
1

Interactive
Combinatorial Supercomputing

John R. Gilbert
University of California, Santa Barbara

Viral Shah, Imran Patel (UCSB)
Alan Edelman (MIT and Interactive Supercomputing)
Ron Choy, David Cheng (MIT)
Parry Husbands (Lawrence Berkeley Lab)
Steve Reinhardt, Todd Letsche (SGI)

Support: DOE Office of Science, DARPA, SGI, ISC

2

Parallel Computing Today

Departmental Beowulf cluster

Columbia,
NASA Ames Research Center

http://beowulf.lcs.mit.edu/18.337/beowulf.html

3

But!

How do you program it?

4

C with MPI

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mpi.h"

#define A(i,j) (1.0/((1.0*(i)+(j))*(1.0*(i)+(j)+1)/2 + (1.0*(i)+1)))

void errorExit(void);

double normalize(double* x, int mat_size);

int main(int argc, char **argv)

{

int num_procs;

int rank;

int mat_size = 64000;

int num_components;

double *x = NULL;

double *y_local = NULL;

double norm_old = 1;

double norm = 0;

int i,j;

int count;

if (MPI_SUCCESS != MPI_Init(&argc, &argv)) exit(1);

if (MPI_SUCCESS != MPI_Comm_size(MPI_COMM_WORLD,&num_procs)) errorExit();

5

C with MPI (2)

if (0 == mat_size % num_procs) num_components = mat_size/num_procs;

else num_components = (mat_size/num_procs + 1);

mat_size = num_components * num_procs;

if (0 == rank) printf("Matrix Size = %d\n", mat_size);

if (0 == rank) printf("Num Components = %d\n", num_components);

if (0 == rank) printf("Num Processes = %d\n", num_procs);

x = (double*) malloc(mat_size * sizeof(double));

y_local = (double*) malloc(num_components * sizeof(double));

if ((NULL == x) || (NULL == y_local))

{

free(x);

free(y_local);

errorExit();

}

if (0 == rank)

{

for (i=0; i<mat_size; i++)

{

x[i] = rand();

}

norm = normalize(x,mat_size);

}

6

C with MPI (3)

if (MPI_SUCCESS !=

MPI_Bcast(x, mat_size, MPI_DOUBLE, 0, MPI_COMM_WORLD)) errorExit();

count = 0;

while (fabs(norm-norm_old) > TOL) {

count++;

norm_old = norm;

for (i=0; i<num_components; i++)

{

y_local[i] = 0;

}

for (i=0; i<num_components && (i+num_components*rank)<mat_size; i++)

{

for (j=mat_size-1; j>=0; j--)

{

y_local[i] += A(i+rank*num_components,j) * x[j];

}

}

if (MPI_SUCCESS != MPI_Allgather(y_local, num_components, MPI_DOUBLE, x,
num_components, MPI_DOUBLE, MPI_COMM_WORLD)) errorExit();

7

C with MPI (4)

norm = normalize(x, mat_size);

}

if (0 == rank)

{

printf("result = %16.15e\n", norm);

}

free(x);

free(y_local);

MPI_Finalize();

exit(0);

}

void errorExit(void)

{

int rank;

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf("%d died\n",rank);

MPI_Finalize();

exit(1);

}

8

C with MPI (5)

double normalize(double* x, int mat_size)

{

int i;

double norm = 0;

for (i=mat_size-1; i>=0; i--)

{

norm += x[i] * x[i];

}

norm = sqrt(norm);

for (i=0; i<mat_size; i++)

{

x[i] /= norm;

}

return norm;

}

9

Star-P

A = rand(4000*p, 4000*p);

x = randn(4000*p, 1);

y = zeros(size(x));

while norm(x-y) / norm(x) > 1e-11

y = x;

x = A*x;

x = x / norm(x);

end;

10

• Matlab*P 1.0 (1998): Edelman, Husbands, Isbell (MIT)

• Matlab*P 2.0 (2002-): MIT / UCSB / LBNL

• Star-P (2004-): Interactive Supercomputing / SGI

Background

11

Data-Parallel Operations
< M A T L A B >

Copyright 1984-2001 The MathWorks, Inc.

Version 6.1.0.1989a Release 12.1

>> A = randn(500*p, 500*p)

A = ddense object: 500-by-500

>> E = eig(A);

>> E(1)

ans = -4.6711 +22.1882i

e = pp2matlab(E);

>> ppwhos

Name Size Bytes Class

A 500px500p 688 ddense object

E 500px1 652 ddense object

e 500x1 8000 double array (complex)

12

>> quad('4./(1+x.^2)', 0, 1);

ans = 3.14159270703219

>> a = (0:3*p) / 4

a = ddense object: 1-by-4

>> a(:,:)

ans =

0

0.25000000000000

0.50000000000000

0.75000000000000

>> b = a + .25;

>> c = ppeval('quad','4./(1+x.^2)', a, b);

c = ddense object: 1-by-4

>> sum(c)

ans = 3.14159265358979

Task-Parallel Operations

13

MATLAB®

Star-P Architecture

Ordinary Matlab variables

Star-P

client manager

server manager

package manager

processor #0

processor #n-1

processor #1

processor #2

processor #3

. .
 .

ScaLAPACK
FFTW
FPGA interface

matrix manager Distributed matrices

UPC user code

sort
dense/sparse

UPC user code

MPI user code

14

Matlab sparse matrix design principles

• All operations should give the same results for sparse
and full matrices (almost all)

• Sparse matrices are never created automatically,
but once created they propagate

• Performance is important -- but usability, simplicity,
completeness, and robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be O(flops)
(as nearly as possible)

Star-P dsparse matrices: same principles,
but some different tradeoffs

15

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros (# local edges)
• range of local rows (local vertices)
• nonzeros in a compressed row

data structure (local edges)

Distributed sparse array structure

1

2 326

53

41

31

59

16

The sparse() constructor

• A = sparse (I, J, V, nr, nc);

• Input: ddense vectors I, J, V, dimensions nr, nc

• Output: A(I(k), J(k)) = V(k)

• Sum values with duplicate indices

• Sorts triples < i, j, v > by < i, j >

• Inverse: [I, J, V] = find(A);

17

Sparse array and matrix operations

• dsparse layout, same semantics as ddense

• Matrix arithmetic: +, max, sum, etc.

• matrix * matrix and matrix * vector

• Matrix indexing and concatenation
A (1:3, [4 5 2]) = [B(:, J) C] ;

• Linear solvers: x = A \ b; using SuperLU (MPI)

• Eigensolvers: [V, D] = eigs(A); using PARPACK (MPI)

18

Sparse matrix times dense vector

• y = A * x

• First matvec with A caches a communication schedule

• Later matvecs with A use the cached schedule

• Communication and computation overlap

19

Combinatorial Scientific Computing

• Sparse matrix methods

• Knowledge discovery

• Web search and information retrieval

• Graph matching

• Machine learning

• Geometric modeling

• Computational biology

• Bioinformatics

• . . .

How will combinatorial methods be used by nonexperts?

20

Analogy: Matrix division in Matlab

x = A \ b;

• Works for either full or sparse A

• Is A square?

no => use QR to solve least squares problem

• Is A triangular or permuted triangular?
yes => sparse triangular solve

• Is A symmetric with positive diagonal elements?
yes => attempt Cholesky after symmetric minimum degree

• Otherwise
=> use LU on A(:, colamd(A))

21

Combinatorics in Star-P

• Represent a graph as a sparse adjacency matrix

• A sparse matrix language is a good start on primitives
for computing with graphs

– Random-access indexing: A(i,j)

– Neighbor sequencing: find (A(i,:))

– Sparse table construction: sparse (I, J, V)

– Breadth-first search step : A * v

22

Sparse adjacency matrix and graph

• Adjacency matrix: sparse array w/ nonzeros for graph edges

• Storage-efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT

23

Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT

24

Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT

25

Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

AT

1 2

3

4 7

6

5

(AT)2xx ATx

26

Connected components of a graph

• Sequential Matlab uses depth-first search (dmperm),
which doesn’t parallelize well

• Pointer-jumping algorithms (Shiloach/Vishkin & descendants)

– repeat
• Link every (super)vertex to a neighbor
• Shrink each tree to a supervertex by pointer jumping

– until no further change

• Other coming graph kernels:
– Shortest-path search (after Husbands, LBNL)
– Bipartite matching (after Riedy, UCB)
– Strongly connected components (after Pinar, LBNL)

27

Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select);

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

Starting guess:
Select some vertices
randomly

28

Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select))

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

If neighbors are
selected, keep only a
higher-degree one.

Add selected vertices to

the independent set.

29

Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select);

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

Discard neighbors of
the independent set.

Iterate on the rest of
the graph.

30

• Many tight clusters, loosely interconnected
• Input data is edge triples < i, j, label(i,j) >
• Vertices and edges permuted randomly

SSCA#2: “Graph Analysis”

Fine-grained, irregular data access

Searching and clustering

31

• Scalable data generator

• Given “scale” = log2(#vertices)

• Creates edge triples < i, j, label(i,j) >
• Randomly permutes triples and vertex numbers

SSCA#2: Graph statistics

366,003,600,0001,317,613,000,0002,096,2641,073,741,82430
3,597,598,00012,951,350,000207,08233,554,43225

35,052,403126,188,64920,6431,048,57620
344,1161,238,8152,02032,76815

3,67013,2121861,02410
#Edges Undirected#Edges Directed#Cliques#VerticesScale

Statistics for SSCA2 spec v1.1

32

Concise SSCA#2 in Star-P

Kernel 1: Construct graph data structures
• Graphs are dsparse matrices, created by sparse()

33

Kernels 2 and 3

Kernel 2: Search by edge labels

• About 12 lines of executable Matlab or Star-P

Kernel 3: Extract subgraphs

• Returns subgraphs consisting of vertices and edges within
fixed distance of given starting vertices

• Sparse matrix-matrix product for multiple breadth-first search

• About 25 lines of executable Matlab or Star-P

34

Kernel 4: Clustering by BFS

% Grow each seed to vertices

% reached by at least k

% paths of length 1 or 2

C = sparse(seeds, 1:ns, 1, n, ns);

C = A * C;

C = C + A * C;

C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

• Cluster vertices connected by many short paths

35

Kernel 4: Clustering by peer pressure

110

8 25

4

1311

7 9

3 12

6

Steps in a peer pressure algorithm:

1. Vote for a cluster leader

2. Collect neighbor votes

3. Vote for a new leader

(based on neighbor votes)

• Clustering qualities depend on details of each step.

• Want relatively few potential leaders, e.g. a maximal indep set.
Other choices possible – for SSCA2 graph, simpler rules work too.

• Neighbor votes can be combined using various weightings.

• Each version of kernel4 is about 25 lines of code.

36

1313

13 125

511

1313

13 13

12 12

[ignore, leader] = max(G);

S = G * sparse(1:n,leader,1,n,n);

[ignore, leader] = max(S);

• Each vertex votes for highest numbered neighbor as its leader

• Number of leaders is approximately number of clusters
(small relative to the number of nodes)

Kernel 4: Clustering by peer pressure

37

1213

12 125

5

1313

13 13

12 12

5

[ignore, leader] = max(G);

S = sparse(leader,1:n,1,n,n) * G;

[ignore, leader] = max(S);

• Matrix multiplication gathers neighbor votes

• S(i,j) is # of votes for i from j’s neighbors

• In SSCA2 (spec1.0), most of graph structure is recovered right away;
iteration needed for harder graphs

Kernel 4: Clustering by peer pressure

38

Expressive Power: SSCA#2 Kernel 3

Star-P (25 lines)
A = spones(G.edgeWeights{1});

nv = max(size(A));

npar = length(G.edgeWeights);

nstarts = length(starts);

for i = 1:nstarts

v = starts(i);

% x will be a vector whose nonzeros

% are the vertices reached so far

x = zeros(nv,1);

x(v) = 1;

for k = 1:pathlen

x = A*x;

x = (x ~= 0);

end;

vtxmap = find(x);

S.edgeWeights{1} = G.edgeWeights{1}(vtxmap,vtxmap);

for j = 2:npar

sg = G.edgeWeights{j}(vtxmap,vtxmap);

if nnz(sg) == 0

break;

end;

S.edgeWeights{j} = sg;

end;

S.vtxmap = vtxmap;

subgraphs{i} = S;

end

MATLABmpi (91 lines)
declareGlobals;

intSubgraphs = subgraphs(G, pathLength, startSetInt);

strSubgraphs = subgraphs(G, pathLength, startSetStr);

%| Finish helping other processors.

if P.Ncpus > 1

if P.myRank == 0 % if we are the leader

for unused = 1:P.Ncpus-1

[src tag] = probeSubgraphs(G, [P.tag.K3.results]);

[isg ssg] = MPI_Recv(src, tag, P.comm);

intSubgraphs = [intSubgraphs isg];

strSubgraphs = [strSubgraphs ssg];

end

for dest = 1:P.Ncpus-1

MPI_Send(dest, P.tag.K3.done, P.comm);

end

else

MPI_Send(0, P.tag.K3.results, P.comm, ...

intSubgraphs, strSubgraphs);

[src tag] = probeSubgraphs(G, [P.tag.K3.done]);

MPI_Recv(src, tag, P.comm);

end

end

function graphList = subgraphs(G, pathLength, startVPairs)

graphList = [];

% Estimated # of edges in a subgraph. Memory will grow as needed.

estNumSubGEdges = 100; % depends on cluster size and path length

%--

% Find subgraphs.

%--

% Loop over vertex pairs in the starting set.

for vertexPair = startVPairs.'

subg.edgeWeights{1} = ...

spalloc(G.maxVertex, G.maxVertex, estNumSubGEdges);

startVertex = vertexPair(1);

endVertex = vertexPair(2);

% Add an edge with the first weight.

subg.edgeWeights{1}(endVertex, startVertex + P.myBase) = ...

G.edgeWeights{1}(endVertex, startVertex);

if ENABLE_PLOT_K3DB

plotEdges(subg.edgeWeights{1}, startVertex, endVertex, 1);

end

% Follow edges pathLength times in adj matrix to grow subgraph as big as

% required.

%| This code could be modified to launch new parallel requests (using

%| eliminating the need to pass back the start-set (and path length).

newStarts = [endVertex]; % Not including startVertex.

allStarts = newStarts;

for k = 2:pathLength

% Find the edges emerging from the current subgraph.

if ~P.paral

newEdges = G.edgeWeights{1}(:, newStarts);

subg.edgeWeights{1}(:, newStarts) = newEdges;

[allNewEnds unused] = find(newEdges);

else % elseif P.paral

allNewEnds = []; % Column vector of edge-ends so far.

numRqst = 0; % Number of requests made so far.

% For each processor which has any of the vertices we need:

startDests = floor((newStarts - 1) / P.myV);

uniqDests = unique(startDests);

for dest = uniqDests

starts = newStarts(startDests == dest);

if dest == P.myRank

newEdges = G.edgeWeights{1}(:, starts - P.myBase);

subg.edgeWeights{1}(:, starts) = newEdges;

[allNewEnds unused] = find(newEdges);

elseif ~isempty(starts)

MPI_Send(dest, P.tag.K3.dataReq, P.comm, starts);

numRqst = numRqst + 1;

% Wait for a response for each request we sent out.

for unused = 1:numRqst

[src tag] = probeSubgraphs(G, [P.tag.K3.dataResp]);

[starts newEdges] = MPI_Recv(src, tag, P.comm);

subg.edgeWeights{1}(:, starts) = newEdges;

[newEnds unused] = find(newEdges);

allNewEnds = [allNewEnds; newEnds];

end

end % of if ~P.paral

% Eliminate any new ends already in the all starts list.

newStarts = setdiff(allNewEnds.', allStarts);

allStarts = [allStarts newStarts];

if ENABLE_PLOT_K3DB

plotEdges(subg.edgeWeights{1}, startVertex, endVertex, k);

end % of ENABLE_PLOT_K3DB

if isempty(newStarts) % if empty we can quit early.

break;

end

end

% Append to array of subgraphs.

graphList = [graphList subg];

end

function [src, tag] = probeSubgraphs(G, recvTags)

while true

[ranks tags] = MPI_Probe('*', P.tag.K3.any, P.comm);

requests = find(tags == P.tag.K3.dataReq);

for mesg = requests.'

src = ranks(mesg);

starts = MPI_Recv(src, P.tag.K3.dataReq, P.comm);

newEdges = G.edgeWeights{1}(:, starts - P.myBase);

MPI_Send(src, P.tag.K3.dataResp, P.comm, starts, newEdges);

end

mesg = find(ismember(tags, recvTags));

if ~isempty(mesg)

break;

end

end

src = ranks(mesg(1));

tag = tags(mesg(1));

Lines of
code Star-P

cSSCA2
MATLABmpi

spec
C/Pthreads/

SIMPLE

Kernel 1 29 68 256

Kernel 2 12 44 121

Kernel 3 25 91 297

Kernel 4 44 295 241

39

Scaling up

Recent results on SGI Altix (up to 128 processors):

• Have run SSCA2 on graphs with 227 = 134 million vertices
and about one billion (109) edges (spec v1.0)

• Benchmarking in progress for spec v1.1 (different graph generator)

• Have manipulated graphs with 400 million vertices and 4 billion edges

• Timings scale well – for large graphs,

• 2x problem size 2x time
• 2x problem size & 2x processors same time

Using this benchmark to tune lots of infrastructure

40

Work in progress: Toolbox for Graph Analysis
and Pattern Discovery

Layer 1: Graph Theoretic Tools

• Graph operations

• Global structure of graphs

• Graph partitioning and clustering

• Graph generators

• Visualization and graphics

• Scan and combining operations

• Utilities

	 But!
	C with MPI
	C with MPI (2)
	C with MPI (3)
	C with MPI (4)
	C with MPI (5)
	Star-P
	Background
	Data-Parallel Operations
	Task-Parallel Operations
	Star-P Architecture
	Matlab sparse matrix design principles
	Distributed sparse array structure
	The sparse() constructor
	Sparse array and matrix operations
	Sparse matrix times dense vector
	Combinatorial Scientific Computing
	Analogy: Matrix division in Matlab
	 Combinatorics in Star-P
	Sparse adjacency matrix and graph
	Breadth-first search: sparse mat * vec
	Breadth-first search: sparse mat * vec
	Breadth-first search: sparse mat * vec
	Connected components of a graph
	Maximal independent set
	Maximal independent set
	Maximal independent set
	SSCA#2: “Graph Analysis”
	SSCA#2: Graph statistics
	 Concise SSCA#2 in Star-P
	Kernels 2 and 3
	Kernel 4: Clustering by BFS
	 Kernel 4: Clustering by peer pressure
	 Kernel 4: Clustering by peer pressure
	 Kernel 4: Clustering by peer pressure
	Scaling up
	Work in progress: Toolbox for Graph Analysis and Pattern Discovery

