Parallel programming with
hierarchically tiled arrays

David Padua

University of Illinois at Urbana-Champaign

1867
TH

Objectives

* To develop, implement and evaluate a new parallel
programming paradigm that is a generalization of the
SIMD programming paradigm.

— Main features of the paradigm:

 Single thread of control: simplifies understanding and analysis of the
code and the transformation into parallel form of sequential codes

» Use of aggregates to represent parallelism: using operations on
aggregates tends to produce shorter and more readable codes than
explicit MPI programs

— Therefore programs in the proposed paradigm are easy to develop
and maintain

 To develop compiler techniques for the proposed
paradigm.
— Compiler techniques needed by the proposed paradigm are

significantly simpler than those needed to compile High-
Performance Fortran and similar languages.

Characteristics of the proposed
programming paradigm

e Programs written in the proposed paradigm can be
conceived as executed by a workstation attached
to a multiprocessor.

* The workstation executes all operation of the
program except operations on hierarchically tiled
arrays (HTA) whose top-level tiles are distributed
across the multiprocessor. Operation on these
HTAS are carried out by the multiprocessor.

« However, execution 1s SPMD.

Hierarchically tiled arrays

« Hierarchically tiled arrays are arrays partitioned
Into tiles. The tiles could be conventional arrays or

could recursively be tiled.

 Tiles are first class objects. They can be accessed
explicitly and operations are defined on tiles.

* The tiles in a hierarchically tiled array can be
ignored and the scalar elements of the HTAs could

be accessed directly.

Accessing the elements of an HTA

Above we depict a three-level HTA. The top level is a vector with two
tiles. Each one of these tiles is a 4 by 3 array of tiles. The second-level
tiles are 3-element vectors.

The red element can be referenced as A{2}{3,1}(2) or as A(3,11). In
the first case the HTA is accessed hierarchically and in the second case
as a “flat” two-dimensional array.

Two Ways of Referencing the
Elements of an 8 x 8 Array.

Uses of HTAS

e The topmost levels of an HTA can be distributed across the
multiprocessor. This enables the distribution of data and
the explicit representation of communication and parallel
computation.

o Lower level tiles can be used to conveniently represent
algorithms with a high degree of locality. This is of great
Importance for machines with a deep memory hierarchy.

« The “flattened” representation enables the gradual
transformation of sequential programs to parallel form.
The part of the sequential program that has not been
parallelized will reference the array in its original (untiled)
form. This referencing will be meaningful because of
flattening.

HTA Operations:

FO0 Conformability
[e size(rhs) ==
oo D 9 ee dim(lhs) == dim(rhs)
.and.

\ size(lhs) == size(rhs)

HTA Conformability

©0
2%

00
00

00

00

(7p)
v c
<L o S
= S 'S
T o 8o
b S O +—J
_ 0 Q O
T B o O
m - > @©
o ot n
£ O0ES
- ()
o V'
oL o g
= m L T
oS &
00__00
00N (OO
0@|0@)|
'~9l0al
(0N IKKEXQ] o0o|0Q|00|0Q
o@ 0@ 00|0Q|00|0Q
t 1 ooloelealee
00|0Q|]00|00
Q000 o0|0Q|00|0Q
Qo0 oo|(00|0Q|00
Q0 Q000 00|00|00|00
Q0 Q000 O0|00|00|00
f Y,
~N
(CXORICOXO)
(CXOAOXO)]
(CXOAOXO)]
00|00

HTA Assignment

h t
h{:’:}:t{:’:} @ 00 0 e ojo @
@ 00 @ @ ele o
@ /0 O @ @/0 O
@ @0 O @ @0 O
h{1,:} =t{2,:} o olo o o oo o
@ @0 O e olo o
oooo\ @ @0 O
o olo © CDOQQ
h{1,:}(2,)) = {2,:}(1,:); gggg gggg
oocc\(ocoo
o 0lo © @ @/0 O

implicit communication

Data parallel functions in FOO

| (o o o) sin(®) sin(®) sinE)
sSiN | 0 o e —> sin(®) sin(@) sin(e)

e @ © sin(@) sin@) sin@)

Map

r = map (@sin, h)

@sin

Recursive

Map

r = map (@sin, h)

@sin @sin
@sin
@sin @sin

Recursive

Map

r = map (@sin, h)

Recursive

Reduce

r = reduce (@max, h)

@max

@max | @max | @max

@max

@max

@max

@max

@max

@max

@max | @max

@max

Recursive

Reduce

r = reduce (@max, h)

@max | @max | @max | @max
s N
D AN
@max | @max @max | @max

@max

@max

@max

@max

@max

Recursive

Reduce

r = reduce (@max, h)

L @max @max
\ /
@max
—— @max '\@max

Recursive

Higher level operations

—>

B eomah 1.3 [

I circshift(h, [0, -1]) I

—
transpose(h)

Matrix Multiplication

1. Tiled Matrix Multiplication in a Conventional Language

for I=1:q:n
for J=1:q:n
for K=1:q:n
for i=I:I+q-1
for j=J:J+q-1
for k=K:K+q-1
c(i.§)=c(i,j)+a(i,k)y*b(k,j):
end
end
end
end
end
end

Matrix Multiplication

2. Tiled Matrix Multiplication Using HTAS

» Here c{i,j}, a{i k}, b{k.j},

for i=1:m
for j=1:m and T represent
T=0; -
for k=1:im submatrices.
T=T+a{i, k}*b{k, j}: e The * operator represents
i?idj}ﬂ_ matrix multiplication in
end MATLAB.

end

Blocked Recursive Matrix
Multiplication

Blocked-Recursive implementation
A{i, k}, B{k, j} and C{i, j} are sub-matrices of A, B and C.

function ¢ = matmul (A, B, C)
if (level(A) == 0)
C = matmul_leaf (A, B, C)
else
fori= lisize(A, 1)
for k = Lisize(A, 2)
for j = Lisize(B, 2)
C{i, j} = matmul(A{i, k}, B{k, j}, C{i.j}):;
end
end
end
end

Matrix MultiplicatiQn, . s o

matmul (A{i, K}, B{k, j}, C{i, j})

matmul (AA{i, k}, BB{k, j}, CL{i, j})

matmul_leaf (AAA({i, k}, BBB{k, j}, CC(Hi, j})

Matrix Multiplication
matmul (A, B, C)

matmul (A{i, K}, B{k, j}, C{i, j})

matmul (AA{i, k}, BB{k, j}, CL{i, j})

matmul_leaf (AAA({i, k}, BBB{k, j}, CC(Hi, j})

fori=1:size(A, 1)
for k = 1isize(A, 2)
for j = lisize(B, 2)
C(i.j)= C(i.j) + AG, k) * B(k, j);
end
end
end

Parallel operations and
communication with HTAS

* Array operations on HTAS can represent
communication or computation.
— Assignment statements where all HTA indices

are identical are computations executed In the
home of each of the HTA elements involved.

— Assignment statements where this Is not the
case represent communication operations.

Advantages

e Aggregate operations on HTAS representing
communication are implemented using a
communication library (MPI or native library). This
model imposes structure on the use of the
communication library routines in the same way that

looping constructs impose structure on branch
Instructions.

* Tiles represent algorithms with a high degrees of
locality naturally. Explicit access to tiles make the
algorithms easy to read and understand.

Using HTAS to Represent Data
Dlstrlbutlon and Parallelism

s Algorithm

Implementation of Cannon’s algorithm

c{l:n,:n}(1:p,1:p) = O |ICommunication
|Zero is broadcast to all
lprocessors

do i=2 n

a{i:n,:} = cshift(a(i:n,:},dim=2 shift=1); ICommunication
b{:,i:n} = cshift(b{:,i:n},dim=1shift=1) |Communication
end do

do k=1n
c{:,:} = i, J+a{:,: }*b{: 2} IParallel computation
af:,:} = cshift(a{:,:},dim=2); |ICommunication
b{:,:} = cshift(b{:,:},dim=1); |Communication

end do

The SUMMA Algorithm

Use now the outer-product method (n2-parallelism)
Interchanging the loop headers of the loop in Example 1 produce:
for k=1:n
for i=1l:n
for j=l:n
cli. j}=Cli.jy+Afi Ky*Bik,j}
end
end
end
To obtain n? parallelism, the inner two loops should take the form

of a block operations:

for k=1:n
C{:,}=C{: }+A{: k} ® B{k,:};
end

Where the operator ® represents the outer product operations

The SUMMA Algorithm

 The SUMMA Algorithm

C A
|]
|]

bll b12

Aq1] a;4by4 a,; by,

ay104| Ay 04,

Switch Orientation -- By
using a column of A and
a row of B broadcast to
all, compute the “next”
terms of the dot product

The SUMMA Algorithm

c{l:n,1:n} = zeros(p,p): % communication
for i=lin
t1{: :}=spread(a(:,i),dim=2 ncopies=N); % communication
12{:,:}=spread(b(i,:),dim=1,ncopies=N); % communication
& £ = b9 20 0 LY Sab -3 09 7 computation
end

Jacobi Relaxation

while dif > epsilon

v{2:,:30,)) = v{in-1,:}(p,:): % communication
v{in-1,} (p+1,)) = v{2:,:} (1,2); % communication
v{:,2:} (:,0) = v{:,1:in-1}(:,p); 7% communication
vi:, in-13(: p+1) = v{:,2:3(: 1); % communication

u(:, J(Lp,ip) = a * (v{:,:} (1:p,0:p-1) + v{:,:} (O:p-1,1:p)+
v{:,:} (Lip,2:p+1) + v{: :} (2:p+1,1:p)) ;. locomputation

dif=max(max(abs (v -u)));
V=u;
end

Sparse Matrix Vector Product

—

(Distributed)

(Replicated)

P1

P2

P3

P4

Sparse Matrix Vector Product
HTA Implementation

c = hta(a, {dist, [1]}, [4 1]);
v = hta(4,1,[4 1]);

v{:} = b;

t=c*v

r=t(:).

Implementations

« MATLAB Extension with HTA
— Global view & single threaded

— Front-end is pure MATLAB

— MPI calls using MEX interface

— MATLAB library routines at the leaf level
e X10 Extension

— Emulation only (no experimental results)

o C++ extension with HTA (Under-progress)
— Communication using MPI (& UPC)

Evaluation

Implemented the full set of NAS benchmarks
(except SP)
— Pure MATLAB & MATLAB + HTA

— Performance metrics: running time & relative speedup
on 1 - 128 processors

— Productivity metric: source lines of code
— Compared with hand-optimized F77+MPI version
— Tiles only used for parallelism

MG

primitive HTA operations and

3D Stencil convolution:

assignments to implement communication

interpolate

O O
O O

(O @)

O O
O O

(ON©)
(ON©

O[O

OO OO0 OOQ0
OO OO0 OO O
(ONoN OOl (OONONE®
OO OO0 OO O
OO OO0 OO0OO0
(ON ool (O ONONE®
OO OO0 OO0OO0
OO OO0 O0OQ0
(O ONONO) OONONE)
(O ONONO) OONONE)
(OO ONO) OONONE)
OO O0OO0OPL OO O
OO O0OOpPL OOO
OO O0OO0OpPL OO O
(Ol O ONO) ONONONG),
QOO0 O0OO0Op OO Oo

(ON© NON©
Q00
(ON© NON©
O QO OO
+
—

C

+

v

Q

.

MG

0 0j0 O |
coeo e 2oee r{1)(2)=r(2)1
0 0o ©

Mjg'ggg r{:, (2 -1, 2:n-1) = 5* u{:,:}(2:n-1, 2:n-1)

P e +0.25 * (uf:, }(‘n-2 2n1)+u{ :}(3:n, 2:n-1)
OOEQQQ + u{:,:}(2:n-1 1n2)"‘u{ }(2n13n))
- 3

computation

CG

Sparse matrix-vector multiplication (A*p)
2D decomposition of A
replication and 2D decomposition of p
sum reduction across columns

>

T T T T
o1 Po2 Pos Po | P1 | Py | P3

[
o
[y
=
> >
=
N

N
[
N
N

> > >

CG

A =hta(MX {partition_A},[M NJ]): @

p = repmat(hta(vector’, {partition_p} [1 N]),[M,1]).

=
o

N
o

Py’

psT

Py’

psT

repmat

»

CG

M NJ); @
MX {partition_A}[
A =hta(MX,

ose, p)
@transp

= map (

p =

)

=
o

Py

N
o

Po

Py

Py

Po

Py

Py

Py

Py

repmat

»

CG

A =h‘ra(MX,{par’ri’rion_A},[M N1I): @

p = repmat(hta(vec’ror , {partition_p} [1 N]),[M,1]);
p = map (@1ranspose, p
('sum’, A*p, 2, true); @

R = reduce

=
o

N
o

repmat

O

»

reduce
| >
I:200 I:201 ROZ R03
RlO Rll RlZ R13
RZO R21 R22 R23
30 R31 R32 R33

FT

3D Fourier transform
Corner turn using dpermute
Fourier transform applied to each tile

h=ft (h, 1) A 2D illustration

h = dpermute (h, [2 1]);

h = ft(h, 1);

1 21013 4 1 59 13

5 67 8 .1 2 6 (10 14 ;J@ft @ftJ
0 10011 12| dpermute | 3 7 |11 15 ft

131415 16 4 8 |12 16

1S

Bucket sort of integers
Bucket exchange using assignments

(8 21 479 [1116 183 6 1012131551417] 1. Distribute keys

1 214 87 913 611101618512 131501417/ 2. Local bucket sort

—:_:i 3. Aggregate
- 4. Bucket exchange

| @sort | @sort | @sort | 5

. Local sort

| 1S
Bucket sort of integers
Bucket exchange assignments

h and r top level distributed

18 21 479 [1116 183 6 10(12131551417 |

1 214 87 913 611101618512 131501417/

fori=1:n

e e e) forj=ln
{3} = h(j0)
- end
end

| @sort | @sort | @sort |

Experimental Results

 NAS benchmarks (MATLAB)
— (Results in the paper)

— CG & FT — acceptable performance and speedup

— MG, LU, BT - poor performance, but fair speedup

C++ results yet to be obtained.

Lines of Code

1200 . . , : : : : : :
-Enmpuh:ﬁnn

nnnmmunitiﬂjnn MFI

1000 | -Ila:ln Dedomposition)|

9002 JO SaulT]

=
=

200

