old iteration order new iteration order

34C. Kessler, IDA, Linköping University

Loop Fusion

▪ Merge subsequent loops with same header

▪ Safe if neither loop carries a (backward) dependence

▪ Example:

☺ Can improve data access locality

and reduces number of branches

for (i=0; i<N; i++)

a[i] = … ;

for (i=0; i<N; i++)

… = … a[i] … ;

for (i= 0; i<N; i++) {

a[i] = … ;

… = … a[i] … ;

}

OK –

Read of a[i] still after

write of a[i], for all i

For N sufficiently large,

a[i] will no longer be in

the cache at this time

35 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Fusion

– Index variable name does not matter

j  N (if downwards exposed)

36C. Kessler, IDA, Linköping University

Special Case: Kernel Fusion for GPU

Serial Kernel Fusion Parallel Kernel Fusion

37 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Distribution (a.k.a. Loop Fission)

38C. Kessler, IDA, Linköping University

Loop Iteration Reordering

j-loop carries a dependence, its

iteration order must be preserved

Example:

39C. Kessler, IDA, Linköping University

Loop Parallelization

j-loop carries a dependence, its

iteration order must be preserved

Example:

Example:

Loop parallelization

Principle: Parallelize outermost loop(s), vectorize innermost loop(s)

40C. Kessler, IDA, Linköping University

Remark on Loop Parallelization

▪ Introducing temporary copies of arrays can remove some

antidependences to enable automatic loop parallelization

▪ Example:

for (i=0; i<n; i++)

a[i] = a[i] + a[i+1];

▪ The loop-carried dependence can be eliminated:

for (i=0; i<n; i++)

aold[i+1] = a[i+1];

for (i=0; i<n; i++)

a[i] = a[i] + aold[i+1];

Parallelizable loop

Parallelizable loop

41C. Kessler, IDA, Linköping University

Strip Mining / Loop Blocking

for (i=0; i<n; i++)

a[i] = b[i] + c[i];

Loop blocking with block size s

for (ii=0; ii<n; ii+=s) // loop over blocks

for (i=ii; i<min(ii+s,n); i++) // loop within block

a[i] = b[i] + c[i];

Reverse transformation: Loop linearization

42C. Kessler, IDA, Linköping University

Loop (Nest) Tiling

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = b[i][j] + c[j][i];

Loop nest tiling with tile size s x s - Step 1: loop blocking

for (ii=0; ii<n; ii+=s) // loop over blocks

for (i=ii; i<min(ii+s,n); i++) // loop within block

for (jj=0; jj<m; jj+=s) // loop over blocks

for (j=jj; j<min(jj+s,m); j++) // loop within blk

a[i][j] = b[i][j] + c[j][i];

43C. Kessler, IDA, Linköping University

Loop (Nest) Tiling

for (i=0; i<n; i++)

for (j=0; j<m; j++)

a[i][j] = b[i][j] + c[j][i];

Loop nest tiling with tile size s x s - Step 2: Loop interchange

for (ii=0; ii<n; ii+=s) // loop over blocks

for (jj=0; jj<m; jj+=s) // loop over blocks

for (i=ii; i<min(ii+s,n); i++) // loop within block

for (j=jj; j<min(jj+s,m); j++) // loop within blk

a[i][j] = b[i][j] + c[j][i];

Tiling = loop blocking for multiple loop headers in a loop nest

+ loop interchange

→ loops scanning a tile become innermost loops

Goal: increase locality; support vectorization (vector registers)

44C. Kessler, IDA, Linköping University

Tiled Matrix-Matrix Multiplication (1)

▪ Matrix-Matrix multiplication C = A x B

here for square (n x n) matrices C, A, B, with n large (~103):

▪ Ci j = S k=1..n A i k B k j for all i, j = 1...n

▪ Standard algorithm for Matrix-Matrix multiplication

(here without the initialization of C-entries to 0):

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

A B

i

k

k

j

Good spatial locality on A, C

Bad spatial locality on B

(many capacity misses)

45C. Kessler, IDA, Linköping University

Tiled Matrix-Matrix Multiplication (2)

▪ Block each loop by block size S

(choose S so that a block of A, B, C fit in cache together),

then interchange loops

▪ Code after tiling:

for (ii=0; ii<n; ii+=S)

for (jj=0; jj<n; jj+=S)

for (kk=0; kk<n; kk+=S)

for (i=ii; i < ii+S; i++)

for (j=jj; j < jj+S; j++)

for (k=kk; k < kk+S; k++)

C[i][j] += A[i][k] * B[k][j];

kk

ii

k
k

jj
k

i k

j
k

Good spatial locality

for A, B and C

46C. Kessler, IDA, Linköping University

Loop (Nest) Tiling (cont.)

▪ Beware: Tiling is not always semantics-preserving

▪ Dependences could lead to unschedulable code

for i = 1, ..., 4

for j = 1, ..., 4

S(i,j): A[i][j] = x*A[i-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];

Example:

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

Tiling

2x2 ???

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

NO!

47 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Remark on Locality Transformations

▪ An alternative can be to change the data layout rather than the
control structure of the program

▪ Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off over
several subsequent computations

Finding the best layout for all multidimensional arrays is a
NP-complete optimization problem [Mace, 1988]

▪ Example: Recursive array layouts that preserve locality

Morton-order layout

Hierarchically tiled arrays

▪ In the best case, can make computations cache-oblivious

▪ Performance largely independent of cache size

▪ Further example: AOS vs. SOA layout for images on CPU/GPU

48 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Nest Flattening / Linearization

49 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Index Set Splitting

50 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Loop Unswitching

51C. Kessler, IDA, Linköping University

Scalar Expansion / Array Privatization

52C. Kessler, IDA, Linköping University

Idiom recognition and algorithm replacement

C. Kessler: Pattern-driven

automatic parallelization.

Scientific Programming, 1996.

A. Shafiee-Sarvestani,

E. Hansson, C. Kessler:

Extensible recognition of

algorithmic patterns in DSP

programs for automatic

parallelization. Int. J. on

Parallel Programming, 2013.

53C. Kessler, IDA, Linköping University

Polyhedral / Polytope Model

▪ Researched since late 1980s (with earlier roots),
still active (see e.g. IMPACT workshop series), tensor computations

▪ Compact representation of the loop nest iteration space of d
perfectly nested loops as the points of a polytope (polyhedron) in Zd

▪ Usually, loop normalization to obtain stride +1

▪ E.g. in 2D: rectangular, triangular, trapezoidal, etc.

▪ Loop bounds must be affine (linear) functions
of the indexes of outer loops (or constant)

▪ The polytope is the intersection of halfspaces over Zd

▪ The faces of the polytope are defined by the bounds of the loops

▪ Can apply described loop transformations as dependences allow

▪ Can often be described as unimodular linear mappings

▪ Parallelism and scheduling options can be determined statically

▪ constrained by the data dependences

▪ Schedule = space-time mapping of iterations to parallel processors and time
axis must be affine.

▪ Code generator (eg. cloog, MLIR lowering) generates code (nest of d for-loops)
that scans the polyhedron, given index bound parameters and a schedule

i

j

for i = 1 to N

for j = min(i,M) to M

loopbody(i, j)

54C. Kessler, IDA, Linköping University

Polyhedral Example:

Loop Nest Skewing and Parallelization

i

j

for i = 1 to N

for j = 1 to M

a[i,j] = f(a[i-1,j], a[i, j-1])

skewing:

time

procs.

mapping/

scheduling:

j

i

forall proc = 1 to N

for time = min(proc, N) to max(M+proc, M+N-1)

a[i,j] = f(a[time-1, proc-1], a[time-1, proc])

(assuming here for simplicity that

we have procs = N parallel

processing units to use. If not,

apply strip mining / tiling ...)

generate

HIR/src code:

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Concluding Remarks

Limits of Static Analyzability

Outlook: Runtime Analysis and

Parallelization

56C. Kessler, IDA, Linköping University

Remark on static analyzability (1)

▪ Static dependence information is always a (safe)

overapproximation of the real (run-time) dependences

▪ Finding out the real ones exactly is statically undecidable!

▪ If in doubt, a dependence must be assumed

→ may prevent some optimizations or parallelization

▪ One main reason for imprecision is aliasing, i.e. the program

may have several ways to refer to the same memory location

▪ Example: Pointer aliasing
void mergesort (int *a, int n)

{ …

mergesort (a, n/2);

mergesort (a + n/2, n-n/2);

…

}

How could a static analysis

tool (e.g., compiler) know

that the two recursive

calls read and write

disjoint subarrays of a?

57C. Kessler, IDA, Linköping University

Remark on static analyzability (2)

▪ Static dependence information is always a (safe)

overapproximation of the real (run-time) dependences

▪ Finding out the latter exactly is statically undecidable!

▪ If in doubt, a dependence must be assumed

→ may prevent some optimizations or parallelization

▪ Another reason for imprecision are statically unknown values

that imply whether a dependence exists or not

▪ Example: Unknown dependence distance
// value of K statically unknown

for (i=0; i<N; i++)

{ …

S: a[i] = a[i] + a[K];

…

}

Loop-carried dependence

if K < N.

Otherwise, the loop is

parallelizable.

58C. Kessler, IDA, Linköping University

Outlook: Runtime Parallelization

TDDC78 Programming of Parallel Computers

TDDD56 Multicore and GPU Programming

Run-Time Parallelization

60C. Kessler, IDA, Linköping University

Goal of run-time parallelization

▪ Typical target: irregular loops

for (i=0; i<n; i++)

a[i] = f (a[g(i)], a[h(i)], ...);

▪ Array index expressions g, h... depend on run-time data

▪ Iterations cannot be statically proved independent

(and not either dependent with distance +1)

▪ Principle:

At runtime, inspect g, h ... to find out the real dependences

and compute a schedule for partially parallel execution

▪ Can also be combined with speculative parallelization

61C. Kessler, IDA, Linköping University

Overview

▪ Run-time parallelization of irregular loops

▪ DOACROSS parallelization

▪ Inspector-Executor Technique (shared memory)

▪ Inspector-Executor Technique (message passing) *

▪ Privatizing DOALL Test *

▪ Speculative run-time parallelization of irregular loops *

▪ LRPD Test *

▪ General Thread-Level Speculation

▪ Hardware support *

* = not covered in this lecture. See the references.

62C. Kessler, IDA, Linköping University

DOACROSS Parallelization

▪ Useful if loop-carried dependence distances are unknown, but often > 1

▪ Allow independent subsequent loop iterations to overlap

▪ Bilateral synchronization between really-dependent iterations

Example:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], ...);

sh float aold[n];
sh flag done[n]; // flag (semaphore) array
forall i in 0..n-1 { // spawn n threads, one per iteration

done[i] = 0;
aold[i] = a[i]; // create a copy

}
forall i in 0..n-1 { // spawn n threads, one per iteration

if (g(i) < i) wait until done[g(i)]);
a[i] = f (a[g(i)], ...);
set(done[i]);

else
a[i] = f (aold[g(i)], ...); set done[i];

}

63C. Kessler, IDA, Linköping University

Inspector-Executor Technique (1)

▪ Compiler generates 2 pieces of customized code for such loops:

▪ Inspector

▪ calculates values of index expression

by simulating whole loop execution

 typically, based on sequential version of the source loop

(some computations could be left out)

▪ computes implicitly the real iteration dependence graph

▪ computes a parallel schedule as (greedy) wavefront traversal of the

iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

▪ Executor

▪ follows this schedule to execute the loop

64C. Kessler, IDA, Linköping University

Inspector-Executor Technique (2)

▪ Source loop:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], a[h(i)], ...);

▪ Inspector:

int wf[n]; // wavefront indices
int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0; // init.
for (i=0; i<n; i++) {

wf[i] = max (wf[g(i)], wf[h(i)], ...) + 1;
depth = max (depth, wf[i]);

}

▪ Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

65C. Kessler, IDA, Linköping University

Inspector-Executor Technique (3)

Example:

for (i=0; i<n; i++)

a[i] = ... a[g(i)] ...;

Executor:

float aold[n]; // buffer array

aold[1:n] = a[1:n];

for (w=0; w<depth; w++)

forall (i in {0..n-1}: wf[i] == w) {

// start task/thread where wf[i] == w:

a1 = (g(i) < i)? a[g(i)] : aold[g(i)];

... // similarly, a2 for h etc.

a[i] = f (a1, a2, ...);

} // wait for all threads of round w

i 0 1 2 3 4 5

g(i) 2 0 2 1 1 0

wf[i] 0 1 0 2 2 1

g(i)<i ? no yes no yes yes yes

2

1

00 2

1 5

3 4

iteration (flow) dependence graph

(depth=3)

66C. Kessler, IDA, Linköping University

Inspector-Executor Technique (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:

▪ Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

▪ amortizes inspector overhead across repeated executions

▪ Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

▪ Parallelize the inspector using sectioning [Leung/Zahorjan’91]

▪ compute processor-local wavefronts in parallel, concatenate

▪ trade-off schedule quality (depth) vs. inspector speed

▪ Parallelize the inspector using bootstrapping [Leung/Z.’91]

▪ Start with suboptimal schedule by sectioning,
use this to execute the inspector → refined schedule

74 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Some references on Dependence Analysis,

Loop optimizations and Transformations

▪ H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.

▪ M. Wolfe: High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

▪ R. Allen, K. Kennedy: Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

▪ C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

▪ A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for
automatic paral-lelization. Int. J. on Parallel Programming,
2013.

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Questions?

76C. Kessler, IDA, Linköping University

Some references on Dependence Analysis,

Loop optimizations and Transformations

▪ H. Zima, B. Chapman: Supercompilers for Parallel and Vector Computers.
Addison-Wesley / ACM press, 1990.

▪ M. Wolfe: High-Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

▪ R. Allen, K. Kennedy: Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

▪ C. Kessler: Pattern-driven automatic parallelization.
Scientific Programming 5:251-274, 1996.

▪ A. Shafiee-Sarvestani, E. Hansson, C. Kessler:
Extensible recognition of algorithmic patterns in DSP programs for automatic
parallelization. Int. J. on Parallel Programming, 2013.

Frameworks

▪ Polly

▪ Cloog

▪ PluTo polyhedral transformation framework:
An automatic parallelizer and locality optimizer for affine loop nests
http://pluto-compiler.sourceforge.net/

77 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Polyhedral Compilation Frameworks

▪ Closely related to (parametric) integer programming

▪ PIPS, PIPlib

▪ Paul Feautrier: Dataflow Analysis of Array and Scalar References.
International Journal of Parallel Programming, 1991

▪ and many others

More recent work e.g.

▪ Polly for LLVM: https://polly.llvm.org/

▪ PluTo

▪ U. Bondhugula, PhD thesis, 2008:
https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

▪ Cloog

▪ for code generation (scanning a polyhedron, given iteration domain
bounds and a schedule)

▪ http://www.cloog.org

▪ Polybench polyhedral benchmark suite

▪ Annual IMPACT workshop series at HiPEAC conference

78 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköping University

Some references on run-time parallelization

▪ R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

▪ D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

▪ R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley: Principles of run-time support
for parallel processors, Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

▪ J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman: Runtime Scheduling and
Execution of Loops on Message Passing Machines, Journal on Parallel and Distr. Computing
8 (1990): 303-312.

▪ J. Saltz, R. Mirchandaney: The preprocessed doacross loop. Proc. ICPP-1991 Int. Conf. on
Parallel Processing.

▪ S. Leung, J. Zahorjan: Improving the performance of run-time parallelization. Proc. ACM
PPoPP-1993, pp. 83-91.

▪ Lawrence Rauchwerger, David Padua: The Privatizing DOALL Test: A Run-Time Technique
for DOALL Loop Identification and Array Privatization. Proc. ACM Int. Conf. on
Supercomputing, July 1994, pp. 33-45.

▪ Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization. Proc. ACM SIGPLAN PLDI-95,
1995, pp. 218-232.

	Slide 1: Optimization and Parallelization of Sequential Programs Introduction to Data Dependence Analysis
	Slide 2: Outline
	Slide 3: Foundations: Control and Data Dependence
	Slide 4: Foundations: Control and Data Dependence
	Slide 5: Dependence Graph
	Slide 6: Data Dependence Graph
	Slide 7: Example
	Slide 8: Why Loop Optimization and Parallelization?
	Slide 9: Data Dependence Analysis for Loops
	Slide 10: Data Dependence Analysis – Overview
	Slide 11: Precedence relation between statements
	Slide 12: Loop Iteration Space
	Slide 13: Example
	Slide 14: Loop Normalization
	Slide 15: Dependence Distance and Direction
	Slide 16: Dependence Equation System
	Slide 17: Linear Diophantine Equations
	Slide 18: Dependence Testing, 1: GCD-Test
	Slide 19: For multidimensional arrays?
	Slide 20: Survey of Dependence Tests
	Slide 21: Loop Transformations and Parallelization
	Slide 22: Loop Optimizations – General Issues
	Slide 23: Some important loop transformations
	Slide 24: Loop Invariant Code Hoisting
	Slide 25: Loop Unrolling
	Slide 26: Loop Unrolling
	Slide 27: Loop Unrolling with Unknown Upper Bound
	Slide 28: Loop Unroll-And-Jam
	Slide 29: Loop Peeling
	Slide 30: Loop Interchange (1)
	Slide 31: Recall: Loop-Carried Data Dependences
	Slide 32: Loop Interchange (2)
	Slide 33: Loop Interchange (3)
	Slide 34: Loop Fusion
	Slide 35: Loop Fusion – Index variable name does not matter
	Slide 36: Special Case: Kernel Fusion for GPU
	Slide 37: Loop Distribution (a.k.a. Loop Fission)
	Slide 38: Loop Iteration Reordering
	Slide 39: Loop Parallelization
	Slide 40: Remark on Loop Parallelization
	Slide 41: Strip Mining / Loop Blocking
	Slide 42: Loop (Nest) Tiling
	Slide 43: Loop (Nest) Tiling
	Slide 44: Tiled Matrix-Matrix Multiplication (1)
	Slide 45: Tiled Matrix-Matrix Multiplication (2)
	Slide 46: Loop (Nest) Tiling (cont.)
	Slide 47: Remark on Locality Transformations
	Slide 48: Loop Nest Flattening / Linearization
	Slide 49: Index Set Splitting
	Slide 50: Loop Unswitching
	Slide 51: Scalar Expansion / Array Privatization
	Slide 52: Idiom recognition and algorithm replacement
	Slide 53: Polyhedral / Polytope Model
	Slide 54: Polyhedral Example: Loop Nest Skewing and Parallelization
	Slide 55: Concluding Remarks
	Slide 56: Remark on static analyzability (1)
	Slide 57: Remark on static analyzability (2)
	Slide 58: Outlook: Runtime Parallelization
	Slide 59: Run-Time Parallelization
	Slide 60: Goal of run-time parallelization
	Slide 61: Overview
	Slide 62: DOACROSS Parallelization
	Slide 63: Inspector-Executor Technique (1)
	Slide 64: Inspector-Executor Technique (2)
	Slide 65: Inspector-Executor Technique (3)
	Slide 66: Inspector-Executor Technique (4)
	Slide 74: Some references on Dependence Analysis, Loop optimizations and Transformations
	Slide 75: Questions?
	Slide 76: Some references on Dependence Analysis, Loop optimizations and Transformations
	Slide 77: Polyhedral Compilation Frameworks
	Slide 78: Some references on run-time parallelization

