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Abstract

Optimal integrated code generation is a challenge in terms of problem complexity, but it
provides important feedback for the resource-efficient design of embedded systems and is a
valuable tool for the assessment of fast heuristics for code generation. We present a method
for energy optimal integrated code generation for generic VLIW processor architectures that
allows to explore trade-offs between energy consumption and execution time.

1 Introduction

Power dissipation in embedded systems is of serious concern especially for mobile devices that run
on batteries. There are various approaches in embedded processor design that aim at reducing the
energy consumed, and most of these have strong implications for power-aware code generation.

Voltage scalingreduces the power consumption by reducing voltage and clock frequency. The
processor can be switched to such a power-saving mode in program regions where speed is of
minor importance, such as waiting for user input. This technique is only applicable to coarse-
grained regions of the program because transitions between modes have a non-negligible cost.

Clock gatingdenotes hardware support that allows to switch off parts of a processing unit that are
not needed for a certain instruction. For instance, for integer operations, those parts of the proces-
sor that only deal with floatingpoint arithmetics can be switched off. Deactivation and reactivation
require some (small) additional amount of energy, though. This feature for fine-grained power
management requires optimizations by the code generator that avoid long sequences of repeated
activations and deactivations by closing up instructions that largely use the same functional units.
The method described in this paper will take this feature into account.

Pipeline gatingreduces the degree of speculative execution and thus the utilization of the func-
tional units. And there are several further hardware design techniques that exploit a trade-off
between speed and power consumption. See [2] for an overview. Other factors that influence
power dissipation are rather a pure software issue:

Memory accessescontribute considerably to power dissipation. Any power-aware code generator
must therefore aim at reducing the number of memory accesses, for instance by careful scheduling
and register allocation to minimize spill code, or by cyclic register allocation techniques for loops,
such as register pipelining [16].

Switching activities on busesat the bit level are also significant. In CMOS circuits, power is dis-
sipated when a gate output changes from 0 to 1 or vice versa. Hence, bit toggling on external and
internal buses should be reduced. Hardware design techniques such as low-power bus encoding



may be useful if probability distributions of bit patterns on the buses are given [14]. However,
the code generator can do much more. For instance, the bit patterns for subsequent instruction
words (which consist of opcodes, register addresses and immediates) should not differ much,i.e.
have a small Hamming distance. This implies constraints for instruction selection and for register
assignment as well as for the placement of data in memory. Moreover, the bit patterns of the in-
struction addresses (i.e., the program counter value) do matter. Even the contents of the registers
accessed have an influence on power dissipation. Beyond the Hamming distance, theweight(i.e.
the number of ones in a binary word) may have an influence on power dissipation – positive or
negative.

Instruction decoding and executionmay take more or less energy for different instructions. This is
a challenge for instruction selection if there are multiple choices. For instance, an integer multipli-
cation by 2 may be replaced by a left shift by one or by an integer addition. Often, multiplication
has a higher base cost than a shift operation [12]. Different instructions may use different func-
tional units, which in turn can influence the number of unit activations/deactivations. Hence,
resource allocation is a critical issue. In the multiplication example, if the adder is already “warm”
but the shifter and multiplier are “cold”,i.e. not used in the preceding cycle, the power-aware
choice would be to use the adder, under certain conditions even if another addition competes for
the adder in the same time slot.

Execution timein terms of the number of clock cycles taken by the program is directly related to the
energy consumed, which is just the integral of power dissipation over the execution time interval.
However, there is no clear correlation between execution time and e.g. switching activities [17].
There are further trade-offs such as between the number of cycles needed and the number of unit
activations/deactivations: Using a free but “cold” functional unit increases parallelism and hence
may reduce execution time, but also increases power dissipation. Such effects make this issue
more tricky than it appears at a first glance.

In order to take the right decisions at instruction selection, instruction scheduling (including re-
source allocation) and register allocation (including register assignment), the code generator needs
apower modelthat provides quite detailed information about the power dissipation behavior of the
architecture, which could be given as a function of the instructions, their encoding, their resource
usage, their parameters, and (if statically available) their address and the data values accessed. On
the other hand, such a power model should abstract from irrelevant details and thus allow for a fast
calculation of the expected power dissipation for a given program trace. Ideally, a power model
should be applicable to an entire class of architectures, to enhance retargetability of a power-aware
code generator.

The information for a power model can be provided in two different ways: by simulation and
by measurements. Simulation-based approaches take a detailed description of the hardware as
input and simulate the architecture with a given program at the microarchitectural level, cycle by
cycle to derive the energy consumption. Examples for such simulators are SimplePower [22] and
Wattch [1]. In contrast, measurement-based approaches assume a small set of factors that influence
power dissipation, such as the width of opcodes, Hamming distances of subsequent instruction
words, activations of functional units, etc., which are weighted by originally unknown parameters
and summed up to produce the energy prediction for a given program trace. In order to calibrate
the model for a given hardware system, an ampèremeter is used to measure the current that is



actually drawn for a given test sequence of instructions [18]. The coefficients are determined by
regression analysis that takes the measurements for different test sequences into account. Such a
statistical model is acceptable if the predicted energy consumption for an arbitrary program differs
from the actual consumption only by a few percent. Recently, two more detailed, measurement-
based power models were independently developed by Lee et al. [11] and by Steinke et al. [15],
for the same processor, the ARM7TDMI; they report on energy predictions that are at most 2.5%
and 1.7% off the actual energy consumption, respectively. We will use an adapted version of their
power model as a basis for the energy optimizations described in this paper.

Higher level compiler optimization techniques may address loop transformations, memory allo-
cation, or data layout. For instance, the memory layout of arrays could be modified such that
consecutive accesses traverse the element addresses in a gray code manner. If available, some fre-
quently accessed variables could be stored in small on-chip memory areas [12]. In this work, we
assume that such optimizations are already done and we focus on the final code generation step.

Not all factors in a power model are known at compile time. For instance, instruction addresses
may change due to relocation of the code at link or load time, and the values residing in registers
and memory locations are generally not statically known, even though static analysis could be
applied to predict e.g. equality of values at least in some cases.

We present a method for energy-aware integrated local code generation that allows to explore
trade-offs between energy consumption and execution time for a generic VLIW processor archi-
tecture. Our framework can be applied in two ways: It can determine power-optimal code (for
a given power model) and it can optimize for execution time given a user-specified energy bud-
get for (parts of) the program. An integrated approach to code generation is necessary because
the subproblems of instruction selection, instruction scheduling, resource allocation and register
allocation depend on each other and should be considered simultaneously. This combined opti-
mization problem is a very hard one, even if only the basic block scope is considered. Fortunately,
the application program is often fixed in embedded systems, and the final production run of the
compiler can definitely afford large amounts of time and space for optimizations. Finally, an op-
timal solution is of significance for the design of energy-efficient processors because it allows to
evaluate the full potential of an instruction set design. Furthermore knowing the optimal solution
allows to evaluate the quality of fast heuristics, as we will show later.

2 Target processor model

Our processor model is a generic VLIW processor withf functional units U1, ...,
Uf , one or more register sets, and one or more memory modules. With some limitations this
is applicable to superscalar processors as well.

Time model The issue widthω of the processor is the maximum number of instructions that may
be issued in the same clock cycle. Usually,1 ≤ ω ≤ f . Theunit occupation timeoi of a functional
unit Ui is the number of clock cycles thatUi is occupied with executing an instruction before a
new instruction can be issued toUi. The latency`i of a unit Ui is the number of clock cycles
taken by an instruction onUi before the result is available. We assume thatoi ≤ `i. Different
target instructions can specify other values for occupation time (o′i) and latency (̀′i) for unit Ui.



We assume that for every instruction that modifies parameters of a functional unitUi, o′i ≤ oi,
`′i ≤ `i ando′i ≤ `′i.

Power modelWe adopt a simple power model [11, 12]. that largely follows the measurement-
based power models described above, which we generalize in a straightforward way for VLIW
architectures. Our model assumes that the contribution of every instructiony to the total energy
consumption consists of the following components: (i) a base costbcost(y) that is independent of
the context of the instruction, (ii) an overhead costohcost(y, y′) that accounts for inter-instruction
effects with the instructiony′ that precedesy in the same field of the instruction word, such as bit
toggling in the opcode fields, and (iii) an activation/deactivation costaci that is paid if functional
unit Ui is activated or deactivated.

ADML The structure (Ui, instruction set) and parameters (ω, `i, oi, . . . ) of our generic architecture
model can be specified in our XML-based architecture description markup language ADML [6].

3 Energy-optimal integrated code generation

We focus on code generation for basic blocks and extended basic blocks [13] where the data
dependences among the IR operations form a directed acyclic graph (DAG)G = (V,E). Let n
denote the number of IR nodes in the DAG.

IR-level schedulingAn IR-schedule, or simplyschedule, of the basic block (DAG) is a bijective
mappingS : V → {1, ..., n} describing a linear sequence of then IR operations inV that is
compliant with the partial order defined byE, that is,(u, v) ∈ E ⇒ S(u) < S(v). A partial
scheduleof G is a schedule of a subDAGG′ = (V ′, E ∩ (V ′ × V ′)) induced by a subsetV ′ ⊆ V
where for eachv′ ∈ V ′ holds that all predecessors ofv′ in G are also inV ′. A partial schedule of
G can be extended to a (complete) schedule ofG if it is prefixed to a schedule of the remaining
DAG induced byV − V ′.

Instruction selection Naive instruction selection maps each IR operationv to one of a setΨ(v)
of equivalent, single target instructions: Amatching target instructiony ∈ Ψ(v) for a given IR
operationv is a target processor instruction that performs the operation specified byv. An instruc-
tion selectionY for a DAG G = (V,E) maps each IR operationv ∈ V to a target instruction
y ∈ Ψ(v).
Our framework also supports the case that a single target instructiony covers a setχ of multiple IR
operations, which is quite common for a low-level IR. This corresponds to a generalized version
of tree pattern matching. The converse case of a single IR operation corresponding to multiple
target instructions requires either lowering the IR or scheduling on the target level only.

Target-level schedulingA target instructiony may actually require time slots on several func-
tional units. Atarget-scheduleis a mappings of the time slots in{U1, ..., Uf}×N0 to instruc-
tions such thatsi,j denotes the instruction starting execution on unitUi at time slotj. Where no
instruction is started onUi at time slotj, si,j is defined as⊥ (idle). If an instructionsi,j pro-
duces a value that is used by an instructionsi′,j′ , it must holdj′ ≥ j + `i. Also, it must hold
j′ ≥ j′′ + oi wheresi′,j′′ is the latest instruction issued toUi′ beforesi′,j′ . Finally, it must hold
|{si′′,j′ 6= ⊥, 1 ≤ i′′ ≤ f}| ≤ ω.

In addition to this per-unit view of the target schedules we are also interested in theinstruction



word viewσs that shows how instructions appear in theω slots per cycle in the program. An
instructionσs

i,j corresponds to thei-th slot of thej-th instruction word in the scheduleσs. σs
i,j =

NOP if not filled.

Thereference timeρ(s) of a target-schedules is the last clock cycle where an instruction (including
explicit NOPs) is issued ins to some functional unit. Theexecution timeτ(s) of a target-schedule
s is the number of clock cycles required for executings, that is,τ(s) = maxi,j{j+`i : si,j 6= ⊥}.
A target schedules is time-optimalif it takes not more time that any other target schedule for the
DAG.

Some instructions issued at timet ≤ ρ(s) may not yet terminate at timeρ(s), which means that
the time slotsρ(s) + 1, ..., τ(s) in s must be padded byNOPs to guarantee a correct program. In
order to account for the energy contribution of these trailingNOPinstructions we transform the
base cost of all instructionsy to cover successiveNOPs: basecost(y) = bcost(y)− bcost(NOP). In
particular, the transformedbasecost(NOP) is 0. Thus the base cost for target schedules is:

Ebc(s) = τ(s) · bcost(NOP) +
∑

σs
i,j 6=NOP

basecost(σs
i,j).

The overhead cost for a target schedules can be calculated as follows:

Eoh(s) =
ω∑

i=0

τ(s)∑
j=1

ohcost(σs
i,j , σ

s
i,j−1)

The activation/deactivation cost ofs is:

Eact(s) =
f∑

i=1

τ(s)∑
j=1

aci · δ′(si,j , si,j−1)

whereδ′(a, b) =0 if (a 6= ⊥ ∧ b 6= ⊥) ∨ (a = ⊥ ∧ b = ⊥), and1 otherwise.

Then the total energy cost fors is E(s) = Ebc(s) + Eoh(s) + Eact(s).
Register allocationA register allocationfor a given target-schedules of a DAG is a mapping
r from the scheduled instructionssi,j to physical registers such that the value computed bysi,j

resides in a registerr(si,j) from time slotj and is not overwritten before its last use.

The register need of an optimal register allocation for a given target-schedules can be computed
in linear time.

If width or Hamming distance of subsequent register contents or of the bit patterns in the register
indices do matter, a more sophisticated approach would be necessary to compute a power-optimal
register assignment for a given schedule, e.g. by using resource flow graphs [3] or a graph coloring
technique. Power dissipation effects due to bit switching on the instruction bus are not modeled
and currently considered as negligible.

Basic methodA naive approach to finding an optimal target schedule consists in the exhaustive
enumeration of all possible target schedules, each of which can be generated by a combination of
topological sorting of the DAG nodes with DAG pattern matching for instruction selection. As
in topological sorting, the algorithm maintains a set of DAG nodes with indegree zero (ready for
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Figure 1: Basic method. Left hand side: situation when selectingv ∈ z and a multiply-accumulate
instruction that coversv. Right hand side: resulting selection tree.

selection), thezero-indegree set, which is initialized to the setz0 of DAG leaves. The algorithm
repeatedly does the following:

(1) A DAG nodev from the current zero-indegree setz is selected. The algorithm selects a target
instructiony that coversv (and possibly some further not yet scheduled DAG nodes). For irreg-
ular processors the algorithm checks the availability of operands for instructiony in the expected
residence classes [6]. Letχ denote the set of DAG nodes covered byy.

(2) y is appended to the current target schedule and scheduled to the first possible slot on the
unit(s) thaty executes on.

(3) The nodes inχ are appended to the current IR schedule and removed from the DAG, which
implies updating the indegrees of the parents of the nodes inχ. The zero-indegree set changes
accordingly. If data placement is considered, the algorithm issues additional transfer operations in
target schedules [6].

(4) This process is continued until all DAG nodes have been scheduled.

An exhaustive enumeration of all possibilities for selecting the next nodev from a zero-indegree
list and of matching instructionsy generates all possible IR-schedules and all possiblegreedy
target-schedules of the DAG. The greedy compaction applied in step (2) is sufficient for pure
time optimization because any schedule can be converted to a greedy schedule without increasing
the execution time [4]. However, if register need or power dissipation do matter, a non-greedy
schedule may be better, for instance to defer usage of a functional unit by a few cycles to cluster
activation periods. In this case, we modify the algorithm to defer execution by issuing additional
NOPs. This is done by adding in step (1) an implicitNOPnode to each zeroindegree setz that, if
selected, causes step (2) to flush the current long instruction word. In combination with exhaustive
enumeration, this allows to generate all possible target schedules.

The exhaustive enumeration of (IR) schedules produced by topological sorting implicitly builds a
tree-like representation of all schedules of the DAG, called theselection tree(see Fig. 1), which
is leveled. Each node of the selection tree corresponds to a scheduling situation in the above
algorithm, i.e. an instance of a zero-indegree set of DAG nodes during topological sorting. A
directed edge connects a nodez to a nodez′ of a selection tree if there is a step in the selection
process of topological sorting that produces the zero-indegree setz′ from z.

In previous work [5] we pointed out that multiple instances of the same zero-indegree set may
occur in the selection tree. For all these instances, the same setscheduled(z) of nodes in the same
subDAGGz of G belowz has been scheduled. This leads to the idea that we could perhaps op-



timize locally among all the partial schedules corresponding to equal zero-indegree set instances,
merge all these nodes to a single selection node and keep just one optimal partial schedule to be
used as a prefix in future scheduling steps. In [7] we have shown that this optimization is valid
when computing space-optimal schedules for a single-issue processor. When applying this idea to
all nodes of a selection tree, the selection tree becomes aselection DAG. In the same way as the
selection tree, the selection DAG is leveled, where all zero-indegree setsz that occur after having
scheduledl = |scheduled(z)| DAG nodes appear at levell in the selection DAG, see Fig. 2. This
grouping of partial schedules is applicable to schedules that arecomparablewith respect to the
optimization goal. Comparability also depends on the target architecture. The resulting compres-
sion of the solution space decreases considerably the optimization time and makes it possible to
generate space-optimal schedules for DAGs of reasonable size [7].

Time profiles For time-optimal schedules, comparability of partial schedules requires a more
involved definition. In previous work [5] we introduced the concept of atime profilethat records
for a target schedules which operations are currently (at timeρ(s)) being executed and have not
yet completed on every functional unit, which may influence future scheduling decisions.

The time profileP of a given target-schedules is determined froms as follows [5]: Lett = ρ(s) ≥
0 denote the reference time ofs. The profileP is obtained by concatenating (in reverse order) the
DAG nodes (orNOPs where units are idle) corresponding to the`i latest entriessi,t−`i+1, ..., si,t

in s for the unitsUi, i = 1, ..., f . Entriessi,j with j < 0 are regarded as⊥s. Thetime reference
pointof P in s is t. Hence, a time profile contains all the information required to decide about the
earliest time slot where the node selected next can be scheduled.

Power profilesA power profileΠ(s) = (st−1,1, ..., st−1,ω, a1, ..., af ) for a target schedules at
reference timet = ρ(s) contains the instructionsst−1,k issued in each slotk of the next-to-last
instruction word ins at timet− 1, and theactivity statusai ∈ {0, 1} in the last filled slot of unit
Ui in s, that is, at timet if some instruction or a definiteNOPwas already scheduled to unitUi at
time t, andt− 1 otherwise.

The power profile thus stores all the information that may be necessary to determine the impact
of scheduling steps at timet on power dissipation: the activity status of all functional units says
whether a unit must be activated or deactivated, and the information about the preceding instruc-
tions allows to calculate inter-instruction power effects for instructions to be selected and sched-
uled at timet. Given the power profile and a new instructiony to be appended to the current target
schedules, the new power profile can be calculated incrementally.

We can thus associate with every target schedules for Gz the accumulated energyEz(s) that was
consumed by executings from time 1 toτ(s) according to our power model. The goal is of course
to find a target schedules for the entire basic block that minimizesE∅(s). If we optimize for
energy only (and thus ignore the time requirements), two target scheduless1 ands2 for the same
subDAGGz are comparable with respect to their energy consumption if they have the same power
profile, as they could be used interchangeably as a prefix in future scheduling decisions. Hence,
the following compression theorem allows us to apply our dynamic programming framework to
energy optimization:

Theorem 3.1 For any two target schedules for the same subDAGGz, s1 with reference time
t1 = ρ(s1) and s2 with reference timet2 = ρ(s2), whereΠ(s1) = Π(s2), the si with higher
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Figure 2:Solution space for squaring on a 2-issue architecture with 2 functional units` = (2, 1), with base
costs: 4 for st, 3 for others, 1 forNOP, and instruction overhead of 0.

accumulated energy consumptionEz(si) can be thrown away, that is, needs not be considered in
further scheduling steps, without losing optimality. IfEz(s1) = Ez(s2), eithers1 or s2 can be
thrown away without losing optimality.

The theorem follows from the fact that all information that is not stored in the power profile, such
as instructions issued at a time earlier thant− 1 or units active at a time earlier thant− 1, has no
influence on the power dissipation in cyclet (reference time) according to our power model.

Construction of the solution spaceFor energy-only optimization, anextended selection node
(ESnode for short)η = (z,Π) is characterized by a zeroindegree setz and a power profileΠ =
Π(s) for some target schedules of Gz that is locally energy-optimal among all target schedules
for Gz with that power profile. The ESnode storess as an attribute.

Fig. 2 represents the whole solution space for the matched DAG represented on the left side that
computesy=x*x . The target architecture has two functional unitsU1 andU2 with latency` =
(2, 1) and activation costac = (6, 5). The base cost for node0 is 4, 3 for others, and 1 forNOP.
Node0 is to be executed on unitU2 and other nodes on eitherU1 or U2. ESnodes are grouped
according to their level (length of the IR schedule). The first row of each ESnode represents
the power profile and its reference timeρ(s). For example, for the leftmost ESnode at level 1,
{(3|−)(−|−)} means that node3 (ld) matches instruction 3 and is scheduled on unitU1 at the
current time slot. The status of unitU2 is empty (denoted by –). In other ESnodes,N denotes an
explicit NOPinserted by the dynamic programming algorithm. Remark that we show explicitly
the occupation status of each functional unit at reference timet = ρ(s) and t − 1. Edges are
annotated with nodes selected in the selection step of topological sorting (see Section 3). Edges
that fall into a single ESnode indicate that the resulting partial solution nodes are equivalent.
Unlabeled edges (horizontal) show an improvement of a partial solution,i.e. a partial ESnode is
constructed that dissipates less energy than an equivalent ESnode that was already in the solution
space; the resulting ESnode is the one with least energy dissipation. The second row in each
ESnode represents the zero-indegree set (e.g.,1, 2: nodes1 and2), followed by the total execution
time in terms of number of clock cycles (2 for the example node). Finally, we show the energy



required for the partial schedule (10).

We structure the solution space as a two-dimensional gridL, spanned by an energy axis and a
length axis. In order to obtain a discrete solution space we partition the energy axis into intervals
[k ·∆E, (k + 1) ·∆E[ of suitable size∆E and normalize the lower bounds of the intervals to the
integersk = 0, 1, 2, ... Grid entryL(l, E) stores a list of all ESnodes that represent IR schedules
of lengthl and accumulated energy consumptionE. This structure supports efficient retrieval of
all possible candidates for comparable partial solutions. When constructing the solution space, we
proceed along the energy axis as driving axis, as energy is supposed to be the main optimization
goal, while the length axis has secondary priority. The grid structure allows, by taking the prece-
dence constraints for the construction of the partial solutions into account, to change the order
of construction as far as possible such that the more promising solutions will be considered first
while the less promising ones are set aside and reconsidered only if all the initially promising
alternatives finally turn out to be suboptimal.

This is based on the property that the accumulated energy consumption never decreases if another
instruction is added to an existing schedule. Most power models support this basic assumption;
otherwise a transformation as in [6] can be applied to establish monotonicity for the algorithm.

Implementation and resultsThe structuring and traversal order of the solution space allows us
to optimize the memory consumption of the optimization algorithm. Once all partial solutions in
an ESNode(E, l) have been expanded it can be removed, as it will never be looked up again. Our
algorithm for finding an energy-optimal schedule appears to be practical up to size 30, see Table 1.

Heuristics for large problem instancesLarge DAGs require heuristic pruning of the solution
space to cope with the combinatorial complexity. As a first attempt we control the number of vari-
ants generated from a scheduling situation,i.e. the number of ESnodes produced at each selection
step. Instead of generating all possible selections we stop afterN variants. Increasing the value
of N results in better schedules with a slight computation time overhead. Using this heuristic
decreases significantly computation times, that still present exponential behavior, and results in
highly optimized code quality within 10% to optimal. We additionally implemented list schedul-
ing (LS) and simulated annealing (SA) heuristics. For the results obtained with LS heuristic we
observe an overhead of 173% on average and for SA 55%. This significant overhead for both
heuristics is caused by that they do not consider using an already “warm” functional unit, nor the
long delays for certain instructions resulting in switching on and off functional units often.

Table 1 shows the time requirements for finding an energy optimal schedule of our energy-only
optimization algorithm on a collection of basic blocks taken from handwritten example programs
and DSP benchmarks [6]. Measurements have been performed on a Linux PC with 1.6GHz AMD
processor and 1.5GB RAM. Column BB refers to a basic block among different benchmark pro-
grams. The choice of a basic block was only its size, indicated in parenthesis. The second column
reports the time in seconds for finding an energy-optimal schedule and its corresponding energy
dissipation in energy unit (eU). If the algorithm run out of the time quantum (6 hours) it was inter-
rupted, and indicated in the table by a dash. Columns 3-6 represent computation times for different
values ofN (1, 5, 10 and 25) and energy overheads compared to the optimal solution found in the
optimal search. Finally, columns LS and SA indicate the energy dissipation and overhead obtained
with a naive list scheduling (LS) and simulated annealing (SA) heuristics.



Table 1: Influence of heuristics on computation time and code quality.
OPT H1(s) H5(s) H10(s) H25(s) LS SABB

t(s) (eU) t(s) o(%) t(s) o(%) t(s) o(%) t(s) o(%) (eU) o(%) (eU) o(%)

bb1 (22) 221.7 94 1.2 5 5.2 0 5.6 0 11.1 0 237 152 111 18
bb2 (22) 42.0 89 1.7 38 5.1 13 9.4 11 19.1 0 237 166 145 63
bb3 (22) 59.7 86 1.2 9 4.3 0 5.8 0 15.4 0 243 183 136 58
bb4 (23) 18.0 83 3.1 20 3.4 14 6.4 12 9.8 0 248 199 134 61
bb5 (25) 17.2 102 1.9 17 5.0 0 7.8 0 14.2 0 274 169 153 50
bb6 (25) 113.0 94 1.9 18 8.8 0 12.7 0 36.7 0 259 176 152 62
bb7 (25) 16.6 102 1.8 17 5.2 0 7.8 0 14.0 0 274 169 158 55
bb8 (27) 560.0 101 2.7 34 12.2 10 23.3 0 78.9 0 277 174 152 50
bb9 (30) 112.4 112 2.6 20 12.8 9 22.3 0 53.8 0 304 171 180 60
bb10 (30) 8698.4 118 4.0 14 24.7 0 62.2 0 319.5 0 309 162 191 62
bb11 (32) 6031.5 113 5.0 30 27.1 11 73.2 9 336.0 9 311 175 173 53
bb12 (32) 21133.0 110 5.0 20 32.6 0 94.8 0 557.0 0 296 169 172 56
bb13 (33) 5054.0 125 5.0 18 37.3 0 75.6 0 350.8 0 349 179 198 58
bb14 (33) 4983.8 125 5.1 17 35.8 0 75.2 0 345.3 0 349 179 203 62
bb15 (40) — — 12.1 — 121.3 — 374.5 — 2353.0 — 398 — 270 —
bb16 (41) — — 13.2 — 161.2 — 511.2 — 3506.5 — 418 — 270 —
bb17 (44) — — 10.4 — 126.9 — 369.3 — 2240.5 — 365 — 263 —

4 Future work

In principle, our framework can be extended to almost any power model, although this may affect
the performance of our algorithm. For instance, we plan to study the effect of register assignment
on energy consumption. In that case, we need to solve, for each partial solution, a register assign-
ment problem for a partial interference graph and a partial register flow graph. Such algorithms
exist in the literature [3,8] and could be adapted for our purposes.

Currently we are working on a generalization of our method for global code generation, specifi-
cally software pipelining. This is important because considering individual basic blocks can result
in worse performance than heuristic approaches that consider global and loop optimizations. In
acyclic regions of the control flow graph, basic blocks with multiple entries require merging of
profiles over the ingoing edges, which may lead to a loss of precision. For loops, this would
additionally require a fixpoint iteration. Loop unrolling may enlarge the scope of local code gen-
eration. However, other code generation techniques for loops, such as software pipelining [21],
should also be taken into account. For instance, Vegdahl [20] copies the basic block of the loop
body several times and connects them with loop-carried data dependence edges. We may apply
our dynamic programming algorithm on such a transformed DAG for finding optimized code. An
interesting feature of our algorithm is that it allows pattern matching along loop-carried edges and
hence cover nodes belonging to subsequent iterations.

5 Related work

Lee, Lee et al. [9] focus on minimizing Hamming distances of subsequent instruction words in
VLIW processors. They show that their formulation of power-optimal instruction scheduling for
basic blocks is NP-hard, and give a heuristic scheduling algorithm that is based on critical-path
scheduling. They also show that for special multi-issue VLIW architectures with multiple slots of



the same type, the problem of selecting the right slotwithin the same long instruction word can
be expressed as a maximum-weight bipartite matching problem in a bipartite graph whose edges
are weighted by negated Hamming distances between microinstructions of two subsequent long
instruction words.

Lee, Tiwari et al. [10] exploit the fact that for a certain 2-issue Fujitsu DSP processor, a time-
optimal target schedule is actually power-optimal as well, as there the unit activation / deactivation
overhead is negligible compared to the base power dissipation per cycle. They propose a heuristic
scheduling method that uses two separate phases, greedy compaction for time minimization fol-
lowed by list scheduling to minimize inter-instruction power dissipation costs. They also exploit
operand swapping for commutative operations (multiplication).

Toburen et al. [19] propose a list scheduling heuristic that could be used in instruction dispatchers
for superscalar processors such as the DEC Alpha processors. The time behavior and power
dissipation of each functional unit is looked up in an ADML-like description of the processor. The
list scheduler uses a dependence level criterion to optimize for execution time. Microinstructions
are added to the current long instruction word unless a user-specified power threshold is exceeded.
In that case, the algorithm proceeds to the next cycle with a fresh power budget.

Su et al. [17] focus on switching costs and propose a postpass scheduling framework that breaks
up code generation into subsequent phases and mixes them with assembling. First, tentative code
is generated with register allocation followed by pre-assembling. The resulting assembler code
contains already information about jump targets, symbol table indices etc., thus a major part of
the bit pattern of the final instructions is known. This is used as input to a power-aware postpass
scheduler, which is a modified list scheduling heuristic that greedily picks that instruction from the
zero-indegree set that currently results in the least contribution to power dissipation. The reordered
code is finally completed with a post-assembler.

Work related to our general dynamic approach to integrated code generation in the context oftime
optimization is summarized in our previous work [5,6].

6 Conclusion

We presented a framework for energy-optimal integrated local code generation. For our power
model, which is generic and largely follows the standard power models in the literature, we defined
a suitable power profile, which is the key to considerable compression of the solution space in our
dynamic programming algorithm.

Our algorithms integrate the subproblems instruction selection, instruction scheduling and register
allocation into a single optimization framework. Our method is generic and not limited to a fixed
power model. If more influence factors are to be considered that are known at compile time, it can
easily be adapted by modifying the power profile definition accordingly, even though ADML may
need to be extended if additional parameters should be allowed in the architecture specification,
but this requires only minor changes in our framework.

AcknowledgementsWe thank Frank Mueller and Carl von Platen for inspiring discussions.
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