
1

Inter-Procedural Analysis and
Points-to Analysis

Welf Löwe
Welf.Lowe@lnu.se

1

2

Outline
Part 1: Data Flow Analysis and Abstract Interpretation
Part 2: Inter-procedural and Points-to analysis
Part 3: Static Single Assignment (SSA) form
Part 4: SSA based optimizations

2

3

Outline Part 2
§ Inter-Procedural analysis
§ Call graph construction
§ Points to analysis
§ Points to analysis (fast and precise, not today – requires

SSA)

3

4

Inter-Procedural Analysis
§ What is inter-procedural dataflow analysis

§ DFA that propagates dataflow values over procedure boundaries
§ Finds the impact of calls to caller and callee

§ Tasks:
§ Determine a conservative approximation of the called procedures for all call

sites
• Referred to as Call Graph construction (more general: Points-to analysis)
• Tricky in the presents of function pointers, polymorphism and procedure variables

§ Perform conservative dataflow analysis over basic-blocks of procedures
involved

§ Reason:
§ Allows new analysis questions (code inlining, removal of virtual calls)
§ For analysis questions with intra-procedural dataflow analyses, it is more

precise (dead code, code parallelization)
§ Precondition:

§ Complete program
§ No separate compilation
§ Hard for languages with dynamic code loading

4

5

Call / Member Reference Graph
§ A Call Graph is a rooted directed graph where the

nodes represent methods and constructors, and the
edges represent possible interactions (calls):
§ from a method/constructor (caller) to a

method/constructor (callee).
§ root of the graph is the main method.

§ Generalization: Member Reference Graph also
including fields (nodes) and read and write
accesses (edges).

5

6

Proper Call Graphs
§ A proper call graph is in addition

§ Conservative: Every call A.m() ® B.n() that may occur
in a run of the program is a part of the call graph

§ Connected: Every member that is a part of the graph is
reachable from the main method

§ Notice
§ We may have several entry points in cases where the

program in question is not complete.
• E.g., an implementation of an Event Listener interface will have

the Event Handler method as an additional entry point if we are
neglecting the Event Generator classes.

• Libraries miss a main method
§ In general, it is hard to compute, which classes/methods

may belong to a program because of dynamic class
loading.

6

2

7

Techniques for Inter-Procedural Analysis

§ Data structure used
§ Call graphs encoding the calls between the methods and
§ Basic block graphs or SSA graphs encoding the procedures/methods

§ Analysis technique
§ Inter-procedural DFA or
§ Simulated execution

7

8

Call and basic block graphs
§ Given call graph and a bunch of procedures/methods each

with a basic block graph
§ Idea for inter-procedural DFA: merge call and basic block

graphs:
§ Split call nodes (and hence basic blocks) into callBegin and callEnd

nodes
§ Connect callBegin with entry blocks of procedures called
§ Connect callEnd with exit blocks of procedures called

§ Entry (exit) block of main method gets start node of forward
(backwards) data flow analysis

§ Polymorphism is resolved by explicit dispatcher or by
several targets’

§ Inter-procedural data flow analysis now (technically)
possible as before for intra-procedural analysis

8

9

Merging call and basic block graphs

§ New node: begin and end of calls distinguished
§ Edges: connection between caller and callees

…

Return

v‘

Mout

...

...

Call Begin

Call End

Min

M in a
...

v
Start

End

Call

v‘M‘
...

M a ...v

Mout

M a ...v

M‘
v‘

...

9

10

Example Program
public class One {

public static void main(String[] args) {
int x=0; x=r(x); x=q(x); x=r(x);
System.out.println("Result: "+ x);

}
static int r(int x) {
if (x==1) x=s(x); return(x);

}
static int q(int x) {
if (x==1) x=s(x); else x=t(x); return(x);

}
static int s(int x) {
if (x==0) x=r(x); return(x);

}
static int t(int x) {
return(x+1);

}

}

10

11

Example

start

callB

callE

callB

callE

callB

callE

end

start

callB

callE

end

B

start

callB

callE

end

B

callB

callE

start

callB

callE

end

not B

start

end

void main(…) { int x=0; x=r(x); x=q(x); x=r(x);}

int r(int x) { if (x==1) x=s(x); return(x);}

int q(int x) { if (x==1) x=s(x); else x=t(x); return(x);}

int s(int x) { if (x==0) x=r(x); return(x);}

int t(int x) { return(x+1);}

11

12

Unrealizable Path
§ Data gets propagated along path that never occur in any

program run:
§ Calls to one method returning to another method
§ CallBegin ® Method Start ® Method End ® CallEnd

§ Makes analysis (too) conservative
§ Still correct (and still, in general, more precise than

corresponding intra-procedural analyses)
§ Call-context-sensitive analysis mitigates this problem

12

3

13

Example: Unrealizable Path

start

callB

callE

callB

callE

callB

callE

end

start

callB

callE

end

B

start

callB

callE

end

B

callB

callE

start

callB

callE

end

not B

start

end

void main(…) { int x=0; x=r(x); x=q(x); x=r(x);}

int r(int x) { if (x==1) x=s(x); return(x);}

int q(int x) { if (x==1) x=s(x); else x=t(x); return(x);}

int s(int x) { if (x==0) x=r(x); return(x);}

int t(int x) { return(x+1);}

13

14

Simulated Execution
§ Starts with analyzing main
§ Interleaving of analyze method and the transfer function of calls’
§ A method (intra-procedural analysis):

§ propagates data values analog the edges in basic-block graph
§ updates the analysis values in the nodes according to their transfer functions
§ If node type is a call then …

§ Calls’ transfer function and only if the target method input changed:
§ Interrupts the processing of a caller method
§ Propagates arguments (v1…vn) to the all callees
§ Processes the callees (one by one) completely
§ Iterate to local fixed point in case of recursive calls
§ Propagates back and merges (supremum) the results r of the callees
§ Continue processing the caller method …

14

15

Comparison
§ Advantages of Simulated Execution

§ Fewer non realizable path, therefore:
§ More precise
§ Faster

§ Disadvantages of Simulated Execution
§ Harder to implement
§ More complex handling of recursive calls
§ Leaves the theoretical frameworks of monotone DFA and Abstract

Interpretation

15

16

Outline
§ Inter-Procedural analysis
§ Call graph construction
§ Points to analysis
§ Points to analysis (fast and precise, not today – requires

SSA)

16

17

Call Graph Construction in Reality
§ The actual implementation of a call graph algorithm

involves a lot of language specific considerations
and exceptions to the basic rules. For example:
§ Field initialization and initialization blocks
§ Exceptions
§ Calls involving inner classes often need some special

attention.
§ How to handle possible call back situations involving

external classes
§ Class loading

17

18

Why are we interested?
§ Resolving call sites and field accesses i.e., constructing a

precise call graph is a prerequisite for any analysis that
requires inter-procedural control-flow information. For
example, constant folding and common sub-expression
elimination, and Points-to analysis.

§ Elimination of dead code i.e., classes never loaded, no
objects created from, and methods never called.

§ Elimination of polymorphism: usage refers to a statically
known method i.e., only one target is possible.

§ Detection of design patterns (e.g., singletons usage refers to
a single object, not to a set of objects of the same type) and
anti-patterns.

§ Architecture recovery i.e., the reconstruction of a system
architecture from code

18

4

19

Call Graphs: The Basic Problem
§ The difficult task of any call (member) graph

construction algorithm is to approximate the set of
methods (members) that can be targeted at
different call sites (member reference points).
§ What is the target of call site a.m()
§ Depends on classes of objects potentially bound to

designator expression a?
§ Not decidable, in general, because:

§ In general, we do not have exact control flow information.
§ In general, we can not resolve the polymorphic calls.
§ Dynamic class loading. This problem is in some sense

more problematic since, it is hard to make useful
conservative approximations.

19

20

Declared Target
§ Simple call graphs can be calculated based on the

declared targets of calls.
§ The declared target of a call a.m() occurring in a

method definition X.x() is the method m() in the
declared type of the variable a in the scope of
X.x().

§ When using declared targets for call graph
construction, connectivity can be achieved by …
… inserting (virtual) calls from super to subtype method

declarations
… keeping (potentially) dynamically loaded method nodes

reachable from the main method (or as additional entry
points).

§ Class objects (static objects) are treated as objects

20

22

Generalized Call Graphs
§ A simple call graph is a directed graph G=(V, E)

§ vertices V = Class.m are pairs of classes Class and methods /
constructors / fields m

§ edges E represent usage: let a and b be two objects: a uses b (in a
method / constructor execution x of a occurs a call / access to a
method / constructor / field y of b) Û (Class(a).x, Class(b).y) Î E

§ A generalized call graph is a directed graph G=(V, E)
§ vertices V = N(o).m are pairs of finite abstractions of runtime objects o

using a so called called name schema N(o) and methods /
constructors / fields m

§ edges E represent usage: let a and b be two objects: a uses b (in a
method / constructor execution x of a occurs a call / access to a
method / constructor / field y of b) Û (N(a).x, N(b).y) Î E

§ A name schema N is an abstraction function with a finite co-
domain

§ The Class(o) is a special name schema and, hence,
describes a special type of call graphs

22

23

Name Schemata
§ One can abstract from objects by distinguishing:

§ Just heap and stack (decidable, not relevant)
§ Objects with same class (not decidable, relevant, efficient

approximations)
§ Objects with same class but syntactic different creation

program point (not decidable, relevant, expensive
approximations)

§ Objects with same creation program point but with
syntactic different path to that creation program point (not
decidable, relevant, approximations exponential in
execution context)

§ Different objects (not decidable)
§ …

23

24

Simplification: N(o)=Class(o)
§ For a first try, we consider only one name schema:

§ Distinguish objects of different classes / types
§ Formally, N(o)=Class(o)

§ Consequently, all these call graphs are …
§ a directed graphs G=(V,E)
§ vertices V are pairs of classes and methods /

constructors / fields
§ edges E represent usage: let A and B be two classes: A.x

uses B.y (i.e., an instance of A executes x using a method
/ constructor / field y instance of B)
Û (A.x , B.y) Î E

§ Not decidable, we need to find optimistic and
conservative approximations

24

25

Decidability of a Call Graph
§ Not decidable in general: reduction from

termination problem
§ Add a new call (not used anywhere else) before the

program exit
§ If you could decide the exact call graph, you knew if the

program terminates or not

§ Decidable if name schema is abstract enough (but
then not relevant in practice)

25

5

26

Approximations
§ Simple call graph constitutes a conservative

approximation
§ from static semantic analysis
§ declared class references in a class A and their

subtypes are potentially used in A
§ a.x really uses b.y Þ (Class(a).x, Class(b).y) Î E

§ Simple optimistic approximation
§ from profiling
§ actually used class references in an execution of

class A (a number of executions) are guaranteed
uses in A

§ a.x really uses b.y Ü (N(a).x, N(b).y) Î E

26

27

Algorithms to discuss
All algorithms these are conservative:
§ Reachability Analysis – RA
§ Class Hierarchy Analysis – CHA
§ Rapid Type Analysis – RTA
§ …
§ (context-insensitive) Control Flow Analysis – 0-CFA
§ (k-context-sensitive) Control Flow Analysis – k-CFA

27

28

Reachability Analysis – RA
§ Worklist algorithm maintaining reachable methods

§ initially main routine in the Main class is reachable
§ For this and the following algorithms, we understand that

§ Member (field, method, constructor) names n stand for complete
signatures

§ R denotes the worklist and finally reachable members
§ R may contain fields and methods/constructors. However, only

methods/constructors may contain other field accesses/call sites for
further processing.

§ RA:
§ Main.main Î R (maybe some other entry points too)
§ M.m Î R and e.n is a field access / call site in m
Þ " N Î Program: N.n Î R Ù (M.m, N.n) Î E

28

29

+strI

I

+main

+n

Delegation

Example

+m

A

B

+m

C

+m

29

30

Example
public class Delegation {

public static void main(String args[]) {

A i = new B();

i.m();

Delegation.n();}

public static void n() {

new C().m();}
}

abstract class I {

public String strI = "Printing I string";

public void m();

}

class A extends I {

public void m() {System.out.println(strI);}

}

class B extends A {

public B() {super();}

public void m();

}

class C extends A {
public void m() {System.out.println("Printing C string");}

}

30

31

RA on Example

Delegation.main

Delegation.n

B.new A.init I.init

I.m

A.m

C.m

C.new

B.m PrintStream.println

31

6

32

Class Hierarchy Analysis – CHA
§ Refinement of RA

§ Main.main Î R
§ M.m Î R

§ e.n is a field access / call site in M.m
§ type(e) is the static (declared) type of access path expression e
§ subtype(type(e)) is the set of (declared) sub-types of type(e)
Þ" N Î subtype(type(e)): N.n Î R Ù (M.m, N.n) Î E

32

33

Example
public class Delegation {

public static void main(String args[]) {

A i = new B();
i.m();

Delegation.n();}

public static void n() {
new C().m();}

}

abstract class I {

public String strI = "Printing I string";

public void m();

}

class A extends I {

public void m() {System.out.println(strI);}

}

class B extends A {

public B() {super();}

}

class C extends A {

public void m() {System.out.println("Printing C string");}

}

33

34

Delegation.main

Delegation.n

B.new A.init I.init

I.m

A.m

C.m

C.new

B.m

CHA on Example

PrintStream.println

34

35

CHA on Example

Delegation.main

Delegation.n

B.new A.init I.init

A.m

C.m

C.new

B.m PrintStream.println

35

36

Rapid Type Analysis – RTA
§ Still simple and fast refinement of CHA
§ Maintains reachable methods R and instantiated classes S
§ Fixed point iteration: whenever S changes, we revisit the worklist R

§ Main.main Î R
§ For all class (static) methods s : class(s) Î S
§ M.m Î R

§ new N is a constructor call site in M.m
ÞN Î S ÙN.newÎ R Ù (M.m, N.new) Î E

§ e.n is a field access / call site in M.m
Þ" N Î subtype(type(e)) ÙN Î S: N.n Î R Ù (M.m,N.n) Î E

36

37

Example
public class Delegation {

public static void main(String args[]) {

A i = new B();
i.m();

Delegation.n();}

public static void n() {
new C().m();}

}

abstract class I {

public String strI = "Printing I string";

public void m();

}
class A extends I {

public void m() {System.out.println(strI);}

}
class B extends A {

public B() {super();}

}

class C extends A {

public void m() {System.out.println("Printing C string");}

}

37

7

38

RTA on Example

Delegation.main

Delegation.n

B.new A.init I.init

A.m

C.m

C.new

B.m PrintStream.println

38

39

RTA on Example

Delegation.main

Delegation.n

B.new A.init I.init

C.m

C.new

B.m PrintStream.println

39

40

Context-Insensitive Control Flow
Analysis – 0-CFA

§ RTA assumes that any constructed class object of a type can be bound
to an access path expression of the same type

§ Considering the control flow of the program, the set of reaching objects
further reduces

§ Example:

main() { class A {
A a = new A(); public void n(){…}

a.n(); }
sub();

}
sub(){ class B extends A

A a = new B(); public void n(){…}

a.n(); }
}

40

41

Context-Sensitive Control Flow
Analysis – k-CFA

§ 0-CFA merges objects that can reach an access path expression
(designator) via different call paths

§ One can do better when distinguishing the objects that can reach an
access path expression via paths differing in the last k nodes of the call
paths
main() { class A {

A a = new A(); public void n(){…}

X.dispatch(a); }
sub();

}
sub(){ class B extends A

A a = new B(); public void n(){…}
X.dispatch(a); }

}
class X {

public static void dispatch(A a){ a.n() }
}

41

42

Control Flow Analysis
§ Requires data flow analysis
§ 0-CFA: has already high memory consumption in practice

(still practical)
§ k-CFA: is exponential in k

§ Requires a refined name schema (and, hence, even more memory)
§ Does not scale in practice (if extensively used)
§ Solutions idea:

• Make k adaptive over the analysis
• Focus with large k on specific program parts
• Reduce k to min if analysis time / space not sufficient or if different

contexts give the same result

42

43

Order on Algorithms

§ Increasing complexity
§ Increasing accuracy

§ Analyses between RTA and 0-CFA?

RA CHA RTA 0-CFA 1-CFA …

Complexity & Accuracy

43

8

44

Analyses Between RTA and 0-CFA
§ RTA uses one set S of instantiated classes
§ Idea:

§ Distinguish different sets of instantiated classes reaching a specific
field or method

§ Attach them to these fields, methods
§ Gives a more precise “local” view on object types possibly bound to

the fields or methods
§ Regards the control flow between methods but
§ Disregards the control flow within methods

§ Requires fixed point iteration

44

45

Example
Class M {

// SM.m = {A, A’, B’, Nstatic}
m(){

A a; B b;
if (?)

a=new A’();
else

a=new A();
b=N.n(a); …

}
}

Class N {
// SN.n = {A’, B, B’, Nstatic}
static n(A’ a):B’ {

new B(); …
return new B’();

}
}

A

A’

B

B’

45

46

Notations
§ Subtypes of a set of types:

subtype(S) ::= È N Î S subtype(N)
§ Set of parameter types param(m) of a method m: all static

(declared) argument types of m excluding type(this)
§ Return type return(m) of a method m: the static (declared)

return type of m

46

47

Separated Type Analysis – XTA
§ Separate type sets Sm reaching methods m and fields x (treat

fields x like methods pairs set_x, get_x)

§ Main.main Î R
§ M.m Î R

§ For all class (static) methods s : class(s) Î SM.m
§ new N is a constructor call site in M.m

Þ N Î SM.m Ù N.new Î R Ù (M.m, N.new) Î E
§ e.n is a field access / call site in M.m

Þ " N Î subtype(type(e)) Ù N Î SM.m : N.n Î R Ù
subtype(param(N.n)) Ç SM.m Í SN.n Ù
subtype(result(N.n)) Ç SN.n Í SM.m Ù
(M.m, N.n) Î E

47

48

Example
public class Delegation {

public static void main(String args[]) {
A i = new B();
i.m();
Delegation.n();}

public static void n() {
new C().m();}

}
abstract class I {

public String strI = "Printing I string";
public void m();

}

class A extends I {

public void m() {System.out.println(strI);}
}

class B extends A {
public B() {super();}

}

class C extends A {

public void m() {System.out.println("Printing C string");}
}

48

49

XTA on Example

Delegation.main

Delegation.n

B.new A.init I.init

C.m

C.new

B.m PrintStream.println

49

9

50

XTA on Example

Delegation.main

Delegation.n

B.new A.init I.init

C.m

C.new

B.m PrintStream.println

50

51

RA vs XTA on Example

Delegation.main

Delegation.n

B.new A.init I.init

I.m

A.m

C.m

C.new

B.m PrintStream.println

51

52

Increasing complexity

§ Number of type separating sets S (M number of methods, F number of
fields):
§ CHA: 0
§ RTA: 1
§ XTA: M + F

§ Practical observations on benchmarks:
§ All algorithms RA…XTA scale (>1 Mio. Loc)
§ XTA one order of magnitude slower than RTA
§ Correlation to program size rather weak

RA CHA RTA 0-CFA 1-CFA …XTA

52

53

Increasing precision

§ Practical observations on benchmarks:
§ RTA as baseline: all instantiated (wherever) classes are available in

all methods
§ XTA on average:

• only ca. 10% of all classes are available in methods J
• < 3% fewer reachable methods L
• > 10% fewer call edges
• > 10% more monomorphic call targets

RA CHA RTA 0-CFA 1-CFA …XTA

53

54

Conclusion on Call Graphs so far
§ Approximations

§ Relatively fast, feasible for large systems
§ Relatively imprecise, conservative

§ What is a good enough approximation of certain client
analyses

§ Answer depends on client analyses (e.g., different answers
for software metrics and clustering vs. program
optimizations)

54

55

Outline
§ Inter-Procedural analysis
§ Call graph construction
§ Points to analysis
§ Points to analysis (fast and precise, not today – requires

SSA)

55

10

56

Client-Applications of Points-to Analysis
§ Points-to results can be used as input for several compiler related

activities. We refer to these activities as client-applications.
§ Resolve call sites and field accesses: Given the points-to set Pt(a) it is easy

to resolve possible targets of a call site a.m() and field accesses a.f.
§ A call site a.m() is said to be statically decidable if only one target is possible

(i.e. |Pt(a)| = 1). This information can be used to replace virtual calls
(requires dynamic lookup) with direct calls (no lookup necessary).

§ Inter-procedural control-flow: Similarly, resolving call sites and field accesses
is a prerequisite for any analysis that requires inter-procedural control-flow
information. For example, constant folding and common sub-expression
elimination.

§ Synchronization Removal: In multi-threaded programs each object has a
lock to ensure mutual exclusion. If we can identify thread-local objects
(objects only accessed from within the thread) their locks can be removed
and execution time reduced.

§ Static Garbage Collection: Method-local objects (objects only referenced
from within a given method) can be put on the stack rather than the heap
and these objects will be automatically de-allocated once a method
execution been completed.

56

57

Classic P2A: Introduction
§ We try to find all objects that each reference variable may point to (hold

a reference to) during an execution of the program.
§ Hence, to each reference variable v in a program we associate a set of

objects, denoted Pt(v), that contains all the objects that variable v may
point to. The set Pt(v) is called the points-to set of variable v.

§ Example:
A a,b,c;
X x,y;

s1:a = new A() ; // Pt (a) = {o1}
s2:b = new A() ; // Pt (b) = {o2}

b = a; // Pt (b) = {o1 , o2}
c = b; // Pt (c) = {o1 , o2}

§ Here oi means the object created at allocation site si.
§ After a completed analysis, each variable v is associated with a points-to

set Pt(v) containing a set of objects that it may refer to

57

58

Outline of the approach
Points-to analysis (as any DFA) requires:
1.Deciding upon a set of data values (analysis value

domain U)
2.Constructing a data flow graph which indicates the

flow of data.
3. Initialize the graph with data.
4.Propagate the data along the edges in the data flow

graph until a fixed point is reached.

58

59

Name Schema revisited
§ The number of objects appearing in a program is in general infinite

(countable), hence, we don't have a well-defined set of data values.
§ For example, consider the following situation

while (x > y) {
A a = new A() ;
…

}
The number of A objects is in cases like this impossible to decide. (Think
if x or y depended on some input values).

§ From now on, each object creation point (new A(), a.clone(),
“hello”) represents a unique abstract object (identified by the source
code location).

§ Replaces the simple declared-class-based name schema
§ Again, many run-time objects are mapped to a single abstract object.
§ Finitely many abstract objects

59

60

Object Transport as Set Constraints
§ Abstract objects can flow between variables due to assignments and

calls. Calls will be treated shortly.
§ Certain statements generate constraints between points-to sets. We will

consider:
l = r ! Pt(r) ⊆ Pt(l) (Assignment)

site i: l = new A() ! {oi} ⊆ Pt(l) (Allocation)
§ That is, each assignment can be interpreted as a constraint between the

involved points-to sets.
§ Each statement in the program will generate constraints, as before

equations in DFA, we will have a system of constraints.
§ We are looking for the minimum solution (minimum size of the points-to

sets) that satisfies the resulting system of constraints, i.e., the minimum
fixed point of the dataflow equations

60

61

Example
A Simple Program
public A methodX(A param){

A a1 = param;

s1 : A a2 = new A() ;

A a3 = a1;
a3 = a2 ;

return a3 ;

}

Generated set constraints

1: Pt(param) "#Pt(a1)
2: o1 ∈ Pt(a2)

3: Pt(a1) "#Pt(a3)
4: Pt(a2) "#Pt(a3)

61

11

62

Object Transport in terms of P2G edges
§ Each constraint can be represented as a relation between nodes in a

graph.
§ A Points-to Graph P2G is a directed graph having variables and objects

as nodes and assignments and allocations as edges
l = r ! Pt(r)⊆ Pt(l) !#r → l (Assignment)

site i: l = new A()! {oi} ⊆ Pt(l) !#oi → l (Allocation)
§ Previous example revisited

1: Pt(param) "#Pt(a1)
2: o1 ∈ Pt(a2)
3: Pt(a1) "#Pt(a3)
4: Pt(a2) "#Pt(a3)

§ P2G is our data flow graph, and the abstract objects are our data values
to be propagated.

§ P2G initialization (allocations): ∀oi→l, let Pt(l)=Pt(l)∪{oi}
§ P2G propagation (assignments): ∀r→l, let Pt(l)=Pt(l)∪Pt(r)

62

63

Flow-insensitive vs. flow-sensitive analysis
(within a methods)

§ Recall Assignment and Allocation
§ Constraints: Pt(r) ⊆ Pt(l)and oi ∈ Pt(l), resp.
§ Partial graph generated: r→l and oi → l, resp.

(1) s1: f = new A()
(2) a = f
(3) s2: f = new A()

//insensitive: Pt(a)={o1,o2}
//sensitive: Pt(a)={o1}

(4) b = f
//insensitive: Pt(b)={o1,o2}
//sensitive: Pt(b)={o2}

§ Our approach would have generated the following constraints
o1∈Pt(f), Pt(f)"Pt(a), o2∈Pt(f), Pt(f)"Pt(b)

§ Constraints (1) and (3) yield Pt(f)={o1,o2} (at least) and consequently
that both a and b have Pt={o1,o2}.

§ Thus, a consequence of using a set constraint approach is flow-insensitivity.
§ A flow-sensitive analysis required that each definition of a variable has a node

and a points-to set. This makes the graph much larger and the analysis more
costly.

63

64

Representation of Methods
OO Definition
class A {

public R m(P1 p1,P2 p2){

…

return Rexpr;
}

OO Invocation
l = a.m(x,y);

Procedural Definition
m(A this,

P1 p1, P2 p2,

R res) {

…
res = Rexpr ;

}

Procedural Invocation
m(a,x,y,l);

64

65

Uniformly using the Procedural Representation

§ Given a call site l=r0.m(r1,…,rn)
Represented as m(r0,r1,…,rn,l)

§ Targeted at method R m(P1 p1,P2 p2) defined in class A
Represented as m(A this,P1 p1,…,Pn pn,R res)

§ We add the following P2G edges
§ r0→this, r1→p1, …, rn→pn,ret→l

§ Each resolved call site results in a well-defined set of inter-
procedural P2G edges.

65

66

Method Calls and Definitions
(always flow-sensitive between methods)

§ Call site l = m(r0, r1, r2,…)
§ Target method m(this, p1, p2,…, res){…} in A

§ !"#$%&'(#%$)
§ Pt(r0) ⊆ Pt(thisA.m),
§ Pt(ri) ⊆ Pt(pi),
§ Pt(resA.m) ⊆ Pt(l)

§ Partial graph
§ r0 → thisA.m,
§ r1 → p1,…, rn → pn,
§ resA.m → l

§ Involved object transport
§ Argument passing, i.e., assigning arguments to parameters
§ A call a.m() involves an implicit assignment a → this
§ The return assignment res → l

66

67

Previous Example Revisited / Extended
class Main {

static procedure main (Main this , String[] args) {
s1: A a1 = new A(); // o1 → a1
s2: X x1 = new X(); // o2 → x1

storeX(a1, x1); // a1 → this3 , x1 → x4
X x2;
loadX(a1, x2); // a1 → this4 , ret2 → x2

s3: A a2 = new A(); // o3 → a2
s4: X x5 = new X(); // o4 → x5

storeX(a2, x5); // a2 → this3 , x5 → x4
loadX(a2, x2); // a2 → this4 , ret2 → x2

}
}
class A {

X f;
procedure setX(A this1, X x3){f = x3} // x3 → f
procedure getX(A this2, Xret1){ret1 = f } // f → ret1
procedure storeX(A this3, X x4){setX(this3,x4)}

// this3 → this1, x4 → x3
procedure loadX(A this4, X ret2){getX(this4,ret2)}

// this4 → this2, ret1 → ret2
}

67

12

68

P2G Generated

68

69

DFA on a P2G
§ In this DFA implementation, we use working list to store variable nodes

that need to be propagated.
1. For each variable v let Pt(v)=Æ //O(#v)
2. For each allocation edge oi→v do //O(#o)

(a) let Pt(v)=Pt(v)È{oi}
(b) add v to worklist

3. Repeat until working list empty //O(#v*#o)
(a) Remove first node p from worklist
(b) For each edge p →q do //O(#v)

i. Let Pt(q)=Pt(q)ÈPt(p)
ii.If Pt(q) has changed, add q to working list

§ Time complexity: Let #v be the number of variable nodes and #o the number
of (abstract) objects.

§ A variable node is added to the work list each time it is changed.
§ In the worst case this can happen #o times for each node, thus, we have

O(#v*#o) number of work list iterations.
§ Each such iterations may update every other variable node. Hence O(#v) within

the loop. Thus, an upper limit is O(#v2*#o).

69

70

Optimizing the Analysis
§ The high time complexity O(#v2*#o) encourages

optimizations. Optimizations can basically be done in three
different ways (all three simple and effective):

§ We can reduce the size of P2G by identifying points-to sets
that must be equal. This idea will be exploited in
1. Removal of strongly connected components
2. Removal of single dominated subgraphs.

§ We can speed up the propagation algorithm by processing
the nodes in a cleverer ordering:
3. Topological node ordering.

§ Other optimizations are possible too.

70

71

Resolving Call Targets
§ The procedural method representation makes is quite easy

to generate a set of Call Graph edges once the target
method been identified.

§ The problem is to find the target methods.
§ Recall from previous lecture:

§ Static calls and constructor calls are easy, they always have a well-
defined target method.

§ Virtual calls are much harder; to accurately decide the target of a call
site during program analysis is in general impossible.

§ Any points-to analysis involves some kind of conservative
approximation where we consider all possible targets.

§ The trick is to narrow down the number of possible call targets.

71

72

Resolving Polymorphic Calls
Two approaches to resolve a call site a.m()
§ Static Dispatch: Given an externally derived conservative

call graph (discussed before) we can approximate the actual
targets of any call site in a program. By using such a call
graph, we can associate each call site a.m() with a set of
pre-computed target methods T1.m(), … Tn.m().

§ Dynamic Dispatch: By using the currently available points-to
set Pt(a) itself, we can, for each object in the set, find the
corresponding dynamic class and, hence, the target method
definition of any call site a.m().

72

73

Static Dispatch
§ Given a conservative call graph, we can construct a function

staticDispatch(a.m()) that provides us with a set of possible
target methods for any given call site a.m().

§ We can then proceed as follows:
for each call site l = r0.m(r1,…,rn)do

let targets = staticDispatch(r0.m(…))
for each method m(A this,P1 p1,…,Pn pn,R res)Î targets do

add P2G edges r0→this, r1→p1, … , rn→pn, res→l

§ Advantage:
§ We can immediately resolve all call sites and add corresponding P2G edges.
§ Then the P2G is complete as no more edges are to be added. Complete P2Gs

are much easier to handle in the subsequent DFA phase, which only does object
propagation.

§ Disadvantage: The precision of the externally derived call graph
influences the points-to-analysis.

73

13

74

Dynamic Dispatch
§ Given the points-to set Pt(a) of a variable a we can resolve the

targets of a call site a.m() using a function dynamicDispatch(A,m) that
returns the method executed when we invoke the call m() with
signature m on an object oA of type A

§ We can then proceed as follows:
for each call site l = r0.m(r1,…, rn) (or m(r0,r1,…,rn,l)) do

for each abstract object oAÎPt(r0) do
1. Let m = signatureOf(m())
2. Let A = typeOf(oA)
3. Let m(A this,P1 p1,…,Pn pn,R res)= dynamicDispatch(A,m)
4. Add P2G edges r0→this, r1→p1, …, rn→pn, res→l

§ Advantage: We avoid using an externally defined call graph.
§ Disadvantage:

§ The P2G is not complete since, we initially don't know all members of Pt(a)
§ Hence, the P2G will change (additional edges will be added) during analysis which

requires a fixed point iteration

74

75

Example Revisited:
Results of Points-to Analysis

class Main {
static procedure main (Main this , String [] args) {
s1: A a1 = new A(); // Pt(a1) = {o1}
s2: X x1 = new X(); // Pt(x1) = {o2}

storeX(a1, x1);
X x2; // Pt(x2) = {o2,o4}
loadX(a1, x2);

s3: A a2 = new A(); // Pt(a2) = {o3}
s4: X x5 = new X(); // Pt(x5) = {o4}

storeX(a2, x5);
loadX(a2, x2);

}
}
class A {

X f; //Pt(f) = {o2,o4}
procedure setX(A this1,X x3){f=x3} //Pt(this1)={o1,o3},Pt(x3)={o2,o4}
procedure getX(A this2,X r1){r1=f} //Pt(this2)={o1,o3},Pt(r1)={o2,o4}
procedure storeX(A this3,X x4){setX(this3,x4)}

//Pt(this3) = {o1,o3},Pt(x4)={o2,o4}
procedure loadX(A this4,X r2){getX(this4,r2)}

//Pt(this4)={o1,o3},Pt(r2)={o2,o4}
}

75

76

Limitations of Classic Points-to Analysis
§ In the previous example we, found that Pt(A.f)={o2, o4}. However, from

the program code, it is obvious that we have two instances of class A (o1 and
o2) and that Pt(o1.f)={o2} whereas Pt(o3.f)={o4}. Hence by having a
common points-to set for field variables in different objects, the different object
states are merged.

§ Consider two List objects created at different locations in the program. We use
the first list to store String objects and the other to store Integer. Using
ordinary points to analysis, we would find that both these list store both strings
and objects.

§ Conclusion: Classic points-to analysis merges the states in objects created at
different locations and, as a result, can't distinguish their individual states and
content.

§ Context-sensitive approaches would let each abstract object have its own set of
fields. This would, however, correspond to object/method inlining and increase
the number of P2G nodes and reduce the analysis speed accordingly.

§ Flow-sensitivity would increase precision as well, at the price of adding new
nodes/sets for every definition of a variable. Once again, increased precision at
the price of performance loss.

§ The trade-off between precision and performance is a part of everyday life in
data flow analysis. In theory, we know how to increase the precision,
unfortunately, not without a significant performance loss.

76

77

Outline
§ Inter-Procedural analysis
§ Call graph construction
§ Points to analysis
§ Points to analysis (fast and precise, not today – requires

SSA)

77

78

Outline
Part 1: Data Flow Analysis and Abstract Interpretation
Part 2: Inter-procedural and Points-to analysis
Part 3: Static Single Assignment (SSA) form
Part 4: SSA based optimizations

78

