泡展 Linnéuniversitetet

Data Flow Analysis and
 Abstract Interpretation

Welf Löwe
Welf．Lowe＠Inu．se

Outline

Part 1：Data Flow Analysis and Abstract Interpretation
Part 2：Inter－procedural and Points－to analysis
Part 3：Static Single Assignment（SSA）form
Part 4：SSA based optimizations

Complete Partial Order（CPO）

```
- Partially ordered sets ( }U,\sqsubseteq\mathrm{ ) over a universe U
    Smallest element }\perp\in
    Partial order relation }
- Ascending chain C=[c, 釉,..]\subseteqU
    Smallest element cl
    - Ci-1-Ci
    M Maybe finite or countable: constructor for next element ci= next [[c1,c,,\ldots, ci-1]
- Unique largest element s of the chain C=[c, c, c, ,.]
    ci
    ci
- Ascending chain property of a universe U}\mathrm{ : any (may be countable)
    ascending chain C}\subseteqU\mathrm{ has an element }\mp@subsup{c}{\textrm{i}}{}\mathrm{ with
    - i is finite and
    for all elements c&i \sqsubseteqci and
    for all elements c>i = cic , and hence ci= }\sqcup(C
- Example: (\mp@subsup{\mathscr{P}}{}{\mathcal{N}},\subseteq) and C=[\varnothing,{1},{1,2},{1,2,3},\ldots], c
    s=\cup(C)=\mathcal{N}\mathrm{ but, the ascending chain property does not hold!}
```


Welf Löwe

Professor in Computer Science at Linnaeus University（Sweden）＋ Postdoc Berkeley（USA）＋PhD Karlsruhe（Germany）＋MSc Dresden （Germany）
Co－founder Softwerk AB，DueDive AB，Aimo GmbH
Director of Research excellence center＂Data Intensive Sciences \＆ Applications＂with an industry grad school＂Data Intensive Applications＂
Current research interests：Al based software solutions
－ $20+$ years in compiler construction

Grew up in Berlin＋moved from Germany to Sweden in 2002 with three（meanwhile grown－up）children＋married to a professor in German language and literature＋TKD blackbelt＋ love to be out in the forests with my dog Maja

Outline Part 1

－Summary of Data Flow Analysis
－Problems left open
－Abstract Interpretation idea

CPOs and Lattices

－Lattice $L=(U, \sqcup, П)$
－any two elements a, b of U have
－an infimum $\Pi(a, b)$－unique largest smaller of a, b
－a supremum $\sqcup(a, b)$－unique smallest bigger of a, b
－unique smallest element \perp（bottom）
－unique largest element T（top）
－A lattice $L=(U, \sqcup, \sqcap)$ defines two CPOs (U, \sqsubseteq)
－＂upwards＂
$a \sqsubseteq b \Leftrightarrow a \sqcup b=b$ ，smallest \perp
If L finite heights \Rightarrow ascending chain property holds $\left(c_{i}=\top\right)$
＂＂downwards＂
－$b \sqsubseteq a \Leftrightarrow a \bigsqcup b=b(\Leftrightarrow a\rceil b=a)$ ，smallest T，
－If L finite heights \Rightarrow ascending chain property holds（ $c_{\mathrm{i}}=\perp$ ）

Special lattices of importance

- Boolean Lattice over $U=\{$ true, false $\}$
- $\perp=$ true, $\mathrm{T}=$ false, true \sqsubseteq false $, \sqcup(a, b)=a \vee b, ~ \sqcap(a, b)=a \wedge b$
- Finite heights
- Generalization: Bit Vector Lattice over $U=\{\text { true, } \text { false }\}^{n}$
- Finite heights if n is finite
- Power Set Lattice \mathscr{P}^{S} over S (set of all subsets of a set S)
- $\perp=\varnothing, \mathrm{T}=S, \sqsubseteq=\subseteq, \sqcup(a, b)=a \bigcup b, \sqcap(a, b)=a \bigcap b$ or the dual lattice
- $\perp=S, \mathrm{~T}=\varnothing, \sqsubseteq=\supseteq, \sqcup(a, b)=a \bigcap b, \Pi(a, b)=a \cup b$
- Finite heights if S is finite

Functions on CPOs

- Functions $f: U \rightarrow U^{\prime}$ (if not indicated otherwise, we assume $U=U^{\prime}$)
- f monotone: $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$ with $x, y \in U$
- f continuous: $f(\square C)=\square f(C)$ with $f(C)=f\left(\left[x_{1}, x_{2}, \ldots\right]\right)=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right]$
- f continuous $\Rightarrow f$ monotone,
- f monotone $\wedge(U, \sqsubseteq)$ a CPO with ascending chain property $\Rightarrow f$ continuous
- f monotone $\wedge U$ is finite $\Rightarrow f$ continuous
- f monotone $\wedge(U, \sqcup, \sqcap)$ a lattice with finite heights $\Rightarrow f$ continuous

Example

- Power Set Lattice ($\left.\mathscr{P}^{\mathcal{N}}, \cup, \cap\right), U=$ set of all subsets of Natural numbers \mathcal{N}
- Define a (meaningless) function:
- $f(u)=\varnothing \Leftrightarrow u \in U$ finite
- $f(u)=\mathscr{N} \Leftrightarrow{ }_{u \in U \text { infinite }}$
- f is monotone $u \subseteq u^{\prime} \Rightarrow f(u) \subseteq f\left(u^{\prime}\right)$, e.g.,
- $\varnothing \subseteq\{0\} \subseteq\{0,1\} \subseteq \ldots \Rightarrow f(\varnothing) \subseteq f(\{0\}) \subseteq f(\{0,1\}) \subseteq \ldots=\varnothing \subseteq \varnothing \subseteq \varnothing \subseteq \ldots$
- f is not continuous $f(\cup C) \neq \cup f(C)$, e.g.:
- $C=[\varnothing,\{0\},\{0,1\}, \ldots]$
- $f(C)=[f(\varnothing), f(\{0\}), f(\{0,1\}), \ldots]=[\varnothing, \varnothing, \varnothing, \ldots]$
- $\cup f(C)=\cup[f(\varnothing), f(\{0\}), f(\{0,1\}), \ldots]=\cup[\varnothing, \varnothing, \varnothing, \ldots]=\varnothing$
- $\cup C=\cup[\varnothing,\{0\},\{0,1\}, \ldots]=\mathcal{N}$
- $f(\cup C)=f(\cup[\varnothing,\{0\},\{0,1\}, \ldots])=f(\mathcal{N})=\mathcal{N}$
- Note: Power Set Lattice $\left(\mathscr{P}^{\mathcal{N}}, \cup, \cap\right)$ is not of finite heights and ascending chain property does not hold

Monotone DFA Framework

- Solution of a set of DFA equations is a fix point computation
- Contribution of a computation A of kind K (Alloc, Add, Load, Store, Call ...) is modeled by monotone transfer function
- $f_{K}: U \rightarrow U$,
- Define a set F of transfer functions closed under composition
- Any composed transfer function is monotone as well
- Contribution of predecessor computations Pre of A is modeled by supremum \bigsqcup of predecessor analysis values $P(\operatorname{Pre}(A))$ (successor Succ, resp., for backward problems)
- Existence of the smallest fix point X is guaranteed, if domain U of analysis values $P(A)$ completely partially ordered ($U, \boxed{\square}$)
- It is efficiently computable if (U, \sqsubseteq) additionally fulfills the ascending chain property

Fixed Point Theorem (Knaster-Tarski)

Fixed point of a function: X with $f(X)=X$
For $C P O(U, \sqsubseteq)$ and monotone functions $f: U \rightarrow U$

- Minimum (or least or smallest) fixed point X exists
- X is unique

For $C P O$ (U, \sqsubseteq) with smallest element \perp and continuous functions $f: U \rightarrow U$ - Minimum fixed point $X=\bigsqcup f^{n}(\perp)$

- X iteratively computable
$C P O(U, \sqsubseteq)$ fulfills ascending chain property $\Rightarrow X$ is computable effectively Special cases:
- (U, Б) with U finite,
- (U, \sqsubseteq) defined by a finite heights lattice.

10

Monotone DFA Framework (cont'd)

- Monotone DFA Framework: (U, \sqsubseteq, F, t)
- (U, \sqsubseteq) a $C P O$ of analysis values fulfilling the ascending chain property
- $F=\left\{f_{K}: U \rightarrow U, f_{K}: U \rightarrow U, \ldots\right\}$ set of monotone transfer functions (closed under composition, analysis problem specific)
- $t \in U$ initial value (analysis problem-specific)
- Analysis instance of a Monotone DFA Framework is given by a graph G
- $G=\left(N, E, n^{1}\right)$ data flow graph of a specific program, with
- the start node $n^{1} \in N$
- $\left((N \times U \times U)^{[N]}\right.$, $\left.\sqsubseteq_{\text {vector }}\right)$ defines a $C P O$:
- Let $a=\left(i, x_{\text {in }}, x_{\text {out }}\right), b=\left(j, y_{\text {in }}, y_{\text {out }}\right), a, b \in(N \times U \times U)$
$a \sqsubseteq$ Triple $b \Leftrightarrow i=j \wedge x_{\text {in }} \sqsubseteq y_{\text {in }} \wedge x_{\text {out }} \sqsubseteq y_{\text {out }}$
Let $m=\left[a^{1}, a^{2}, \ldots, a^{|N|}\right], n=\left[b^{1}, b^{2}, \ldots, b^{\mid N]}\right], m, n \in(N \times U \times U)^{[| |}$
$m \sqsubseteq_{\text {Vector }} n \Leftrightarrow a^{1} \sqsubseteq_{\text {Triple }} b^{1} \wedge a^{2} \sqsubseteq_{\text {Triple }} b^{2} \wedge \ldots \wedge a^{[N \mid} \sqsubseteq_{\text {Triple }} b^{|N|}$
- Smallest element is vector $\left[\left(n^{1}, l, \perp\right),\left(n^{2}, \perp, \perp\right), \ldots,\left(n^{[N]}, \perp, \perp\right)\right]$

Monotone DFA Framework (cont'd)

- Data flow equations define monotone functions in $\left(N \times U \times U\right.$, $\left.\sqsubseteq_{\text {Triple }}\right)$: $P_{\text {in }}(A)=\bigsqcup_{X \in \operatorname{Pre}(A)}\left(P_{\text {out }}(X)\right)$
$P_{\text {out }}(A)=f_{\text {Kind }(A)}\left(P_{\text {in }}(A)\right)$ with $f_{\text {Kind }(A)} \in F$ transfer function of A
- Smallest fix point of this system of equations is efficiently computable since
- $(N \times U \times U)$ and hence $(N \times U \times U)^{[N]}$ completely partially ordered and fulfill the ascending chain property
- System of equations defines monotone function in $(N \times U \times U)^{[N]}$
- Data flow analysis algorithm:
- Start with the smallest element: $\left[\left(n^{1}, t, \perp\right),\left(n^{2}, \perp, \perp\right), \ldots,\left(n^{|N|}, \perp, \perp\right)\right]$
- Apply equations in any (fair) order
- Until no $P_{\text {in }}(A)$ nor $P_{\text {out }}(A)$ changes

Initialization

- Assume a Power Set Lattice \mathbb{P}^{S}
- General initialization with the smallest element \perp for all but start node n^{1} :
- may: Initialization with $\left[\left(n^{1}, t, \varnothing\right),\left(n^{2}, \varnothing, \varnothing\right), \ldots,\left(n^{|N|}, \varnothing, \varnothing\right)\right]$ as empty set \varnothing is the smallest element for each position
- must: Initialization with $\left[\left(n^{1}, t, S\right),\left(n^{2}, S, S\right), \ldots,\left(n^{|N|}, S, S\right)\right]$ as universe of values S is the smallest element for each position in the inverse lattice
- Special (problem specific) initializations t
- forward: $\left[\left(n^{1}, t, \perp\right), \ldots\right]$, the general initialization $(\varnothing$ or S) is not defined before the start node
- backward: $\left[\ldots,\left(n^{\mathrm{e}}, \perp, t\right)\right]$, the general initialization $(\varnothing$ or S) is not defined after the end node

Example II

- Property $P: x=1$ possible?
- Universe Boolean, CPO Boolean Lattice
- Transfer functions identical
- Forward - may problem
- $\underline{P}_{N}=P_{A \vee} \vee P_{B} \vee P_{C}$
- Begin with $\underline{P A B B, C, N}=$ false (assumption $x \neq 1$)
- Initialization $P_{M}=$ false
- Iteration leads to fixed point $P_{N}=$ true
- Generalization:
- Compute properties of several (all) variables in each step
- Property: are variables equal to a specific constant or are variables actually
compile time constants at a certain program point
- Universe: Bit vector with a vector element for each variable
- CPO induced by bit vector lattice

4 DFA Equations Schemata

```
- forward and must: \(\quad P_{\text {in }}(A)=\square_{\operatorname{out}}(X)\)
    \(\operatorname{Pout}(A)=\begin{aligned} & X \in P_{\text {re }}(A) \\ & \operatorname{Pin}(A)-\operatorname{kill}(A) \cup \operatorname{gen}(A)\end{aligned}\)
- backward and must: \(\operatorname{Pou}(A)=\prod \quad \operatorname{Pin}(X)\)
    \(P_{\text {in }}(A) \quad=\operatorname{Pout}(A)-\operatorname{kill}(A) \cup \operatorname{gen}(A)\)
- forward and may: \(\quad P_{i n}(A)=\square \quad P_{\text {out }}(X)\)
    \(P_{\text {out }}(A) \quad \stackrel{X \in P_{\text {re }}(A)}{P} \operatorname{Pin}(A)-\operatorname{kill}(A) \cup \operatorname{gen}(A)\)
- backward and may: \(P_{\text {out }}(A)=\bigsqcup_{X \in \operatorname{Succ}(A)} P_{\text {in }}(X)\)
    \(P_{\text {in }}(A)=P_{\text {our }}(A)-\operatorname{kill}(A) \cup \operatorname{gen}(A)\)
```


Example I

- Property $P: x=1$ guaranteed?
- Universe Boolean, $C P O$ Boolean Lattice
- Transfer functions: true, false, id
- Statement $A: f_{A}=$ true
- Statement $B: f_{B}=$ fals

Let Statement $C: f_{C}=i d$ i.e., does not change

- ${ }^{2}, P_{B}, P C, P_{N}$ be values of P after statements A, B, C, ($\left.P_{\text {out }}\right)$
- Let $P_{A}, P_{B}, P_{C}, P_{N}$ be values of P before statements $A, B, C,\left(P_{i n}\right) N: y:=0$
- Assume a forward - must problem
-. It holds $P_{N}=P_{A} \wedge P_{B} \wedge P_{C}$.
- Initialization $B_{u}=$ false before statement M is $x \neq 1$
- Iteration leads to fixed point $P_{\mathrm{N}}=$ false
- $x:=$ neg x more difficult:

Obviously, a naive transfer function for neg is not monotone

- Conservative transfer function: $f=$ false

Conservatively, $x=1$ is not guaranteed any more by analysis in some cases where we
(as humans) could see it holds

What does Data Flow Analysis?

Path Graph

- For nodes $n \in N$ of $G=(N, E)$ define path graph $G^{\prime}(n)=\left(N^{\prime}, E^{\prime}\right)$ contains all paths Π ending in n :
: $n^{\prime} \in \Pi \Leftrightarrow n^{\prime} \in N^{\prime}$
- $\left(n^{\prime}, n^{\prime \prime}\right) \in \Pi \Leftrightarrow\left(n^{\prime}, n^{\prime \prime}\right) \in E^{\prime}$
- The path graph acyclic by definition
- Since the set of paths to a node n in G is possibly countable (iff G contains loops) the graph $G^{\prime}(n)$ is in general not finite

MFP and MOP

For a monotone DFA problem (set of equations) $D F E=(U, \sqsubseteq, F, t)$ and G

- Define: Minimum Fixed Point MFP is computed by iteratively applying F beginning with the smallest element in U
Let $D F E^{\prime}(n)=(U, \sqsubseteq F, t)$ and $G^{\prime}(n)$ (same equations as $D F E$, applied to path
graphs)
Define: Meet Over all Paths MOP of $D F E$ in (any arbitrary) node n is the supremum \bigsqcup of minimum fix point $M F P$ of $D F E^{\prime}(n)$ in node n
- MFP is equivalent with MOP, if f are distributive over \square in U (rarely)
- $M F P$ is a conservative approximation of the $M O P$ (otherwise).

Attention:

- It is not decidable if a path is actually executable
- Hence, $M O P$ is already conservative approximation of the envisaged analysis result since, some paths may be not executable in any program
- $M O P \neq M O E P$ (meet over all executable paths)

Errors due to our DFA Method

- Call Graphs:
- Nodes - Procedures, Edges - calls
- Only a conservative approximation of actually possible calls, some calls represented in the call graph might never occur in any program run
- Allows impossible paths like call \rightarrow procedure \rightarrow another call
- Data flow graph of a procedure
- Nodes - Statements (Expressions), Edges - (syntactic or essential) dependencies between them
- Application of a monotone DFA framework computes MFP not MOP

Example: Path Graph

20

Example for $\operatorname{MFP}(G) \neq M O P(G)$

Constant propagation: $(x, y, z) \in\{?, 0,1, \text { variable }\}^{3}$

MFP: (v, v, v)
MOP: $\bigsqcup((1,0, l),(0,1, l))=(v, v, l)$

Outline

- Summary of Data Flow Analysis
- Problems left open
- Abstract Interpretation idea

Problems left open

- How to derive the transfer functions for a DFA
- How to make sure they compute the intended result, i.e.,
- MOP approximates the intended question, and
- $M O P \sqsubseteq M F P$?

Example: Reaching Definitions (Must)

- Which set of definitions (assignments) reach (are valid in) a node A ? - Data flow values:
- Subset of all definition (assignment) nodes $\left\{A_{1 . . .} A N\right\}$
- Implementation: bit-vector [\{false, true $\left.\} 1 \ldots\{\text { false, true }\}_{N}\right]$ where each position indicates if a node is in the subset
- We look at the forward - must version of the problem, hence:

$$
R D_{\text {in }}(A)=\bigcap_{X \in \text { Pre }(A)} R D_{\text {out }}(X)
$$

$$
R D_{\text {out }}(A)=\stackrel{X \in P_{r e}(A)}{=R D_{\text {in }}}(A)-\operatorname{kill}_{R D}(A) \cup \operatorname{gen}_{R D}(A)
$$

$R D_{\text {in }}(M)$	$=\varnothing \cap R D_{\text {out }}(N)$	$=\varnothing$
$R D_{\text {out }}(M)$	$=R D_{\text {in }}(M)\{M, A, B\} \cup\{M\}$	$=\{M\}$
$R D_{\text {in }}(A)$	$=R D_{\text {out }}(M)$	$=\{M\}$
$R D_{\text {out }}(A)$	$=R D_{\text {in }}(A)-\{M, A, B\} \cup\{A\}$	$=\{A\}$
$R D_{\text {in }}(B)$	$=R D_{\text {out }}(M)$	$=\{M\}$
$R D_{\text {out }}(B)$	$=R D_{\text {in }}(B)-\{M, A, B\} \cup\{B\}$	$=\{B\}$
$R D_{\text {in }}(C)$	$=R D_{\text {out }}(M)$	$=\{M\}$
$R D_{\text {out }}(C)$	$=R D_{\text {in }}(C)-\{C, N\} \cup\{C\}$	$=\{M, C\}$
$R D_{\text {in }}(N)$	$=R D_{\text {out }}(A) \cap R D_{\text {out }}(B) \cap R D_{\text {out }}(C)=\varnothing$	
$R D_{\text {out }}(N)$	$=R D_{\text {in }}(N)-\{N, C\} \cup\{N\}$	$=\{N\}$

27

Outline

- Summary of Data Flow Analysis
- Problems left open
- Abstract Interpretation idea

28

- Assume A contains assignment x :=expr, then
genrd $(A)=\{A\}$ and
- killrd $(A)=\left\{A^{\prime} \mid A^{\prime}\right.$ contains assignment $\left.\mathrm{x}:=\operatorname{expr} r^{\prime}\right\}$
- otherwise $\operatorname{genRD}(A)=\operatorname{killRD}(A)=\varnothing$
- statically pre-calculated by checking the variables assigned in each node - Initialization:

No definition reaches the start node:, i.e., $t=R D_{\text {in }}(A t)=\varnothing$, but

- All definitions reach each program point $R D_{\text {in }}\left(A_{i>1}\right)=R D_{\text {our }}\left(A_{i}\right)=\left\{A_{1} \ldots A v\right\}$

Problem left open

How to make sure $R D$ computes the correct result?

- As intended by the problem
- Exact result or a conservative approximation

Actually, in the example program and the specific run $R D$ behaves correctly:

- Static analysis: $R D_{\text {out }}(N)=\{N\}$
- Example run: $R \operatorname{Dou}^{(N)}=\{A, N\}, R \operatorname{Dou}(N)=\{M, N\}$
- $\{A, N\} \sqsubseteq\{N\}$ and $\{M, N\} \sqsubseteq\{N\}$

Recall that $R D$ was a must problem, ascending on the downwards CPO induced by the lattice power set lattice
Hence ■relation is the inverse set inclusion \supseteq on the label sets

- How does this generalize?

For all runs, all programs, and for all dataflow problems

- We cannot test all (countable) paths of all (countable) programs and all (infinitely many) possible dataflow problems

Abstract Interpretation Approach

- Relates semantics of a programming language
- to a non-standard semantics defining the analysis question and
- further to an abstract static analysis semantics that efficiently approximates a solution to this question
Allows to compute or prove correct data flow equations (transfer functions)
- Idea even generalizes to other than dataflow analyses, as well (e.g., control flow analysis)
- Steps given the semantics of a programming languages:
- Analysis question definition: Define an abstract execution semantics that correctly solves the analysis problem based on execution traces (in general, non-terminating as the traces may grow infinitely)
- Analysis question solved with static analysis: Define a terminating
abstraction of execution traces to (the finely many) program points (in general, maps infinitely many traces to a program point)
Show that they are correct abstractions indeed
- Show that the static analysis terminates using the DFA framework

Analysis Question Formalized

- Given a so-called standard semantics: a program's execution semantics is defined by the semantics of each programming (or intermediate) language computation statements and their composition in the program
- Computation statements of kind K (Alloc, Add, Load, Store, Call ...)
- There are only finitely many such kinds
- The analysis question is formalized as a non-standard semantics
- Non-standard semantics: expected analysis results are defined for traces as an abstraction of the program's standard semantics wrt. the analysis problem
- By giving each computation statements of kind K (Alloc, Add, Load

Store, Call ...) a non-standard semantics answering that specific analysis question

- Composed to an analysis execution semantics by/for each program

Program Traces

- Program traces are sequences of labels of statements
- Each program run corresponds to such a trace $t r \in$ Label*
- Program runs and, hence, traces are defined by the programming language semantics, e.g.,
- $t r$ [stats; stat] $=t r[$ [stats] $\oplus t r$ [stat]
- $\operatorname{tr}[$ assign] := label(assign)
- $\operatorname{tr[if}$ expr then stats1 else stats2]: eval[expr] = true? $\operatorname{tr}[$ stats1] : tr[stats2]
- $t r$ [while expr do stats od]:=

- The actual program analysis questions, can be defined as a mapping Act: $\operatorname{Tr} \rightarrow U$ of a trace to an analysis result
- E.g., the actual reaching definitions question $R D_{a c t}$ can be defined as a mapping $R D_{\text {act: }} \operatorname{Tr} \rightarrow \mathscr{P}^{\text {Labels }}$ i.e., for each trace $(t r)$, what is the subset of definitions ($\left.\subseteq \mathscr{P}^{\text {Labels }}\right)$ that reaches the end of $t r$

$R D_{a c t}$ Execution Semantics

- Given a program $G=\left(N, E, n^{1}\right)$
- $R D_{\text {act }}: T r \rightarrow \mathscr{P}^{\text {Labels }}$
- Basis for recursive definitions: empty trace - no definition reaches the end of the empty trace - $R D_{a c t}(\varepsilon):=\varnothing$
- Analysis execution semantics of $t r \oplus$ label (trace $t r$ expanded by the next execution step label) is recursively defined on analysis execution semantics of trace $t r$ and analysis execution semantics of the

```
if (S="x:=expr") // computation kind is assignment to x
    RDacc(tr }\oplus\mathrm{ label :S):= RDacc(tr) -{l|(l:x:=expr') ) N} }\cup{label
    else
    RDact(tr}\oplus\mathrm{ label : S) any other computation kin
\[
R D_{\text {act }}(t r \oplus \text { label }: S):=R \text { any other }(t r)
\]
    RDact(tr}\opluslabel:S):= RDact(tr
```


Observation

- Traces and semantics analysis values define a CPO (U, $\sqsubseteq)$
- For $R D_{\text {act }}$, the universe U of analysis values can be defined by pairs of $\operatorname{Tr} \rightarrow \mathscr{P}^{\text {Labels }}$
- A partial order \sqsubseteq can be defined as follows: elements are ordered if - same program G, hence, Labels, and same traces
- subset of $\mathscr{P}^{\text {Label }}$
- Smallest element $\varepsilon \rightarrow \varnothing$
- Universe U is not finite, since $\operatorname{Tr}(G)$ is not
- Even if the non-standard semantics (e.g., analysis function $R D_{a c t}$) was monotone, it is in general not continuous as universe not finite
- Then a solution to the analysis problem may exist, but cannot computed iteratively by applying the analysis function on the smallest element to fix point
- Non-terminating program runs due to loops
- Infinitely many possible different inputs that, in general, control the generation of traces and contribute to the analysis result

Galois Connections

37

Reaching Definitions (α)

- Let $T r_{\text {label }}$ be the set of all traces ending with program point label: $T r_{\text {label }}=\{t r \mid t r \in T r \wedge t r=t r \prime$ label $\}$
- We abstract a set $T r_{\text {label }} \in \mathscr{P}^{T r}$ with that program point label \in Label $\alpha: \mathbb{P}^{T r} \rightarrow$ Label
$\alpha\left(T r_{\text {label }}\right)=$ label
- Concrete and abstract analysis value domains $\mathscr{P}^{\text {Label }}$ are the same:
- Let $R D_{\text {act }}\left(t r^{\prime} \oplus\right.$ label $) \in \mathbb{P}^{\text {Label }}$ be the set of definitions reaching the end label of trace $t r^{\prime} \oplus$ label
- Let $R D($ label $) \in \mathcal{P}^{\text {Label }}$ be the set of reaching definitions analyzed for the program point label
- We abstract the analysis execution semantics $R D(t r)$ of a trace $t r \in T r_{\text {labe }}$ with the abstract analysis results $R D$ (label) of the program point label $\alpha: \mathbb{P}^{\text {Label }} \rightarrow \mathbb{P}^{\text {Label }}$
$\alpha\left(R D_{\text {act }}(t r)\right)=R D($ label $)$ iff $t r \in T r_{\text {label }}$

How to define the static analysis?

- Choose an abstract analysis function F abstracting, i.e. giving larger or equal results than, $\alpha \bullet A c t \bullet \gamma: U^{\prime} \rightarrow U^{\prime}$ where Act is the actual analysis execution semantics function
- $\alpha \bullet$ Act $\bullet \gamma: U^{\prime} \rightarrow U^{\prime}$ might be that function F
- In general, function F requires a "widening", an explicit further abstraction of the results
- Analysis terminates if $\left(U^{\prime}, \leq\right)$ a finite CPO and F monotone
- Analysis is conservative if Act is monotone and (α, γ) a Galois connection
- Then conservative approximation is computable by fixed point iteration, and it holds for the minimum fix points $M F P$: $\alpha(M F P(A c t)) \leq M F P(\alpha \bullet A c t \bullet \gamma) \leq M F P(F)$

Reaching Definitions (γ)

- Conversely, we concretize each program point label with the set of all traces ending in label
- The concretization function on labels is
$\gamma:$ Label $\rightarrow \mathbb{P}^{T r}$
$\gamma($ label $)=T r_{\text {label }}$
- Consequently, we concretize the abstract analysis results RD(label) of a program point label by assuming it is a conservative abstraction for any of the traces $t r \in T r_{\text {label }}$: $\gamma: \mathbb{P}^{\text {Label }} \rightarrow \mathbb{P}^{\text {Label }}$
$\gamma(R D($ label $))=(t r \rightarrow R D($ label $)), \forall t r \in T_{\text {label }}$

40

$R D$ Static Analysis Semantics

- Given a program $G=\left(N, E, n^{1}\right)$
- RD: Label $\rightarrow P^{\text {Labels }}$
- Basis for recursive definitions:
- Empty trace abstraction: starting point of the program n^{1}
- no definition reaches n^{1}
- $R D_{\text {in }}\left(n^{1}\right):=\varnothing$
- Static analysis semantics at label is a conservative abstraction of $\alpha \bullet R D_{\text {act }} \bullet \gamma$
- It is recursively defined
- on the static analysis result at the predecessors of label (using the supremum) and
- on and abstraction of the analysis execution semantics at the computation (kind) at label (defining the transfer function)

RD Static Analysis Semantics

```
\alpha\bulletRD act \bullet \gamma
    RDou(label : S) :=
        if (S="x:=expr")
            \cap(...\oplusp\opluslabel)\inTr.:RDoul}(p)-{l|(l: x:=expr')\inN}\cup{label 
        else
            \cap(..\oplusp\opluslabel)\inTr:RD
\leq(more concrete than, abstracted by)
    RD Din (label: S):= }\mp@subsup{\cap}{p\in\operatorname{Pre(label)}}{}R\mp@subsup{D}{\mathrm{ out (}}{(p)
    RD out (label : S) :=
        if (S="x:=expr")
            RD in (label) -{l |(l:x:=expr') \inN}\cup{label}
        else
            RD in (label)
```


Correctness of Analysis Abstraction

- By structural induction over all programs
- Compare analysis execution semantics and static analysis semantics (transfer functions) of program constructs
- Basis:
- Claim holds for the empty trace: each program's starting point is abstracted correctly: $R D_{\text {in }}\left(n^{1}\right)=\varnothing, R D_{\text {act }}(\varepsilon)=\varnothing$
" Step:
- Given a trace $t r \oplus$ label and its abstraction label
- Provided $R D_{\text {in }}(l a b e l: S)$ is a correct abstraction of $R D_{\text {act }}(t r)$
- Then $R D_{\text {out }}($ label $: S)$ is a correct abstraction of $R D_{\text {act }}(t r \oplus$ label $)$: $\forall \operatorname{tr} \in \gamma($ label $): \alpha\left(R D_{\text {act }}\left(\gamma\left(R D_{\text {in }}(\right.\right.\right.$ label $\left.\left.\left.)\right)\right)\right) \leq R D_{\text {out }}($ label $)$
- Distinguish cases of each program construct and the corresponding transfer function
- Here trivial as $R D_{a c t}$ and $R D$ are identical (and monotone)

General Proof Obligations

- To show (i): (α, γ) is a Galois connection
- To show (ii): $\alpha \bullet A c t \bullet \gamma$ is abstracted with F i.e., $\alpha \bullet A c t \bullet \gamma \leq F$
- Proof (sketch): for each node n of G
- By our definition of $\gamma, \gamma($ label $)=T r_{\text {label }}$ of corresponds to path graph of G in $n=($ label:S)
- By our definition of $A c t$ and $F, \alpha \bullet A c t \bullet \gamma(n) \leq F(n)$ in every node n (sufficient to show this for every $f_{K}(n)$)
- Then $\alpha \bullet A c t \bullet \gamma$ in a node n is $M F P$ of F of path graph of G in n
- MFP of F of path graph of G in n is $M O P$ of G in n
- MOP $\leq M F P$ of F

$R D$ Proof of Correctness

- To show (i): (α, γ) is a Galois connection
- To show (ii): $\alpha \bullet R D_{a c t} \bullet \gamma$ is abstracted with $R D$ i.e., $\alpha \bullet R D_{a c t} \bullet \gamma \leq R D$
- Proof (sketch): for each node n of G
- By our definition of $\gamma, \gamma($ label $)=T_{\text {label }}$ corresponds to path graph of G in $n=($ label:S)
- By our definition of $R D_{a c t}, R D_{a c t} \bullet \gamma$ in a node n is MFP of $R D$ in the path graph of G in n
- By our definition of $\alpha, \alpha \bullet R D_{a c \bullet} \bullet \gamma$ is the supremum of $M F P$ of $R D$ of the path graph of G in n
- Hence, it is the MOP of $R D$ in G in n
- MOP of $R D \leq M F P$ of $R D$

Outline

Part 1: Data Flow Analysis and Abstract Interpretation
Part 2: Inter-procedural and Points-to analysis
Part 3: Static Single Assignment (SSA) form
Part 4: SSA based optimizations

