## Outline

- Introduction to SSA
- Construction, Destruction
- How to capture analysis results
- Optimizations
- Classic analyses and optimizations on SSA representations
- Heap analyses and optimizations


3

5


$$
\mathbf{a}+\mathbf{b}
$$



ㄷ

x


Context-sensitive analysis revisited

- Distinguish different call context of a method
- In general: Distinguish different execution path ending at and getting joined at a program point
- Exponentially (in program size) many path in a sequential program
" Exponentially many analysis values
- (Let away the problem of context sensitive analysis) How to capture the context-sensitive results efficiently?


Context-sensitive Data flow analysis



Concept of $\chi$ terms


6

## Advantages of $\chi$-Terms

- Compact representation of context sensitive information
- Delayed widening (recall abstract interpretation) of terms until no more memory no unnecessary loss of information
$\chi_{3}\left(\chi_{2}\left(\chi_{1}(4,5), \chi_{1}(5,6)\right), \chi_{2}\left(\chi_{1}(4,5), 6\right)\right)$ $\chi_{3}\left(\chi_{2}(\{4,5\},\{5,6\}), \chi_{2}(\{4,5\}, 6)\right) \sqsubseteq$ $\chi_{3}(\{4,5,6\},\{4,5,6\})=\{4,5,6\} \sqsubseteq[4,6] \sqsubseteq \mathrm{T}$
- $\chi$-Terms are implementation of decision diagrams
- Adaptation of OBDD implementation techniques.
- Symbolic computation with $\chi$-terms (simplification of terms),
- Transition of the idea of SSA $\phi$-function to data-flow values
- Particularly interesting for address values in order to distinguish memory partitions as long as possible


## DFA on SSA (cont.)

- Provided that transfer functions are monotone: $x \leq y \Rightarrow T_{n}(x)$ $\leq T_{n}(y)$ with $x, y \in U_{1} \times \ldots \times U_{k}$ and $\leq$ defined element-wise with $\subseteq$ of the respective analysis values $U_{i}$
- The following iteration terminates in a unique fixed point
* Initialize the input of each node the SSA graph with the smallest (bottom) element of the Lattice/CPO corresponding its abstract semantics type
- Initialize the start nodes of the SSA graph with proper abstract values of the corresponding its abstract types
- Attach each node with its corresponding transfer function
- Compute abstract output values of the nodes
- Any fair random selection of nodes terminates
- Fewer updates use SCC and interval analysis to determine a traversal strategy, backward problems analyzed analogously)


## Data-Flow Analyses (DFA) on SSA

- Each SSA node type $n$ has a concrete semantics [n],
- On execution of $n$, map inputs $i$ to outputs $o$ and $o=[n](i)$
inputs $i$ and outputs $o$ are records of typed values (P1)
- $[n]::$ type $\left(i_{1}\right) \times \ldots \times \operatorname{type}\left(i_{k}\right) \rightarrow \operatorname{type}(o 1) \times \ldots \times \operatorname{type}(o l)$
- Each static data-flow analysis abstracts from concrete semantics and values
- Abstract semantics $T_{n}$ is called transfer function of node type $n$
- On analysis of $n$, map abstract analysis inputs $a(i)$ to abstract analysis outputs $a(o)$ and $a(o)=T_{n}(a(i))$
- $T_{n}:: \operatorname{type}\left(a\left(i_{1}\right)\right) \times \ldots \times \operatorname{type}\left(a\left(i_{k}\right)\right) \rightarrow \operatorname{type}\left(a\left(o_{1}\right)\right) \times \ldots \times \operatorname{type}\left(a\left(o_{l}\right)\right)$
- For each abstract analysis semantics value representation $U=$ type $(a(\bullet))$
- analysis universe - there is a partial order relation $\subseteq$ and a meet
operation $\cup$ (supremum),
- $\subseteq: U \times U$
- $\cup: U \times U \rightarrow U$ with $\cup=T_{\phi}$
- $(U, \subseteq)$ defines a complete partial order


## Generalization to $\chi$-terms

- Given such a context-insensitive analysis (lattices for abstract values, set of transfer functions, initialization of start node) we can systematically construct a context-sensitive analysis
- $\chi$-term algebras X over abstract semantic values $a \in U$ introduced
- $a \in U \Rightarrow a \in \mathrm{X}_{U}$
- $t_{1}, t_{2} \in \mathrm{X} \Rightarrow \chi_{\mathrm{i}}\left(t_{1}, t_{2}\right) \in \mathrm{X}_{U}$
- Induces sensitive CPO for abstract values $\left(\mathrm{X}_{U}, \sqsubseteq\right)$ and for $a_{1}, a_{2} \in U$ and $t_{1}, t_{2}, t_{3}, t_{4} \in \mathrm{X}_{U}$ :
$a_{1} \subseteq a_{2} \Rightarrow a_{1} \sqsubseteq a_{2}$ $x_{i}\left(a_{1}, a_{2}\right) \subseteq a_{1} \cup a_{2}$ $t_{1} \sqsubseteq t_{3}, t_{2} \sqsubseteq t_{4} \Rightarrow \chi_{\mathrm{i}}\left(t_{1}, t_{2}\right) \subseteq \chi_{\mathrm{i}}\left(t_{3}, t_{4}\right)$
- New transfer functions on $X_{U}$ are induced


## New transfer functions

- $\phi$-node' s transfer functions:
- Insensitive: $T_{\phi}=\cup=a\left(i_{1}\right) \cup \ldots \cup a\left(i_{k}\right)$
- Sensitive: $S_{\phi}=\chi_{b}\left(a^{\prime}\left(i_{1}\right), \ldots a^{\prime}\left(i_{k}\right)\right)$ with $b$ block number of the $\phi$-node
- Ordinary operation's ( $\tau$ node's) transfer functions:
- Insensitive (w.l.o.g. binary operation): $T_{\tau}: U_{a} \times U_{b} \rightarrow U_{c}$
- Sensitive: $S_{\tau}: \mathrm{X}_{a} \times \mathrm{X}_{b} \rightarrow \mathrm{X}_{c}$ and for $a_{1}, a_{2} \in U_{a}, U_{b}$ and $t_{1}, t_{2} \in \mathrm{X}_{a}, \mathrm{X}_{b}$ :
$S_{\tau}\left(a_{1}, a_{2}\right)=T_{\tau}\left(a_{1}, a_{2}\right)$
$S_{\tau}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{y}\left(t_{3}, t_{4}\right)\right)=\chi_{k}\left(S_{\tau}\left(\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, 1\right), \operatorname{cof}\left(\chi_{y}\left(t_{3}, t_{4}\right), \chi_{k}, 1\right)\right)\right.$, $\left.S_{\tau}\left(\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, 2\right), \operatorname{cof}\left(\chi_{y}\left(t_{3}, t_{4}\right), \chi_{k}, 2\right)\right)\right)$
with $k$ larger of $x, y$ and cof the co-factorization

Sensitive Transfer Schema (case a)


## Co-factorization

- $\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, i\right)$ selects the $i$-th branch of a $\chi$-term if $\chi_{x}=\chi_{k}$ and returns the whole $\chi$-term, otherwise
- $\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, 1\right) \quad=t_{1} \quad$ iff $k=x$ (case a)
- $\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, 2\right) \quad=t_{2} \quad$ iff $k=x$ (case a)
- $\operatorname{cof}\left(\chi_{x}\left(t_{1}, t_{2}\right), \chi_{k}, \mathrm{i}\right) \quad=\chi_{x}\left(t_{1}, t_{2}\right) \quad$ iff $k>x$ (case b)


13

## Example revisited: insensitive

- SSA node $\oplus$
- Semantic
- $[\oplus]::$ Int $\times$ Int $\rightarrow$ Int
- $[\oplus](a, b)=a+b$
- Abstract Int values $\{\perp, 1,2, \ldots$, maxint, $T\}$
- Context-insensitive transfer function:
- $T_{\oplus}(\perp, x)=T_{\oplus}(x, \perp)=\perp$
- $T_{\oplus}(\mathrm{T}, x)=T_{\oplus}(x, \mathrm{~T})=\mathrm{T}$
- $T_{\oplus}(a, b)=[\oplus](a, b)=a+b$ for $a, b \in \operatorname{Int}$
- Context-insensitive meet function
- $T_{\phi}(\perp, x)=T_{\phi}(x, \perp)=x$
- $T_{\phi}(\mathrm{T}, x)=T_{\phi}(x, \mathrm{~T})=\mathrm{T}$
- $T_{\phi}(x, x)=x$
- $T_{\phi}(x, y)=\mathrm{T}$

15

## Context-sensitive $\mathrm{a} \oplus \mathrm{b}$

$S_{\oplus}\left(\chi_{3}\left(\chi_{1}(1,2), \chi_{2}\left(x_{1}(1,2), 2\right)\right), \chi_{2}(3,4)\right)$
$=\chi_{3}\left(S_{\oplus}\left(\operatorname{cof}\left(\chi_{3}\left(\chi_{1}(1,2), \chi_{2}\left(\chi_{1}(1,2), 2\right)\right), \chi_{3}, 1\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{3}, 1\right)\right)\right.$,
$\left.S_{\oplus}\left(\operatorname{cof}\left(\chi_{3}\left(\chi_{1}(1,2), \chi_{2}\left(\chi_{1}(1,2), 2\right)\right), \chi_{3}, 2\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{3}, 2\right)\right)\right)$
$=\chi_{3}\left(S_{\oplus}\left(\chi_{1}(1,2), \chi_{2}(3,4)\right)\right.$,
$\left.S_{\oplus}\left(\chi_{2}\left(\chi_{1}(1,2), 2\right), \chi_{2}(3,4)\right)\right)$
$=\chi_{3}\left(\chi_{2}\left(S_{\oplus}\left(\operatorname{cof}\left(\chi_{1}(1,2), \chi_{2}, 1\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{2}, 1\right)\right)\right.\right.$,
$\left.S_{\oplus}\left(\operatorname{cof}\left(\chi_{1}(1,2), \chi_{2}, 2\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{2}, 2\right)\right)\right)$
$\chi_{2}\left(S_{\oplus}\left(\operatorname{cof}\left(\chi_{2}\left(\chi_{1}(1,2), 2\right), \chi_{2}, 1\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{2}, 1\right)\right)\right.$,
$\left.\left.S_{\oplus}\left(\operatorname{cof}\left(\chi_{2}\left(\chi_{1}(1,2), 2\right), \chi_{2}, 2\right), \operatorname{cof}\left(\chi_{2}(3,4), \chi_{2}, 2\right)\right)\right)\right)$
$=\chi_{3}\left(\chi_{2}\left(S_{\oplus}\left(\chi_{1}(1,2), 3\right)\right.\right.$,

$$
\begin{aligned}
& \underset{x_{2}}{S_{\oplus}\left(x_{1}(1,2), 4\right)}{ }_{\left(x_{1}(1,2), 3\right),}, \\
& \left.S_{\oplus}(2,4)\right) \text { ) }
\end{aligned}
$$

Context-sensitive $\phi$-node transfer


Context-sensitive $\mathrm{a} \oplus \mathrm{b}$ (cont.)


## Example

Given the SSA fragment on the left

- Perform context-insensitive data-flow analysis (using the definitions on the previous slides). What is the the value at the entry of node $x$ ?
- Perform context-sensitive dataflow analysis (using the definitions on the previous slides). What is the the value at the entry of node $x$ ?
- Why is the former less precise than the latter?
- Construct a scenario where you could take advantage of that precision in an optimization!


19

Example (cont'd)

- Context-insensitive, initial situation:

- Context-insensitive, after first iteration:


21

Example (cont'd)

- Context-sensitive, initial situation:



## Example (cont'd)

- Context-insensitive, after second iteration (stable):


22

## Example (cont'd)

- Context-sensitive, after first iteration:
$S_{\oplus\left(\chi_{1}(1,1), 1\right)=}=$ $\chi_{1}\left(T_{\oplus(1,1)}, T_{\oplus(\perp, 1))}=\right.$ $\chi_{1}(2, \perp)$


## Example (cont'd)

- Context-sensitive, after second iteration:



## Outline

- Introduction to SSA
- Construction, Destruction
- How to capture analysis results
- Optimizations
- Classic analyses and optimizations on SSA representations
- Heap analyses and optimizations


## Optimization: Implementation

- Legal transformations in SSA-Graphs:
- Simplifying transformations reduce the costs of a program
- Preparative transformations allow the application of simplifying transformations
- Using
- Algebraic Identities (e.g., Associative / Distributive law for certain operations)
Moving of operations
- Reduction of dependencies
- Optimization is a sequence of goal directed, legal simplifying and legal preparative transformations
- Legibility proven
- Locally by checking preconditions
- Due to static data-flow analyses


## Example (cont'd)

- Context-sensitive, after third iteration (stable):



## Analyses and Optimizations

- Analyses in Compiler Construction allow to safely perform optimizations
- Cost model: runtime of a program

Statically only conservative approximations

- Loop iterations

Conditional code
Even for linear code not known in advance

- Instruction scheduling
- Cache access is data dependen
- Instruction pipelining: execution time is not the sum of individual operations costs
- Alternative cost models
- memory size, power consumptions
- Same non-decidability problem as for execution time
- Caution: cost of a program $\neq$ sum of costs of its elements

Algebraic Identity: Elimination of Operations and its Inverse


Graph Rewrite Schema


31

31

Elimination of Duplicated Memory Operations


Algebraic Identity: Invariant Compares


Elimination of Memory Operation and its Inverse


32

Elimination of non-essential dependencies


34

## Associative Law



## Distributive Law




38

## Constant Folding

 or target algebra (if allowed by source language) 39

General: Moving arithmetic operations over $\phi$-functions


$$
\text { operations over } \phi \text {-functions }
$$

## Optimizations

- Strength reduction:
- Bauer \& Samelson 1959
- Replace expensive by cheep operations
- Loops contain multiplications with iteration variable,
- These operations could be replaced by add operations (Induction These ope
- One of the oldest optimizations: already in Fortran I-compiler (1954/55) and Algol 58/60-compiler
- Partial redundancy elimination (PRE):
- Morel \& Renvoise 1978
- Eliminate partially redundant computations
- SSA eliminates all static but not dynamic redundancies
- Problem on SSA: which is the best block to perform the computation
- Move loop invariant computations out of loops, into conditionals
- subsumes a number of simpler optimization


## Example: Strength reduction

```
for (i=0;i<n;i++){
    for (j=0;j<n;j++){
        b[i,j]=a[i,j]
    }
}
//Original loop body:
ao = i*n*d + j*d
aij = >a[0,0]<+ao
bo = i*n*d + j*d
bij = >b[0,0]<+bo
<bij> = <aij>
```

adda=>a[0,0]< addb $=>b[0,0]<$ $\mathrm{d}=4$
addend=adda+n*n*d;
LOOP: jump (addend==adda) END <addb>=<adda> adda=adda+d $a d d b=a d d b+d$ jump LOOP
END: exit

## Induction Analysis Idea

- Find Induction variable $i$ for a loop using DFA
- $i$ is induction variable if in loop only assignments of form $i:=i+c$ with loop constant $c$ or, recursively $i:=c^{*} i^{\prime}+c^{\prime \prime}$ with $i^{\prime}$ induction variable and loop constants $c^{\prime}, c^{n}$
- $c$ is a loop constant iff $c$ does not change value in loop, i.e
- $c$ is static constant,
- $c$ defined in enclosing loop
- Example (cont'd), consider the inner loop:
for ( $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$ ) $\{\ldots\}$
- Direct induction variable: $\mathbf{j}$, as $\mathrm{j}=\mathrm{j}+1 \quad(c=1)$
- Indirect induction variable: $\mathrm{ao}=\mathrm{j} * \mathrm{n} * \mathrm{~d}+\mathrm{j} * \mathrm{~d} \quad\left(c^{\prime}=\mathrm{d}, c^{\prime \prime}=\mathrm{i} * \mathrm{n} * \mathrm{~d}\right)$
- Note that $i * n * d$ and $d$ are loop constants for the inner loop


## Induction Transformation Idea

- Transformation goal: values of induction variables should grow linearly with iteration; add operations replace mu7t operations
- Transformation:
- Let $i_{0}$ initialization of $i$ and induction variables, $i:=i+c$ and
$i^{\prime}:=c^{\prime} *_{i}+c^{\prime \prime}$
- New variable ia initialized $i a:=c^{\prime} * i_{0}+c^{\prime \prime}$
- At loop end insert $i a=i a+c^{\prime *} c$
- Replace consistently operands $i^{\prime}$ by $i a$
- Remove all assignments to $i, i^{\prime}$ and $i, i^{\prime}$ themselves if $i$ is not used elsewhere (DFA)
- Example:
- Before: loop ao $=\mathrm{i} * \mathrm{n} * \mathrm{~d}+\mathrm{j} * \mathrm{~d} . . . \mathrm{j}++$ end loop
- After: aoa $=i^{*} \mathrm{n}$ *d loop.. aoa $=$ aoa +d end loop


Induction Variables (Schematic)

i
a

49

Invariant Comparison ( $\times 4$ ) then constant folding and removal of operation and its invariant $(/ 4 \times 4)$


51

Removal of operation and its inverse


51
Distributive Law then constant folding


Move + over $\phi$-function


52

Associative Law


Removal of operation and its inverse


56

55

Invariant Comparison ( $+a_{0}$ ) then removal of operation and its inverse


## Result



59

58
Rearranging the drawing


59
60


61

## Observations

- Order of optimizations matters in theory:
- Application of one optimization might destroy precondition of another
- Optimization can ruin the effects of the previous once
- Optimal order unclear (in scientific papers usual statements like: "Assume my optimization is the last ..."
- Simultaneous optimization too complex
- Usually, first optimization gives $15 \%$ sum of remaining $5 \%$, independent of the chosen optimizations
- Might differ in certain application domains, e.g., in numerical applications operator simplification gives factor $>2$, cache optimization factor 2-5


## Further Optimizations

- Constant evaluation (simple transformation rule)
- Constant propagation (iterative application of that rule)
- Copy propagation (on SSA construction)
- Dead code elimination (on SSA construction)
- Common subexpression elimination (on SSA construction)
- Specialization of basic blocks, procedures, i.e.cloning
- Procedure inlining
- Control flow simplifications
- Loop transformations (Splitting/merging/unrolling)
- Bound check eliminations
- Cache optimizations (array access, object layout)
- Parallelization
- 


## Outline

- Introduction to SSA
- Construction, Destruction
- How to capture analysis results
- Optimizations
- Classic analyses and optimizations on SSA representations
- Heap analyses and optimizations


## Optimizations on Memory

- Elimination of memory accesses.
- Elimination of object creations.
- Elimination nonessential dependencies.
- Those are normalizing transformations for further analyses
- Nothing new under the sun:
- Define abstract values, addresses, memory
- Define context-insensitive transfer functions for memory relevant SSA nodes (Load, Store, Call) (discussed already)
- Generalization to context-sensitive analyses (discussed already)
- Optimizations as graph transformations (discussed already)


## Abstract values, addresses, memory

- References and values
- allocation site lattice $P^{O}$ abstracts from objects 0
- arbitrary lattice $X$ abstracts from values like Integer or Boolean
- abstract heap memory $M$ :
- $0 \times \mathrm{F} \rightarrow \mathscr{P}^{O} \quad$ ( F set of fields with reference object semantics)
- $\mathrm{O} \times \mathrm{V} \rightarrow \mathrm{X} \quad$ (V set of fields with value semantics)
- Arrays
- Treated as objects
- Abstract heap memory $M$ :
- $0 \times \mathrm{F}_{[1} \times \mathrm{I} \rightarrow 0$ ( $\mathrm{F}_{[\mathrm{c}}$ set of fields with type array of reference object)
- $\mathrm{O} \times \mathrm{V}_{[]} \times \mathrm{I} \rightarrow \mathrm{X}$ ( $\mathrm{V}_{[]}$set of fields with type array of value $)$
- I an arbitrary integer value lattice (e.g., constant or interval lattice)
- Abstract address $A d d r \subseteq P^{0} \times \mathrm{F} \times \mathrm{I}$ (F set of field names)
- object-field-(index) triples where index might be ignored


## Updates of Memory

- Given an abstract object-field of a store operation
- In general, this abstract object points to more than one real memory cell
- A store operation overwrites only one of these cells, all others contain the same value
- Hence, a store to an abstract object-field adds a new possible (abstract) value - weak update
- Only if guaranteed that abstract object-field-(index) matches one and only one concrete address, a new (abstract) value overwrites the old value - strong update
- Auxiliary function
update(mem, o, $f, v) \quad=v \quad$ (if strong update possible)
$=\operatorname{mem}(o, f) \cup v \quad$ (otherwise, weak update)

Transfer functions (insensitive, no arrays)

- $T_{\text {store, }, \mathrm{f}}(\mathrm{mem}, a d d r, v)$ :
(update(mem, $\left.o_{1}, f, v\right) \ldots$ update(mem, $\left.o_{k}, f, v\right)$ )
$a d d r=\left\{\begin{array}{lll}o_{1} & \ldots & o_{k}\end{array}\right\}$

- $T_{\text {load, } \mathrm{f}}(m e m, a d d r)$ :
$\left(\right.$ mem, $\left.\operatorname{mem}\left(o_{1}\right) \cup \ldots \cup \operatorname{mem}\left(o_{k}\right)\right)$
$a d d r=\left\{o_{1} \ldots o_{k}\right\}$

- $T_{\text {alloc }(\text { type,id })}($ mem $)$ :
$\left.\left.\left(\operatorname{mem}\left(o_{i d}, f_{1}\right) \mapsto \perp\right] \ldots \operatorname{mem}\left(o_{i d}, f_{\mathrm{k}}\right) \mapsto \perp\right],\left\{o_{i d}\right\}\right)$
$\left\{f_{1} \ldots f_{k}\right\}$ fields of Type



85


86

Initialization: disjoint memory guarantied


87

## Value numbering proofs equivalence



89

Memory objects replaced by values


## Example revisited

Optimization only possible due to joint application of single techniques:

- Interprocedural analysis
- Elimination of polymorphism
- Elimination of nonessential dependencies
- Elimination von memory operations
- Traditional optimizations



## Outline

- Introduction to SSA
- Construction, Destruction
- How to capture analysis results
- Optimizations
- Classic analyses and optimizations on SSA representations
- Heap analyses and optimizations

