
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Software Pipelining

Literature:

C. Kessler, “Compiling for VLIW DSPs”, chapter in Handbook of Signal
Processing Systems, 3rd edition, 2019 (preprint, handed out)

ALSU2e Section 10.5

Muchnick Section 17.4

V. Allan et al.: Software Pipelining. ACM Computing Surveys 27(3), 1995

2 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Software Pipelining of Loops (1)

3 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Introduction

Software Pipelining (Modulo Scheduling)

Overlap instructions in loops from different iterations

Kernel length II (initiation interval) ~ Throughput

Goal: Faster execution of entire loop

Better resource utilization,

Increase Instruction Level Parallelism,
also in the presence of loop-carried dependences

Kernel, steady state

Prologue

Epilogue

II

4 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Software Pipelining of Loops (2)

5 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Definitions

Stage count (SC) = makespan for 1 iteration
as multiple of kernel lengths

degree of overlap / parallelism

software pipeline fill/drain overhead (pro-/epilogue)

Initiation Interval (II)

Minimum Initiation Interval (MII)

Depends on

Data dependence cycles (loop carried), RecMII

Resources (registers, functional units), ResMII

MII = max(ResMII, RecMII)

ResMII = maxU ceil(NU / P),

NU – Number of instructions for resource (functional unit) U
in the body

P – Number of functional units

II

SC

6 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Lower Bound for MII

7 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Calculating the Lower Bound for MII

max (ResMII, RecMII)

8 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling

Modulo scheduling:
Filling the Modulo Reservation Table,
one instruction by another

Heuristics → example

ASAP, As Soon As Possible

ALAP, As Late As Possible

HRMS

Swing Modulo Scheduling

Optimally

Integer Linear Programming [Eriksson’09]

9 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling

10 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling

11 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling Heuristics

Example:

Hypernode Reduction Modulo Scheduling (HRMS)

12 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Motivation

Problem with simple ASAP or ALAP heuristics:

Some nodes in the DAG are scheduled too early and

some too late

Example:

A

B

D
C

F

G

E

v1

v2

v4
v5

v6

A

E

B

C D

F

G

A

B

E D

F

C

G

Forward order / ASAP Backward order/ALAP

v1

v2

v4

v5

v6

v1

v2

v4 v5

v6

II = 2

Ci-2Ai
Bi-1 Di-2

Ei Fi-3 Gi-4

Ci-4Ai
Bi-1

Gi-4 Fi-3 Ei-2II = 2

v4

v5

v6v2v1

Di-2

v5v4v2v14 ALUs.

Latency = 2

for all operations

MaxLive = 7 MaxLive = 7

13 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Motivation

Problem with simple ASAP or ALAP heuristics:

Some nodes in the DAG are scheduled too early and

some too late

Example:

A

B

D
C

F

G

E

v1

v2

v4
v5

v6

A

E

B

C D

F

G

A

B

E D

F

C

G

Forward order / ASAP Backward order/ALAP

v1

v2

v4

v5

v6

v1

v2

v4 v5

v6

II = 2

Ci-2Ai
Bi-1 Di-2

Ei Fi-3 Gi-4

Ci-4Ai
Bi-1

Gi-4 Fi-3 Ei-2II = 2

v4

v5

v6v2v1

Di-2

v5v4v2v14 ALUs.

Latency = 2

for all operations

MaxLive = 7 MaxLive = 7

14 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Hypernode Reduction Approach

Schedule only nodes that have

Only predecessors already scheduled or

Only successors already scheduled or

None of them,

but not both predecessors and successors.

Ensures low register pressure by scheduling nodes

as close as possible to their relatives.

15 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Solution

Two stage algorithm

1. Pre order the nodes of the DAG

• By using a reduction algorithm

2. Schedule according to the order given in step 1

16 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Pre-Ordering Step

Select initial node v

the hypernode H {v}

Reduce nodes to the hypernode iteratively

Remove iteratively edges and nodes in the DAG

(= reducing the DAG)

and add them to H

In each reduction step, append to list of ordered set of nodes

Similar to list scheduling / topological sorting, but now in both

directions – forward and backward along edges incident to H

17 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Function pre_ordering(G)

Select initial node; H {Initial node};

List = < Initial node >;

While (Pred(H) nonempty or Succ(H) nonempty) do

V’ = Pred(H);

V’ = Search_All_Paths(V’,G);

G’ = Hypernode_Reduction(V’, G, H);

L’ = Sort_PALA(G’); // ALAP with inverted order

List = Concatenate (List, L’)

V’ = Succ(h);

V’ = Search_AllPaths(V’,G);

G’ = Hypernode_Reduction(V’,G,h);

L’ = Sort_ASAP(G’);

List = Concatenate (List, L’);

end while

return List;

18 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Example

A

C

G H

B

D E F

J

I

H

C

G H

B

D E F

J

I

H

G H

B

D E F

J

I

H

B

D E F

J

I H

B

E F

J

I
H

B

E F

I
H

F H

List = { Pred nodes to be scheduled ALAP (D,I,E,B,F),

Succ nodes scheduled ASAP (A,C,G,H,J)

Original dependence graph

of one loop iteration:

Start with initial

hypernode H = { A }:

A,

H ”eats” successor

node C:

C,G,H,D,J,I,E,B,F }

19 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Pre-Ordering with circular dependencies

Circular dependences from loop carried dependences.

Solution:

Reduce complete path causing cycle to the Hypernode

How to deal with several connected cycles in DAG?

(See details in the paper, skipped).

20 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

The Scheduling Step

Places operations in the order given by the pre-ordering step

Different strategy depending on neighbors

If operation has

Only predecessors in partial schedule → ASAP

Only successors in partial schedule → ALAP

Both predecessors and successors in partial schedule

→ Scan from ASAP schedule time towards ALAP time.

(If no slot found, II++ and reschedule)

21 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Example (cont.)

Resulting HRMS schedule:

A, B, C, D, E, F, G where for E: ALAP, for others ASAP

A

B

C D

E

F

G

v1

v2

v4
v5

v6

Ci-2Ai
Bi-1

Fi-3 Ei-2 Gi-4

v6

Di-2

v5v4v2v1

A

B

D
C

F

G

E

v1

v2

v4
v5

v6

II = 2

II = 2

4 ALUs.

Latency = 2

for all operations

MaxLive = 6

22 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Results

Perfect Club Benchmark

97.4 % of the loops gave optimal II

Comparison with other algorithms in the paper

Works better than Slack scheduling and FRLC scheduling

(references in the paper)

About same performance as SPILP (optimal algorithm

using Integer Linear Programming, ILP) but lower

computational complexity

23 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

HRMS – Conclusion

Works well for loops with high register pressure

Low time complexity

Tested on large benchmark suite.

Reference:

J. Llosa, M. Valero, E. Ayguadé and A. Gonzáles:

Hypernode Resource Modulo Scheduling.

Proc. 28th ACM/IEEE Int. Symposium on Microarchitecture,

pp. 350-360, IEEE Computer Society Press, 1995

24 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling with Recurrences?

25 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling and Register Allocation

26 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling and Register Allocation

Software Pipelining tends to increase register pressure

Live ranges may span over several iterations

May lead to (more) register spill

Introduces new problems

Should we spill or increase II ?

How to choose variables to spill ?

Integrated software pipelining (later)

27 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Register Allocation

for Modulo-Scheduled Loops

We call a live range self-overlapping if it is longer than II

Needs > 1 physical register

Hard to address properly

without HW support

Modulo Variable Expansion

Unroll the kernel and rename symbolic registers

until no self-overlapping live ranges remain

A-priori avoidance of self-overlapping live ranges

by live range splitting (inserting copy operations before modulo

scheduling) [Stotzer,Leiss LCTES-2009]

Hardware support: Rotating Register Files

Iteration Control Pointer points to window in cyclic loop register

file, advanced by hardware loop control

28 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling for Loops
at target level

Example:

s = 0.0;

t = a[0]*b[0];

for (i=1; i<N; i++)

{

s = s + t;

t = a[i] * b[i];

}

s = s + t;

II = 3

Given:

VLIW-Processor with 3 units:

- Adder (Latency 1),

- Multiplier/MAC (Latency 3),

- Memory access unit (Latency 3)
s+t i-3 a[i]*b[i] i-2

a+i i

b+i i

ld b[i] i-1

ld a[i] i

t

t+1

t+2

Kernel

(i=4,…,N-1):
MUL MemADD

INDIR

ia b

+ +

INDIR

*

t

+

s

Simplified IR:

t

s

Loop-carried data dep.,

Distance +1

(loop control omit-

ted for simplicity,

alternatively, ZOL)
+1

add

ld

mul
add

29 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Modulo Scheduling for Loops
can benefit from integration with instruction selection

Example:

s = 0.0;

t = a[0]*b[0];

for (i=1; i<N; i++)

{

s = s + t;

t = a[i] * b[i];

}

s = s + t;

II = 2

Given:

VLIW-Processor with 3 units:

- Adder (Latency 1),

- Multiplier/MAC (Latency 3),

- Memory access unit (Latency 3)
mac i-3a+ii

b+ii ld a[i] i

ld b[i] i-1t

t+1

Kernel

(i=4,…,N-1):
MUL MemADD

INDIR

ia b

+ +

INDIR

*

t

+

s

Simplified IR:

t

s

Loop-carried data dep.,

Distance +1

(loop control omit-

ted for simplicity,

alternatively, ZOL)
+1

add

ld

MAC

30 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Summary

Software Pipelining / Modulo-Scheduling

Software Pipelining: Move operations across iteration boundaries

Simplest technique: Modulo scheduling
= Fill modulo reservation table

☺ Better resource utilization,
more ILP,
also in the presence of loop-carried data dependences

 In general, higher register need, maybe longer code

Heuristics e.g. HRMS, Swing Modulo Scheduling, …

Optimal methods e.g. Integer Linear Programming

(Problem is NP-complete like acyclic scheduling)

Self-overlapping live ranges need special treatment

Loop unrolling can leverage additional optimization potential

Up to now, only at target code level,
hardly integrated (sometimes with register allocation)

