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But! 

How do you program it?
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C with MPI

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mpi.h"

#define A(i,j)  ( 1.0/((1.0*(i)+(j))*(1.0*(i)+(j)+1)/2 + (1.0*(i)+1)) )

void errorExit(void);

double normalize(double* x, int mat_size);

int main(int argc, char **argv)

{

int num_procs;

int rank;

int mat_size = 64000;

int num_components;

double *x = NULL;

double *y_local = NULL;

double norm_old = 1;

double norm = 0;

int i,j;

int count;

if (MPI_SUCCESS != MPI_Init(&argc, &argv)) exit(1);

if (MPI_SUCCESS != MPI_Comm_size(MPI_COMM_WORLD,&num_procs)) errorExit();
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C with MPI (2)

if (0 == mat_size % num_procs) num_components = mat_size/num_procs;

else num_components = (mat_size/num_procs + 1); 

mat_size = num_components * num_procs;

if (0 == rank) printf("Matrix Size = %d\n", mat_size);

if (0 == rank) printf("Num Components = %d\n", num_components);

if (0 == rank) printf("Num Processes = %d\n", num_procs);

x = (double*) malloc(mat_size * sizeof(double));

y_local = (double*) malloc(num_components * sizeof(double));

if ( (NULL == x) || (NULL == y_local) ) 

{

free(x);

free(y_local);

errorExit();

}

if (0 == rank)

{

for (i=0; i<mat_size; i++)

{

x[i] = rand(); 

}

norm = normalize(x,mat_size);

} 
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C with MPI (3)

if (MPI_SUCCESS != 

MPI_Bcast(x, mat_size, MPI_DOUBLE, 0, MPI_COMM_WORLD)) errorExit();

count = 0;

while (fabs(norm-norm_old) > TOL) { 

count++;

norm_old = norm;

for (i=0; i<num_components; i++)

{

y_local[i] = 0;

}

for (i=0; i<num_components && (i+num_components*rank)<mat_size; i++)

{

for (j=mat_size-1; j>=0; j--) 

{

y_local[i] += A(i+rank*num_components,j) * x[j];

}

}

if (MPI_SUCCESS != MPI_Allgather(y_local, num_components, MPI_DOUBLE, x,
num_components, MPI_DOUBLE, MPI_COMM_WORLD)) errorExit();
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C with MPI (4)

norm = normalize(x, mat_size);

}

if (0 == rank) 

{

printf("result = %16.15e\n", norm);

}

free(x);

free(y_local);

MPI_Finalize();

exit(0);

}

void errorExit(void)

{

int rank;

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf("%d died\n",rank);

MPI_Finalize();

exit(1);

}
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C with MPI (5)

double normalize(double* x, int mat_size)

{

int i;

double norm = 0;

for (i=mat_size-1; i>=0; i--)

{

norm += x[i] * x[i];

}

norm = sqrt(norm);

for (i=0; i<mat_size; i++)

{

x[i] /= norm;

}

return norm;

}
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Star-P

A = rand(4000*p, 4000*p); 

x = randn(4000*p, 1);  

y = zeros(size(x));

while norm(x-y) / norm(x) > 1e-11

y = x;

x = A*x;

x = x / norm(x);

end;
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• Matlab*P 1.0 (1998):  Edelman, Husbands, Isbell (MIT)

• Matlab*P 2.0 (2002- ):  MIT / UCSB / LBNL

• Star-P (2004- ):  Interactive Supercomputing / SGI

Background
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Data-Parallel Operations
< M A T L A B >

Copyright 1984-2001 The MathWorks, Inc.

Version 6.1.0.1989a Release 12.1

>> A = randn(500*p, 500*p)

A = ddense object: 500-by-500

>> E = eig(A);

>> E(1)

ans = -4.6711 +22.1882i

e = pp2matlab(E);

>> ppwhos

Name      Size           Bytes  Class

A       500px500p          688  ddense object

E       500px1             652  ddense object

e       500x1             8000  double array (complex)
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>> quad('4./(1+x.^2)', 0, 1);

ans = 3.14159270703219

>> a = (0:3*p) / 4

a = ddense object: 1-by-4

>> a(:,:)

ans =

0

0.25000000000000

0.50000000000000

0.75000000000000

>> b = a + .25;

>> c = ppeval('quad','4./(1+x.^2)', a, b); 

c = ddense object: 1-by-4

>> sum(c)

ans = 3.14159265358979

Task-Parallel Operations



13

MATLAB®

Star-P Architecture

Ordinary Matlab variables

Star-P

client manager

server manager

package manager

processor #0

processor #n-1

processor #1

processor #2

processor #3

. .
 .

ScaLAPACK
FFTW
FPGA interface

matrix manager Distributed matrices

UPC user code

sort
dense/sparse

UPC user code

MPI user code
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Matlab sparse matrix design principles

• All operations should give the same results for sparse 
and full matrices   (almost all)

• Sparse matrices are never created automatically, 
but once created they propagate

• Performance is important -- but usability, simplicity, 
completeness, and robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be O(flops)
(as nearly as possible)

Star-P dsparse matrices: same principles, 
but some different tradeoffs
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P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros (# local edges)
• range of local rows (local vertices)
• nonzeros in a compressed row 

data structure (local edges)

Distributed sparse array structure

1

2 326

53

41

31

59
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The sparse( ) constructor

• A = sparse (I, J, V, nr, nc);

• Input:   ddense vectors  I, J, V,  dimensions  nr, nc

• Output:   A(I(k), J(k))  =  V(k)   

• Sum values with duplicate indices

• Sorts triples  < i, j, v > by  < i, j >

• Inverse:   [I, J, V] = find(A);
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Sparse array and matrix operations

• dsparse layout, same semantics as ddense

• Matrix arithmetic:  +, max, sum, etc.  

• matrix * matrix and  matrix * vector

• Matrix indexing and concatenation
A (1:3, [4 5 2])  =  [ B(:, J)  C ] ;

• Linear solvers: x = A \ b; using SuperLU (MPI)

• Eigensolvers:  [V, D] = eigs(A); using PARPACK (MPI)
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Sparse matrix times dense vector

• y = A * x

• First matvec with A caches a communication schedule

• Later matvecs with A use the cached schedule

• Communication and computation overlap
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Combinatorial Scientific Computing

• Sparse matrix methods

• Knowledge discovery

• Web search and information retrieval

• Graph matching

• Machine learning

• Geometric modeling

• Computational biology

• Bioinformatics 

• . . .

How will combinatorial methods be used by nonexperts?
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Analogy:  Matrix division in Matlab

x = A \ b;

• Works for either full or sparse A

• Is A square?

no  => use QR to solve least squares problem

• Is A triangular or permuted triangular?
yes => sparse triangular solve

• Is A symmetric with positive diagonal elements?
yes => attempt Cholesky after symmetric minimum degree

• Otherwise
=> use LU on A(:, colamd(A))
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Combinatorics in Star-P

• Represent a graph as a sparse adjacency matrix

• A sparse matrix language is a good start on primitives 
for computing with graphs

– Random-access indexing:     A(i,j)

– Neighbor sequencing:           find (A(i,:))

– Sparse table construction:    sparse (I, J, V)

– Breadth-first search step :   A * v 



22

Sparse adjacency matrix and graph

• Adjacency matrix:  sparse array w/ nonzeros for graph edges

• Storage-efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT
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Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT
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Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

x ATx

1 2

3

4 7

6

5

AT
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Breadth-first search: sparse mat * vec

• Multiply by adjacency matrix step to neighbor vertices

• Efficient implementation from sparse data structures

AT

1 2

3

4 7

6

5

(AT)2xx ATx
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Connected components of a graph

• Sequential Matlab uses depth-first search (dmperm), 
which doesn’t parallelize well

• Pointer-jumping algorithms (Shiloach/Vishkin & descendants)

– repeat
• Link every (super)vertex to a neighbor
• Shrink each tree to a supervertex by pointer jumping

– until no further change

• Other coming graph kernels:
– Shortest-path search (after Husbands, LBNL)
– Bipartite matching (after Riedy, UCB)
– Strongly connected components (after Pinar, LBNL)
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Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select);

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

Starting guess:
Select some vertices 
randomly
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Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select))

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

If neighbors are 
selected, keep only a 
higher-degree one. 

Add selected vertices to 

the independent set.
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Maximal independent set

1 2

3

4 7

6

5

degree = sum(G, 2);

prob = 1 ./ (2 * deg);

select = rand (n, 1) < prob;

if ~isempty (select & (G * select);

% keep higher degree vertices

end

IndepSet = [IndepSet select];

neighbor = neighbor | (G * select);

remain = neighbor == 0;

G = G(remain, remain);

Discard neighbors of 
the independent set.

Iterate on the rest of 
the graph.
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• Many tight clusters, loosely interconnected
• Input data is edge triples  < i, j, label(i,j) >
• Vertices and edges permuted randomly

SSCA#2:  “Graph Analysis”

Fine-grained, irregular data access

Searching and clustering



31

• Scalable data generator

• Given “scale” = log2(#vertices)

• Creates edge triples  < i, j, label(i,j) >
• Randomly permutes triples and vertex numbers

SSCA#2:  Graph statistics

366,003,600,0001,317,613,000,0002,096,2641,073,741,82430
3,597,598,00012,951,350,000207,08233,554,43225

35,052,403126,188,64920,6431,048,57620
344,1161,238,8152,02032,76815

3,67013,2121861,02410
#Edges Undirected#Edges  Directed#Cliques#VerticesScale

Statistics for SSCA2 spec v1.1
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Concise SSCA#2 in Star-P

Kernel 1: Construct graph data structures
• Graphs are dsparse matrices, created by sparse( )
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Kernels 2 and 3

Kernel 2: Search by edge labels

• About 12 lines of executable Matlab or Star-P

Kernel 3: Extract subgraphs

• Returns subgraphs consisting of vertices and edges within 
fixed distance of given starting vertices

• Sparse matrix-matrix product for multiple breadth-first search

• About 25 lines of executable Matlab or Star-P
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Kernel 4:  Clustering by BFS

% Grow each seed to vertices 

%    reached by at least k

%    paths of length 1 or 2

C = sparse(seeds, 1:ns, 1, n, ns);

C = A * C;

C = C + A * C;

C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

• Cluster vertices connected by many short paths
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Kernel 4:  Clustering by peer pressure

110

8 25

4

1311

7 9

3 12

6

Steps in a peer pressure algorithm:

1. Vote for a cluster leader

2. Collect neighbor votes

3. Vote for a new leader

(based on neighbor votes)

• Clustering qualities depend on details of each step.

• Want relatively few potential leaders, e.g. a maximal indep set.
Other choices possible – for SSCA2 graph, simpler rules work too.

• Neighbor votes can be combined using various weightings.

• Each version of kernel4 is about 25 lines of code.
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1313

13 125

511

1313

13 13

12 12

[ignore, leader] = max(G);

S = G * sparse(1:n,leader,1,n,n);

[ignore, leader] = max(S);

• Each vertex votes for highest numbered neighbor as its leader 

• Number of leaders is approximately number of clusters 
(small relative to the number of nodes)

Kernel 4:  Clustering by peer pressure
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1213

12 125

5

1313

13 13

12 12

5

[ignore, leader] = max(G);

S = sparse(leader,1:n,1,n,n) * G;

[ignore, leader] = max(S);

• Matrix multiplication gathers neighbor votes

• S(i,j) is # of votes for i from j’s neighbors    

• In SSCA2 (spec1.0), most of graph structure is recovered right away;
iteration needed for harder graphs

Kernel 4:  Clustering by peer pressure
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Expressive Power:  SSCA#2 Kernel 3

Star-P (25 lines)
A = spones(G.edgeWeights{1});

nv = max(size(A));

npar = length(G.edgeWeights);

nstarts = length(starts);

for i = 1:nstarts

v = starts(i);

% x will be a vector whose nonzeros

% are the vertices reached so far

x = zeros(nv,1);    

x(v) = 1;

for k = 1:pathlen

x = A*x;

x = (x ~= 0);

end;

vtxmap = find(x);

S.edgeWeights{1} = G.edgeWeights{1}(vtxmap,vtxmap);

for j = 2:npar

sg = G.edgeWeights{j}(vtxmap,vtxmap);

if nnz(sg) == 0

break;

end;

S.edgeWeights{j} = sg;

end;

S.vtxmap = vtxmap;

subgraphs{i} = S;

end

MATLABmpi (91 lines)
declareGlobals;

intSubgraphs = subgraphs(G, pathLength, startSetInt);

strSubgraphs = subgraphs(G, pathLength, startSetStr);

%| Finish helping other processors.

if P.Ncpus > 1

if P.myRank == 0                    % if we are the leader

for unused = 1:P.Ncpus-1

[src tag] = probeSubgraphs(G, [P.tag.K3.results]);

[isg ssg] = MPI_Recv(src, tag, P.comm);

intSubgraphs = [intSubgraphs isg];

strSubgraphs = [strSubgraphs ssg];

end

for dest = 1:P.Ncpus-1

MPI_Send(dest, P.tag.K3.done, P.comm);

end

else

MPI_Send(0, P.tag.K3.results, P.comm, ...

intSubgraphs, strSubgraphs);

[src tag] = probeSubgraphs(G, [P.tag.K3.done]);

MPI_Recv(src, tag, P.comm);

end

end

function graphList = subgraphs(G, pathLength, startVPairs)

graphList = [];

% Estimated # of edges in a subgraph. Memory will grow as needed.

estNumSubGEdges = 100;   % depends on cluster size and path length

%--------------------------------------------------------------------------

% Find subgraphs.

%--------------------------------------------------------------------------

% Loop over vertex pairs in the starting set.

for vertexPair = startVPairs.'

subg.edgeWeights{1} = ...

spalloc(G.maxVertex, G.maxVertex, estNumSubGEdges);

startVertex = vertexPair(1);

endVertex = vertexPair(2);

% Add an edge with the first weight.

subg.edgeWeights{1}(endVertex, startVertex + P.myBase) = ...

G.edgeWeights{1}(endVertex, startVertex);

if ENABLE_PLOT_K3DB

plotEdges(subg.edgeWeights{1}, startVertex, endVertex, 1);

end

% Follow edges pathLength times in adj matrix to grow subgraph as big as

% required.  

%| This code could be modified to launch new parallel requests (using

%| eliminating the need to pass back the start-set (and path length).

newStarts = [endVertex];            % Not including startVertex.

allStarts = newStarts;

for k = 2:pathLength

% Find the edges emerging from the current subgraph.

if ~P.paral

newEdges = G.edgeWeights{1}(:, newStarts);

subg.edgeWeights{1}(:, newStarts) = newEdges;

[allNewEnds unused] = find(newEdges);

else % elseif P.paral

allNewEnds = [];            % Column vector of edge-ends so far.

numRqst = 0;                % Number of requests made so far.

% For each processor which has any of the vertices we need:

startDests = floor((newStarts - 1) / P.myV);

uniqDests = unique(startDests);

for dest = uniqDests

starts = newStarts(startDests == dest);

if dest == P.myRank

newEdges = G.edgeWeights{1}(:, starts - P.myBase);

subg.edgeWeights{1}(:, starts) = newEdges;

[allNewEnds unused] = find(newEdges);

elseif ~isempty(starts)

MPI_Send(dest, P.tag.K3.dataReq, P.comm, starts);

numRqst = numRqst + 1;

% Wait for a response for each request we sent out.

for unused = 1:numRqst

[src tag] = probeSubgraphs(G, [P.tag.K3.dataResp]);

[starts newEdges] = MPI_Recv(src, tag, P.comm);

subg.edgeWeights{1}(:, starts) = newEdges;

[newEnds unused] = find(newEdges);

allNewEnds = [allNewEnds; newEnds];

end

end % of if ~P.paral

% Eliminate any new ends already in the all starts list.

newStarts = setdiff(allNewEnds.', allStarts);

allStarts = [allStarts newStarts];

if ENABLE_PLOT_K3DB

plotEdges(subg.edgeWeights{1}, startVertex, endVertex, k);

end % of ENABLE_PLOT_K3DB

if isempty(newStarts)           % if empty we can quit early.

break;

end

end 

% Append to array of subgraphs.

graphList = [graphList subg];

end

function [src, tag] = probeSubgraphs(G, recvTags)

while true

[ranks tags] = MPI_Probe('*', P.tag.K3.any, P.comm);

requests = find(tags == P.tag.K3.dataReq);

for mesg = requests.'

src = ranks(mesg);

starts = MPI_Recv(src, P.tag.K3.dataReq, P.comm);

newEdges = G.edgeWeights{1}(:, starts - P.myBase);

MPI_Send(src, P.tag.K3.dataResp, P.comm, starts, newEdges);

end

mesg = find(ismember(tags, recvTags));

if ~isempty(mesg)

break;

end

end

src = ranks(mesg(1));

tag = tags(mesg(1));

Lines of 
code Star-P

cSSCA2
MATLABmpi

spec
C/Pthreads/

SIMPLE

Kernel 1 29 68 256

Kernel 2 12 44 121

Kernel 3 25 91 297

Kernel 4 44 295 241
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Scaling up

Recent results on SGI Altix (up to 128 processors):

• Have run SSCA2 on graphs with 227 = 134 million vertices 
and about one billion (109) edges (spec v1.0)

• Benchmarking in progress for spec v1.1 (different graph generator)

• Have manipulated graphs with 400 million vertices and 4 billion edges

• Timings scale well – for large graphs,

• 2x problem size 2x time
• 2x problem size & 2x processors same time

Using this benchmark to tune lots of infrastructure
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Work in progress:  Toolbox for Graph Analysis 
and Pattern Discovery

Layer 1: Graph Theoretic Tools

• Graph operations

• Global structure of graphs

• Graph partitioning and clustering

• Graph generators

• Visualization and graphics

• Scan and combining operations

• Utilities
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