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Register Allocation

Register Allocation:  Determines values (variables, temporaries, 
constants) to be kept when in registers

Register Assignment:  Determine in which physical register such a value
should reside.

Essential for Load-Store Architectures

Reduce memory traffic (→ memory / cache latency, energy)

Limited resource

Values that are alive simultaneously cannot be kept in the same register

Strong interdependence with instruction scheduling

scheduling determines live ranges

spill code needs to be scheduled

Local register allocation (for a single basic block) can be done in linear
time (see function getreg() in the Dragon Book).

Global register allocation (with minimal spill code) is NP-complete. 
Can be modeled as a graph coloring problem  [Ershov’62] [Cocke’71].
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Live range

(Here, variable = program variable or temporary)

A variable is being defined at a program point if it is written (given a 
value) there.

A variable is used at a program point if it is read (referenced in an 
expression) there.

A variable is alive at a point if it is referenced there or at some
following point that has not (may not have) been preceded by any
definition.

A variable is reaching a point if an (arbitrary) definition of it, or 
usage (because a variable can be used before it is defined) 
reaches the point.

A variable’s live range is the area of code (set of instructions) 
where the variable is both alive and reaching. 

does not need to be consecutive in program text.
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Local Register Allocation
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Register Allocation for Loops

Example:

x3 = 7

for i = 1 to 100 {

x1 = x3 + x2

x2 = x1 + x3

x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + x2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):

cyclic intervals

e.g. for i:  [0, 6), [6, 7)

At most 3 values alive at a time

→ 3 registers sufficient?

All variables 

interfere with 

each other –

need 4 regs?
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Global Register Assignment by Graph Coloring
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Allocatable objects:  Webs  (Live ranges)
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Register Allocation by Graph Coloring

Step 1: Given a program with symbolic registers s1, s2, ...

Determine live ranges of all variables
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Register Allocation by Graph Coloring

Step 2: Build the Register Interference Graph

Undirected edge connects two symbolic registers (si, sj) 

if live ranges of si and sj overlap in time

Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical

registers
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Step 3:  Color the register interference graph with k colors,
where k = #available registers.

If not possible:  pick a victim si to spill, generate spill code
(store after def., reload before use)

This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored 

with less than 4 colors, as it contains a 4-clique
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Coloring a graph with k colors

NP-complete for  k > 3

Chromatic number g(G) = minimum number of colors to color a graph G

g(G) > c  if the graph contains a c-clique

A c-clique is a completely connected subgraph of c nodes

Chaitin’s heuristic (1981):

S  { s1, s2, ... }    // set of spill candidates

while ( S not empty )

choose some s  in  S.

if s  has less than k neighbors in the graph

then // there will be some color left for s:

delete s (and incident edges) from the graph

else modify the graph (spill, split, coalesce ... nodes) → changes IR

and restart.

// once we arrive here, the graph is empty:

color the nodes greedily in reverse order of removal.

degree<k  rule
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Live range coalescing  =  fusion of webs

For a copy instruction sj  si

where si and sj do not interfere

and si and sj are not rewritten after the copy operation

Merge si and sj:

patch (rename) all occurrences of si to sj

update the register interference graph

and remove the copy operation.

s2  ...

...

s3  s2

...

... s3 ...

s3  ...

...

s3 s3

...

... s3 ...

r1  ...

...

...

... r1 ...
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Conservative Coalescing
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Spilling (1)

Spilling a (physical) register r

=  spilling the live range w contained in r

uses some memory location w.tmp

(on stack, scratchpad memory, or w’s home memory location)

insert a Store r, w.tmp

immediately after each definition of w.var

insert a Load r, w.tmp

immediately before each use of w.var

Some interferences disappear, 

the interference graph must be updated.
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Spilling  (2)
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Rematerialization
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Spilling (3)

Total spilling eliminates a live range completely

store after each definition, reload before each use

Partial spilling splits a live range into several ones

Some reduction in interference, some spill code

store

load
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Live Range Splitting

Long live ranges tend to interfere with many others

→ harder to color.

Idea:  Split up long live ranges to avoid some spilling

☺ reg-to-reg copy is much cheaper than memory spill

Live range splitting = the reverse of coalescing
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Chaitin’s Register Allocator  (1981)
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Improvement:  Optimistic Graph Coloring
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Allocator with Briggs’ improvement
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Hierarchical Register Allocation 

Callahan, Koblenz 

PLDI’91
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Hierarchical Register Allocation
top region (procedure)

for (…)

for (…)

v1 v2

v3  v4

top region (procedure)

for (…)

for (…)

v1 v2

v3  v4

if 3 physical

regs avail.:
v5  v6 v5  v6

spill v1

spill v2

reload v1

reload v2
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Two-Step Approach

Pre-Spilling phase

Limit the remaining register pressure at any program point 

to the available number of physical registers

Can attempt for optimal spilling  →

Graph-Coloring phase

Now easier to K-color

Appel/George PLDI’01

Ebner 2009
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Optimal Spilling?

Select those live ranges for spilling

whose accumulated spill cost is minimal

Optimal (pre-)spilling and a-posteriori insertion of spill code

for given instruction schedule is NP-complete even for basic 

blocks

Dynamic programming  

e.g., Horwitz et al. 1966

Integer Linear Programming  

e.g., Appel/George PLDI 2001

Most compilers use (greedy) heuristics  (see above)
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SSA-Based Register Allocation

For SSA programs, the register interference graph is chordal

Can be K-colored in quadratic time!

Hack, Goos 2006

Bouchez et al. 2006

Brisk et al. 2009: Optimistic chordal coloring

Optimal coalescing in spill-free SSA programs

Brisk et al. 2009: heuristic

Grund, Hack 2007: Integer Linear Programming

Optimal pre-spilling in SSA programs

Ebner 2009:  heuristic
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Fast Register Allocation

For JIT compilers:  

Compilation time critical     (trade-off with code quality)

Linear-Scan Register allocators

Poletto, Sarkar TOPLAS 1999

Traub, Holloway, Smith PLDI 1998
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Interdependences 
Register Allocation  → Instruction Scheduling


