vz
DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

Register Allocation

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Register Allocation

O

O OO o 0d

Register Allocation: Determines values (variables, temporaries,
constants) to be kept when in registers

Register Assignment: Determine in which physical register such a value
should reside.

Essential for Load-Store Architectures
Reduce memory traffic (- memory / cache latency, energy)
Limited resource
Values that are alive simultaneously cannot be kept in the same register
Strong interdependence with instruction scheduling
0 scheduling determines live ranges
0 spill code needs to be scheduled

Local register allocation (for a single basic block) can be done in linear
time (see function getreg() in the Dragon Book).

Global register allocation (with minimal spill code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov’'62] [Cocke'71].

C. Kessler, IDA, Linkdping University 2

houuies,
Live range

(Here, variable = program variable or temporary)

0 A variable is being defined at a program point if it is written (given a
value) there.

0 A variable is used at a program point if it is read (referenced in an
expression) there.

0 A variable is alive at a point if it Iis referenced there or at some

following point that has not (may not have) been preceded by any
definition.

0 A variable is reaching a point if an (arbitrary) definition of it, or
usage (because a variable can be used before it is defined)
reaches the point.

0 A variable’s live range is the area of code (set of instructions)
where the variable is both alive and reaching.

0 does not need to be consecutive in program text.

C. Kessler, IDA, Linkdping University 3

vz
Local Register Allocation

For variable v and basic block B;:

netsave(v,i) = #uses; -usesave + #defs,- defsave
— [-ldcost (I =1 if Load(v) heeded at beg. of B;, O otherw.)
— s-stcost (s =1 iff Store(v) needed at end of B;, O otherw.)

For loop L estimate benefit of keeping v in a register:

benefit(v,L) = 10770 ¥ petsave(y,i)
i€blocks(L)

with R registers available:
allocate the R objects v with greatest benefit in L

moves may be necessary instead of Load(v) / Store(v)
if v could reside in (different) registers in Pred(B,), B;, Succ(B;)

add worst-case terms |Pred(v)|-mvcost, |Succ(v)|-mvcost

C. Kessler, IDA, Linkdping University 4

LINKOPING
II.“ UNIVERSITY

Register Allocation for Loops

Example: Control flow graph
X3=7 3 =7
fori=1to 100 { v .
x1 = X3 + x2 =1
x2=x1+x3 = =
. |<=100 |-
X3=x2+x1 = Ty ~—f—
} : XxXL=x3+x2 [
y = X3 + 42 : v
: X2=X1+Xx3 [
X3 = .
All variables N
Interfere with . i=i+1 -l .
_ . — o
r?:ecgzt:]eerSQ IIIIIIIIIIIIMII-
- 93 y =x3 + 42

C. Kessler, IDA, Linkdping University

& 5

-

Live ranges (loop only):
cyclic intervals
e.g. fori: [0, 6), [6,7)

X3

X2

i x1

A"/

At most 3 values alive at a time
- 3 registers sufficient?

LINKOPING
II.“ UNIVERSITY

Global Register Assignment by Graph Coloring

[Ershov’62] [Cocke’71] [Chaitin et al.81] [Chaitin’82]
[Chow/Hennessy’'84,90] [Briggs et al.’89] [Briggs'92] ...

1. allocate objects that can be assigned to registers

to distinct symbolic registers =1, s2, ...
2. determine candidates for allocation to registers (si / webs)
3. build interference graph

nodes: allocatable objects, target machine registers
edges: (undir.) {a;,a;} iff allocatable objects a;, a; simultaneously live
{a;,r;} iff a; should not reside in register r;

4. color nodes with R colors (R = #available registers)
such that any two adjacent nodes have different colors

o. allocate each object to a register that has the same color.

C. Kessler, IDA, Linkdping University 6

LINKOPING
II.“ UNIVERSITY

Allocatable objects: Webs (Live ranges)

web = max. union of DU-chains (d,u,...,u,) that overlap in at least one use

¥
Bl der Y |
¢ T w3
B2 def x def x :
def Y use 7

< (D——)
B4 nse X /B 1nse X

/

use y 4w4 | def x

DS 0 @

Y

+ live ranges instead of variable names = less constraints, less interferences

+ each web is equivalent to a symbolic register si

+ easy to determine from SSA form:
each SSA-form variable is head of a DU-chain

C. Kessler, IDA, Linkdping University 7

LINKOPING
II.“ UNIVERSITY

Register Allocation by Graph Coloring

0 Step 1: Given a program with symbolic registers s1, s2, ...
0 Determine live ranges of all variables

i = ct4; load 8(fp), sl ! ¢ sl
nop
addi s1, #4,s2 s2
store s2,4(£fp) 1 i

d = c—-2; subi sl,#2,s3 s3
store s3,12(fp) ! d i

c = ¢*i; muli sl,s2,s4 vy sS4
store s4,8(£fp) ! ¢ #

C. Kessler, IDA, Linkdping University 8

LINKOPING
II.“ UNIVERSITY

Register Allocation by Graph Coloring

0 Step 2: Build the Register Interference Graph

0 Undirected edge connects two symbolic registers (si, sj)
If live ranges of si and sj overlap in time

0 Reserved registers (e.g. fp) interfere with all si

physical
symbolic registers registers

i = ct+4; load 8(fp),s1 ! ¢ sl @
nop

addi s1,#4,s2 5 @ @

store s2,4 (fp) ' i \e

; subi sl1,#2,s3 S3 @
store s3,12(fp) ! d | e \

c = e*i; muli sl,s2,s4 Yy s4 @

store s4,8(fp) ' ¢ i @

0.
Il
!
I
3V

C. Kessler, IDA, Linkdping University 9

LINKOPING
II.“ UNIVERSITY

0 Step 3: Color the register interference graph with k colors,
where k = #available registers.

0 If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

» This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

i = ct4; load 8(fp),sl ! ¢ sl

nop @
addi s1, #4, s2 52 @ @
store s2,4(fp) ! i \e

d + subi s1,#2,s3 s3 @
store s3,12(fp) ! d | e \

c c*i; muli sl,s2, s4 s4 @

store s4,8(fp) ' ¢

I

N
|

ba

This register interference graph cannot be colored
with less than 4 colors, as it contains a 4-clique
C. Kessler, IDA, Linkdping University 10

vz
Coloring a graph with k colors

0 NP-complete for k>3
0 Chromatic number y(G) = minimum number of colors to color a graph G

0 vy(G) > c if the graph contains a c-clique
0 A c-cligue is a completely connected subgraph of ¢ nodes

0 Chaitin’s heuristic (1981):

S« {sl,s2,...} [/l setofspill candidates degree<k rule }
while (S not empty)
choose some s in S.
If s has less than k neighbors in the graph
then // there will be some color left for s:
delete s (and incident edges) from the graph
else modify the graph (spill, split, coalesce ... nodes) - changes IR
and restart.
// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

C. Kessler, IDA, Linkdping University 11

vz
Live range coalescing = fusion of webs

0 For a copy instruction sj € si

0 where si and sj do not interfere

0 and si and sj are not rewritten after the copy operation
0 Merge si and sj:

0 patch (rename) all occurrences of si to]

0 update the register interference graph
0 and remove the copy operation.

S2 & ... S3 & ... rl1 & ...
s3 € S2 —S3esq
...S3S3 ... NV o

C. Kessler, IDA, Linkdping University 12

Conservative Coalescing

Coalescing two live ranges « and v can increase the node degree:
d(u&v) > max(d(u), d(v)) is possible

— may make u&v harder to color

Conservative coalescing:
coalesce only if d(u&v) < R
— can color u&v by the naive degree< R heuristic

C. Kessler, IDA, Linkdping University 13

LINKOPING
II.“ UNIVERSITY

Spilling (1)

0 Spilling a (physical) register r
= spilling the live range w contained in r

0 uses some memory location w.tmp
(on stack, scratchpad memory, or w's home memory location)

0 insert a Store r, w.tmp
Immediately after each definition of w.var

0 inserta Load r, w.tmp
Immediately before each use of w.var

0 Some interferences disappear,
the interference graph must be updated.

C. Kessler, IDA, Linkdping University 14

LINKOPING
II.“ UNIVERSITY

Spilling (2)

Heuristic choice of the best spill candidate [Bernstein et al.89]

minimize ratio spillcost(w) / degree(w)* etc.

5pif/006‘f(1¢"):C.s-m;-e- Z '10d€prh(def) + Cloud Z -lOdeprf?(use)_Cmmte_ 2 10deprh(mp1-=)
defew nsecw COPYEW

A copy instruction whose source or target is spilled can be removed.

e spill value once per block if possible
— avoids redundant loads and stores

e consider rematerialization as alternative to spilling

C. Kessler, IDA, Linképing University 15

huses,
Rematerialization

Recomputing a value to a register (rematerialization)
may be cheaper than storing and reloading it,
e.g. for loading constants to a register.

Modify spillcost(w) accordingly.

1) (i) fu) tu) tu,) Hu,)
V U

u; B iy e H,
1, L L L, L

A

If a spilled value is used several times

and the restored value remains live for several adjacent uses,

a Load/Rematerialize is necessary only before the first of them.

(= live range splitting) [Chow/Hennessy'84,90]

C. Kessler, IDA, Linkdping University 16

Spilling (3)

0 Total spilling eliminates a live range completely
0 store after each definition, reload before each use
0 Partial spilling splits a live range into several ones
0 Some reduction in interference, some spill code

LINKOPING
II.“ UNIVERSITY

fv) tu) te.) fu) t)
[lj i [&: i
jIJ' % !.Ii“ f-.! LT
o tv) f{HJ} l"{ﬂ_}} f{rﬂj;store f{rﬂd}
Vv ki ({3 E 4
f,- I_j f_; load f_q
C. Kessler, IDA, Linkdping University 17

tu,)
iy

I
tiu,)
b

I

LINKOPING
II.“ UNIVERSITY

Live Range Splitting
0 Long live ranges tend to interfere with many others
-> harder to color.

0 Idea: Split up long live ranges to avoid some spilling
© reg-to-reg copy is much cheaper than memory spill
0 Live range splitting = the reverse of coalescing

C. Kessler, IDA, Linkdping University 18

LINKOPING
II.“ UNIVERSITY

Chaitin’s Register Allocator (1981)

find live ranges;
systematically rename them

Y

build interference graph G

!

coalesce copies
¢-E""‘---.__
L";‘ﬁ: estimate cost of spill
for each live range While G nonempty:
l if ex. node n with degree <k
remove n from G and push it on the stack
[simplihr (changes G else
, l picka node n to spill and remove it from G
any spills? _
[select
While stack is non-empty
l pop n; insert n into G; assigna colorto n

C. Kessler, IDA, Linkdping University 19

vz
Improvement: Optimistic Graph Coloring

G may be colorable even if v has > R neighbors

2-colorable 3-colorable
but degree< 2—-rule creates a spill but degree< 3—rule creates a spill

Optimistic coloring [Briggs’92]
e pick a node to spill and push it on the stack
e (postponing spilling decisions);
e proceed with degree< R-rule, color remaining graph;
e reinsert the pushed node and try to color now.

C. Kessler, IDA, Linkdping University 20

howizs,
Allocator with Briggs’ improvement

find live ranges;
systematically rename them

!

build interference graph G

'

coalesce copies
*““‘--‘_.__
|ns:ert estimate cost of spill
spills for each live range While G nonempty:
A if ex. node n with degree <k
,l, remove n from G and push it on the stack
L else
[smpllfy (changes G) pick a node n to spill, remove it from G,
l and push it on the stack
uncolored
nodes? [select While stack is non-empty
k Jl pop n; insert n into G; try to color n;
if no color available for n, leave it uncolored

C. Kessler, IDA, Linkdping University 21

Hierarchical Register Allocation

e find hierarchical structure (e.g., regions)

e color intervals bottom-up with Chaitin-style allocator,
using local and global interference information

LINKOPING
II.“ UNIVERSITY

Callahan, Koblenz
PLDI'91

e propagate summary information from children to parents

e top-down pass assigns the registers and places spill code

+ allocator is more sensitive to program structure

+ better placement of spill code
(always placed outside a loop if possible)

+ smaller interference graphs considered at each step
(the global interference graph is never built)

C. Kessler, IDA, Linkdping University 22

— [Example]

Hierarchical Register Allocation

top region (frocedure)
V1l vy

v3 V4

vb v6

for (...)

if 3 physical
regs avalil.:

I

C. Kessler, IDA, Linkdping University

23

top region (frocedure)
Vivy

gpillv;' —
for (...) v VI
spill v2

reload v1

vH _vB

seload V2

LINKOPING
UNIVERSITY

LINKOPING
II.“ UNIVERSITY

Two-Step Approach

0 Pre-Spilling phase

0 Limit the remaining register pressure at any program point
to the available number of physical registers

0 Can attempt for optimal spilling -
0 Graph-Coloring phase
0 Now easier to K-color

» Appel/George PLDI'O1
» Ebner 2009

C. Kessler, IDA, Linkdping University 24

vz
Optimal Spilling?
0 Select those live ranges for spilling

whose accumulated spill cost is minimal

0 Optimal (pre-)spilling and a-posteriori insertion of spill code
for given instruction schedule is NP-complete even for basic
blocks

0 Dynamic programming
»e.g., Horwitz et al. 1966
0 Integer Linear Programming
» e.9., Appel/George PLDI 2001
0 Most compilers use (greedy) heuristics (see above)

C. Kessler, IDA, Linkdping University 25

LINKOPING
II.“ UNIVERSITY

SSA-Based Register Allocation

0 For SSA programs, the register interference graph is chordal
0 Can be K-colored in quadratic time!
» Hack, Goos 2006
» Bouchez et al. 2006
» Brisk et al. 2009: Optimistic chordal coloring

0 Optimal coalescing in spill-free SSA programs
» Brisk et al. 2009: heuristic
» Grund, Hack 2007: Integer Linear Programming

0 Optimal pre-spilling in SSA programs
» Ebner 2009: heuristic

C. Kessler, IDA, Linkdping University 26

Fast Register Allocation

0 For JIT compilers:
0 Compilation time critical (trade-off with code quality)

0 Linear-Scan Register allocators

» Poletto, Sarkar TOPLAS 1999
» Traub, Holloway, Smith PLDI 1998

C. Kessler, IDA, Linkdping University 27

vz
Interdependences
Register Allocation €= Instruction Scheduling

e Determining live ranges requires a linear sequence of instructions
(pre-scheduled MIR, LIR, or target code with symbolic registers)

o Spill code must be scheduled as well
— may destroy quality of a beforehand good schedule
= Integration of register allocation and instruction scheduling
e quantitative evaluation [Bradlee et al.91]

e integrated approaches, space-aware scheduling
[Goodman/Hsu'88], [Freudenberger/Ruttenberg92], [Pinter'93]
[Brasier et al. 93], [Motwani et al.'95], [Kastner'97,00],..., [K./Bednarski'01]

C. Kessler, IDA, Linkdping University 28

