
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Instruction Selection

Retargetability

2 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

3 Main Tasks in Code Generation

Instruction Selection

Choose set of instructions equivalent to (L)IR code

Minimize (locally) execution time, # used registers, code size

Example: INCRM #4(fp) vs. LOAD #4(fp), R1
ADD R1, #1, R1
STORE R1, #4(fp)

Instruction Scheduling

Reorder instructions to better utilize processor architecture

Minimize temporary space (#registers, #stack locations) used,
execution time, or energy consumption

Register Allocation

Keep frequently used values in registers (limited resource!)

Some registers are reserved, e.g. sp, fp, pc, sr, retval …

Minimize #loads and #stores (which are expensive instructions!)

Register Allocation: Which variables to keep when in some register?

Register Assignment: In which particular register to keep each?

fp

Stack

3 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Machine model (here: a simple register machine)

Register set

E.g., 32 general-purpose registers R0, R1, R2, …
some of them reserved (sp, fp, pc, sr, retval, par1, par2 …)

Instruction set with different addressing modes

Cost (usually, time / latency; alt. register usage, code size)
depends on the operation and the addressing mode

Example: PDP-11 (CISC), instruction format OP src, dest

Source operand Destination address Cost

register register 1

register memory 2

memory register 2

memory memory 3

4 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Some Code Generation Algorithms

Macro-expansion of LIR operations (quadruples)

”Simple code generation algorithm” (ALSU2e Section 8.6)

Trade-off:

Registers vs. memory locations for temporaries

Sequencing

Code generation for expression trees

Labeling algorithm [Ershov 1958] [Sethi, Ullman 1970]
(see later)

Code generation using pattern matching

For trees: Aho, Johnsson 1976 (dynamic programming),

Graham/Glanville 1978 (LR parsing),

Fraser/Hanson/Proebsting 1992 (IBURG tool), …

For DAGs: [Ertl 1999], [K., Bednarski 2006] (DP, ILP)

5 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Macro expansion of quadruples

Each LIR operation/quadruple is translated to a

sequence of one or several target instructions

that performs the same operation.

☺ very simple

 bad code quality

Cannot utilize powerful instructions/addressing modes

that do the job of several quadruples in one step

Poor use of registers

→ Simple code generation algorithm,

see TDDB44/TDDD55 ([ALSU2e] 8.6)

6 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Towards code generation by pattern matching

Example: Data flow graph (expression tree) for i = c + 4

in LCC-IR (DAGs of quadruples) [Fraser,Hanson’95]

i, c: local variables

In quadruple form:

(Convention: last letter of opcode gives

result type: I=int, C=char, P=pointer)

(ADDRLP, i, 0, t1) // t1 fp+4

(ADDRLP, c, 0, t2) // t2 fp+12

(INDIRC, t2, 0, t3) // t3 M(t2)

(CVCI, t3, 0, t4) // convert char to int

(CNSTI, 4, 0, t5) // create int-const 4

(ADDI, t4, t5, t6)

(ASGNI, t6, 0, t1) // M(t1) t6

7 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Recall: Macro Expansion

For the example tree:

s1, s2, s3...: ”symbolic” registers (allocated but not assigned yet)

Target processor has delayed load (1 delay slot)

s5

8 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Using tree pattern matching...

Utilizing the available addressing modes of the target processor,

3 instructions and only 2 registers are sufficient to cover the entire tree:

9 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Tree patterns vs. Complex patterns

Complex patterns

Forest patterns (several pattern roots)

DAG patterns (common subexpressions in pattern)

Tree pattern

(Multiply-add)

Forest pattern

(SIMD instruction)

DAG pattern

(Memory incr)

No match of mad

(pending use of MUL)

10 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Code generation by pattern matching

Powerful target instructions / addressing modes may cover the effect of

several quadruples in one step.

For each instruction and addressing mode,

define a pattern that describes its behavior in terms of quadruples resp.

data-flow graph nodes and edges

(usually limited to tree fragment shapes: tree pattern).

A pattern matches at a node v

if pattern nodes, pattern operators and pattern edges coincide with a tree

fragment rooted at v

Each instruction (tree pattern) is associated with a cost,

e.g. its time behavior or space requirements

Optimization problem: Cover the entire data flow graph (expression tree)

with matching tree patterns such that each node is covered exactly once,

and the accumulated cost of all covering patterns is minimal.

11 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Tree grammar (Machine grammar)

costtarget instruction for pattern

12 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Tree Grammar / Machine Grammar

13 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Derivation of the expression tree
Here: Top-down derivation

cost of chosen rule for covering ASGNI

(= time for a STORE instruction)

14 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Derivation using a LR parser
(bottom-up derivation)

CVCI

INDIRC

ADDRLP

ASGNI

CNSTI

ADDIADDRLP

CVCI

INDIRC

ADDRLP

ASGNI

CNSTI

ADDIaddr
0 0

CVCI

INDIRC

addr

ASGNI

CNSTI

ADDIaddr
…

2

reg

ASGNI

CNSTI

ADDIaddr
0

reg

ASGNI

cnst

ADDIaddr

1 stmt

1 reg

ASGNI

addr …

15 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Some methods for tree pattern matching

Use a LR-parser for matching - ”BURS” [Graham, Glanville 1978]

☺ compact specification of the target machine

using a context-free grammar (”machine grammar”)

☺ quick matching

 not total-cost aware

(greedy local choices at reduce decisions → suboptimal)

Combine tree pattern matching with dynamic programming for total cost

minimization - TWIG [Aho, Ganapathi, Tjiang ’89],

- IBURG [Fraser, Hanson, Proebsting’92]

A LR parser is stronger than what is really necessary

for matching tree patterns in a tree.

”Right” machine model is a tree automaton

= a finite automaton operating on input trees

rather than flat strings [Ferdinand, Seidl, Wilhelm ’92]

By Integer Linear Programming [Wilson et al.’94] [K., Bednarski ’06]

16 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Tree Pattern Matching

by Dynamic Programming (1)

Derivation is not unique

→ find a least-cost derivation of the LIR tree

cost of a derivation = sum over costs of productions applied

A greedy approach is not sufficient

initially cheap derivations may later turn out to be
expensive

naive: backtracking (= enumerate all possible coverings)

fast: dynamic programming [Aho/Johnson’76]

bottom-up rewrite machine (BURM), for code generator
generators:

TWIG [Aho/Ganapathi/Tjiang’89],

BURG [Fraser/Henry/Proebsting’92],

IBURG [Fraser/Hanson/Proebsting’92] [Fraser/Hanson’95]

17 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Phase 1: bottom-up labeller

annotates each node v of the input tree with

the set of tree patterns that match v and

their accumulated costs;

if multiple rules apply,

pick one with locally minimum cost for each lhs

nonterminal;

Apply chain rules nonterm1 →nonterm2

as far as possible.

18 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Labeler (1)

19 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Labeler (2)

20 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Labeler (3)

21 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Labeler (4)

22 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Labeller (5)

23 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Phase 2: Top-down reducer

root of the labeled tree must correspond to start symbol (stmt)

choose best production for root node (accumulated costs),

apply the corresponding productions,

and do this recursively for each nonterminal in the rhs term

24 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Found least-cost derivation:

25 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Phase 3: Emitter

in reverse order of the derivation found in phase 2:

emit the assembler code for each production applied

execute additional compiler code associated with these

rules

e.g. register allocation.

26 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Emitter result:

27 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: IBURG

Given: a tree grammar describing the target processor

1. parse the tree grammar

2. generate:

bottom-up labeller,

top-down reducer,

emitter automaton

→ retargetable code generation!

28 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Complexity of Tree Pattern Matching

NP-complete if associativity / commutativity included,

otherwise:

Naive: time O(# tree patterns * size of input tree)

Preprocessing initial tree patterns

[Kron’75] [Hoffmann/O’Donnell’82]

may require exponential space / time

but then tree pattern matching in time O(size of input tree)

Theory of (non)deterministic tree automata

[Ferdinand/Seidl/Wilhelm’92]

29 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Instruction selection for DAGs

Computing a minimal cost covering

(with tree patterns) for DAGs?

NP-complete [Proebsting’98]

For common subexpressions,

only one of possibly several

possible coverings can be

realized.

Dynamic programming algorithm for trees OK as heuristic

for regular processor architectures

The algorithm for trees may create optimal results for DAGs

for special tree grammars (usually for regular register sets).

This can be tested a priori! [Ertl POPL’99]

30 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Complex Patterns (1)

Several roots possible

Common subexpressions possible

SIMD instructions

DIVU instruction on Motorola 68K
(simultaneous div + mod)

Read/Modify/Write instructions on IA32

Autoincrement / autodecrement
memory access instructions

Min-cost covering of a DAG with complex patterns?

Can be formulated as PBQP instance [Scholz,Eckstein ’03]
(partitioned boolean quadratic programming)

Or as ILP (integer linear programming) instance

Caution: Risk of creating artificial dependence cycles! →

31 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Complex Patterns (2)

Caution: Risk of creating artificial dependence cycles!

ASGN

ADD

CNST

#4

p

p’=p+4

Example

[Ebner 2009]:

*p := r+4;

*q := p+4;

*r := q+4;

use postdecr.

store instruct.:

ASGN

ADD

CNST

#4

q

q’=q+4

ASGN

ADD

CNST

#4

r

r’ = r+4

st (p++), r’ st (q++), p’ st (r++), q’

Cycle between resulting instructions → No longer schedulable!

Solution [Ebner 2009]:

Add constraints to guarantee schedulability (some topological order exists)

32 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Interferences with instruction scheduling and

register allocation

The cost attribute of a production is only a rough estimate

E.g., best-case latency or occupation time

The actual impact on execution time is only known for a given
scheduling situation:

currently free functional units

other instructions that may be executed simultaneously

latency constraints due to previously scheduled instructions

→ Integration with instruction scheduling would be great!!

Mutations with different unit usage may be considered:

a = 2*b equivalent to a = b<<1 and a = b+b (integer)

Different instruction selections may result in different register need.

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Retargetable Code Generation

34 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Retargetable Compilers

Variant 1: Use a Code Generator Generator

Variant 2: Parameterizable Code Generator

Code Generator

Code Generator

Generator

generate

Architecture

description

Assembler

program
IR

Code Generator
Assembler

program
IR

Architecture

description

e.g. IBURG,

GBURG, OLIVE

e.g. OPTIMIST/xADML,

ELCOR/HMDES

35 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Excerpt from an OLIVE tree grammar

%term AND // declare terminal AND

%declare<char *> reg; // declare nonterminal reg, whose

// action function returns a string

reg: AND (reg, reg) // rule for a bitwise AND instruction

{

$cost[0] = 1 + $cost[2] + $cost[3]; // cost = 1 plus cost of subtrees

}

=

{

char *vr1, *vr2, *vr3; // local variables in action function

vr1 = $action[2]; // get virtual register name for argument 1

vr2 = $action[3]; // get virtual register name for argument 2

vr3 = NewVirtualName(); // get virtual register name for destination

printf(”\n AND %s, %s, %s”, vr1, vr2, vr3); // emit assembler instruction

return strdup(vr3); // pass a copy of destination name upwards in tree

};

36 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Some Literature on Instruction Selection

Dietmar Ebner: SSA-Based Code Generation Techniques for Embedded
Architectures. PhD thesis, TU Vienna, Austria, 2009.

Erik Eckstein, Oliver König, and Bernhard Scholz. Code Instruction
Selection Based on SSA-Graphs. Proc. SCOPES’03, Springer Lecture
Notes in Computer Science vol. 2826, pages 49-65, 2003.

Erik Eckstein and Bernhard Scholz. Addressing mode selection. Proc.
CGO’03, pages 337-346. IEEE Computer Society, 2003.

M. Anton Ertl. Optimal Code Selection in DAGs.
Proc. Principles of Programming Languages (POPL '99), 1999

Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting.
Engineering a simple, efficient code-generator generator.
ACM Letters on Programming Languages and Systems, 1(3):213-226,
Sep. 1992

R. Steven Glanville and Susan L. Graham: A new method for compiler
code generation. Proc. POPL, pp. 231-240, ACM, 1978

Alfred V. Aho, Steven C. Johnson: Optimal code generation for expression
trees. Journal of the ACM 23(3), July 1976.

37 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Literature on Instruction Selection (2)

Gabriel Hjort-Blindell, Mats Carlsson, Roberto Castaneda-Lozano, and

Christian Schulte: Complete and practical univeral instruction selection. ACM

Trans. on Embedded Computing Systems (TECS), 16(5s), Art. 119, Sep.

2017

For a comprehensive survey and classification of instruction selection

problems and techniques, see

Gabriel Hjort-Blindell. Instruction Selection – Principles, Methods, and

Applications. Springer, 2016.

