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Abstract
Automatic program comprehension is particularly useful
when applied to sparse matrix codes, since it allows to ab-
stract e.g. from specific sparse matrix storage formats used
in the code. In this paper we describe SPARAMAT, a system
for speculative automatic program comprehension suitable
for sparse matrix codes, and its implementation.

1 Introduction

Matrix computations constitute the core of many scientific
numerical programs. A matrix is called sparse if so many
of its entries are zero that it seems worthwhile to use a
more space—efficient data structure to store it than a sim-
ple two—dimensional array; otherwise the matrix is called
dense. Space—efficient data structures for sparse matrices
try to store only the nonzero elements. This results in con-
siderable savings in space for the matrix elements and time
for operations on them, at the cost of some space and time
overhead to keep the data structure consistent. If the spatial
arrangement of the nonzero matrix elements (the sparsity
pattern) is statically known to be regular (e.g., a blocked or
band matrix), the matrix is typically stored in a way directly
following this sparsity pattern; e.g., each diagonal may be
stored as a one—dimensional array.

Irregular sparsity patterns are usually defined by run-
time data. Here we have only this case in mind when us-
ing the term “sparse matrix”. Typical data structures used
for the representation of sparse matrices in Fortran77 pro-
grams are, beyond a data array containing the nonzero ele-
ments themselves, several organizational variables, e.g. ar-
rays with suitable row and/or column index information for
each data array element. Linked lists are, if at all, simu-
lated by index vectors, as Fortran77 supports no pointers nor
structures. C implementations may also use explicit linked
list data structures to store the nonzero elements, which sup-
ports dynamic insertion and deletion of elements. How-
ever, on several architectures, a pointer variable needs more
space than an integer index variable. As space is often criti-
cal in sparse matrix computations, explicit linked lists occur
rather rarely in practice. Also, many numerical C programs
are written in a near—Fortran77 style because they were ei-
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ther directly transposed from existing Fortran77 code, or
because the programming style is influenced by former For-
tran77 projects or Fortran77-based numerics textbooks.

Matrix computations on these data structures are com-
mon in practice and often parallelizable. Consequently, nu-
merous parallel algorithms have been invented or adapted
for sparse matrix computations over the last decades for var-
ious parallel architectures.

[5] suggests the programmer to express, in the source
code, parallel (sparse) matrix computations in terms of
dense matrix data structures, which are more elegant to par-
allelize and distribute, and let the compiler select a suitable
data structure for the matrices automatically. Clearly this is
not applicable to (existing) programs that use hard—coded
data structures for sparse matrices.

While the problems of automatic parallelization for
dense matrix computations are, meanwhile, well under-
stood and sufficiently solved, (e.g. [6, 24, 46]), these prob-
lems have been attacked for sparse matrix computations
only in a very conservative way, e.g., by run—time paral-
lelization techniques such as the inspector—executor method
[32] or run—time analysis of sparsity patterns for load—
balanced array distribution [45]. This is not astonishing
because such code looks quite awful to the compiler, con-
sisting of indirect array indexing or pointer dereferencing
which makes exact static access analysis impossible.

In this paper we describe SPARAMAT, a system for con-
cept comprehension that is particularly suitable to sparse
matrix codes. We started by studying several representa-
tive source codes for implementations of basic linear alge-
bra operations like dot product, matrix—vector multiplica-
tion, matrix—matrix multiplication, or LU factorization for
sparse matrices [17, 20, 29, 43, 41, 48] and recorded a list
of basic computational kernels for sparse matrix computa-
tions, together with their frequently occurring syntactical
and algorithmic variations.

Basic terminology. A concept is an abstraction of an ex-
ternally defined procedure. It represents the (generally infi-
nite) set of concrete procedures coded in a given program-
ming language that have the same type and that we consider
to be equivalent in all occurring calling contexts. Typically
we give a concept a name that we associate with the type
and the operation that we consider to be implemented by
these procedures. An idiom of a concept c is such a concrete



procedure, coded in a specific programming language, that
has the same type as c and that we consider to implement
the operation of c. An occurrence of an idiom ¢ of a concept
¢ (or short: an occurrence of ¢) in a given source program is
a fragment of the source program that matches this idiom ¢
by unification of program variables with the procedure pa-
rameters of ¢. Thus it is legal to replace this fragment by a
call to ¢, where the program objects are bound to the for-
mal parameters of c¢. The (compiler) data structure repre-
senting this call is called an instance I of c; the fields in I
that hold the program objects passed as parameters to c are
called the slots of 1. Beyond the Fortran77 parameter pass-
ing, SPARAMAT allows procedure—valued parameters as
well as higher—dimensional and composite data structures
to occur as slot entries.

After suitable preprocessing transformations (inlining all
procedures) and normalizations (constant propagation), the
intermediate program representation — abstract syntax tree
and/or program dependence graph — is submitted to the
concept recognizer. The concept recognizer, described in
Section 4, identifies code fragments as concept occurrences
and annotates them by concept instances.

When applied to parallelization, we are primarily inter-

ested in recognizing concepts for which there are particular
parallel routines available, tailored to the target machine. In
the back—end phase, the concept instances can be replaced
by suitable parallel implementations. The information de-
rived in the recognition phase also supports automatic data
layout and performance prediction.
Problems with sparse matrix computations. One prob-
lem we were faced with is that there is no standard data
structure to store a sparse matrix. Rather, there is a set of
about 15 competing formats in use that vary in their ad-
vantages and disadvantages, in comparison to the two—di-
mensional array which is the “natural” storage scheme for a
dense matrix.

The other main difference is that space—efficient data
structures for sparse matrices use either indirect array ref-
erences or (if available) pointer data structures. Thus the
array access information required for safe concept recog-
nition and code replacement is no longer completely avail-
able at compile time. Regarding program comprehension,
this means that it is no longer sufficient to consider only the
declaration of the matrix and the code of the computation
itself, in order to safely determine the semantics of the com-
putation. Code can only be recognized as an occurrence of,
say, sparse matrix—vector multiplication, subject to the con-
dition that the data structures occurring in the code really
implement a sparse matrix. As it is generally not possible
to statically evaluate this condition, a concept recognition
engine can only suspect, based on its observations of the
code while tracking the live ranges of program objects, that
a certain set of program objects implements a sparse ma-
trix; the final proof of this hypothesis must either be sup-
plied by the user in an interactive program understanding
framework, or equivalent run-time tests must be generated
by the code generator. Unfortunately, such run—time tests,
even if parallelizable, incur some overhead. Nevertheless,

static program flow analysis [25] can substantially support
such a speculative comprehension and parallelization. Only
at program points where insufficient static information is
available, run—time tests or user prompting is required to
confirm (or reject) the speculative comprehension.
Application areas. The expected benefit from success-
ful recognition is large. For automatic parallelization, the
back-end should generate two variants of parallel code for
the recognized program fragments: (1) an optimized par-
allel library routine that is executed speculatively, and (2)
a conservative parallelization, maybe using the inspector—
executor technique [32], or just sequential code, which is
executed non—speculatively. These two code variants may
even be executed concurrently and overlapped with the eval-
uation of run-time tests: If the testing processors find out
during execution that the hypothesis allowing speculative
execution was wrong, they abort and wait for the sequen-
tial variant to complete. Otherwise, they abort the sequen-
tial variant and return the computed results. Nevertheless,
if the sparsity pattern is static, it may be more profitable
to execute the run-time test once at the beginning and then
branching to the suitable code variant.

Beyond automatic parallelization, the abstraction from
specific data structures for the sparse matrices also sup-
ports program maintenance and debugging, and could help
with the exchange of one data structure for a sparse matrix
against another, more suitable one. For instance, recognized
operations on sparse matrices could be replaced by their
counterparts on dense matrices, and thus, program compre-
hension may serve as a front end to [5]. Or, the information
derived by concept recognition may just be emitted as math-
ematical formulas e.g. in IS[EX format, typeset in a mathe-
matical textbook style, and shown in a graphical editor as
annotations to the source code, in order to improve human
program understanding.

The SPARAMAT implementation focuses on sparse ma-
trix computations coded by indirect array accesses. This is
because, in order to maintain an achievable goal in a uni-
versity project, it is necessary to limit oneself to a language
that is rather easy to analyze (Fortran), to only a handful of
sparse matrix formats (see Section 2), and to a limited set of
most important concepts [26]. For this reason, pointer alias
analysis of C programs, as well as concepts and matching
rules for pointer—based linked list data structures, are be-
yond the scope of this project. Due to the flexibility of the
generative approach, more concepts and templates may be
easily added by any SPARAMAT user. Furthermore, it ap-
pears that we can reuse some techniques from our earlier
PARAMAT project [24] more straightforwardly for indirect
array accesses than for pointer accesses.

The remainder of this paper is organized as follows: Sec-
tion 2 deals with vectors and sparse matrix storage schemes;
Section 3 summarizes concepts for (sparse) matrix compu-
tations. Section 4 discusses concept recognition and de-
scribes our implementation. We close with related work
and conclusions. A larger example using neural network
simulation code is given in Appendix A.



2 Vectors and (sparse) matrices

2.1 Vectors

A vector is an object in the intermediate program represen-
tation that summarizes a one—dimensional view of some el-
ements of an array. For instance, a vector of reals accessing
the first 5 elements in column 7 of a two—dimensional array
a of reals is represented as V(a,1,5,1,7,7,0). For
ease of notation we assume that the “elements” of the vec-
tor itself are consecutively numbered starting at 1. IV (...)
denotes integer vectors.

An indexed vector summarizes a one—dimensional view
of some elements of an array whose indices are specified in
a second (integer) vector, e.g. VX (a, IV(x,1,n,2)).

2.2 (Sparse) Matrices

A matrix summarizes a two—dimensional view of an array
according to the conventions of a specific storage format.
Dense matrices appear as a special case of sparse matrices.

Here we summarize some general storage formats for
sparse matrices based on index vectors, which are the most
frequently occurring in Fortran77 codes. Formats for spe-
cial, more regular sparsity patterns, such as for band ma-
trices, block sparse matrices, or skyline matrices, are not
considered here. The abbreviations of format names are
partially adapted from [41]. More details can be found in
[41], [2], and [47].

o DNS (dense storage formar): uses a two—dimensional
array A (N, M) to store all elements. Due to the sym-
metric access structure of the two—dimensional array,
a leading dimension flag 1d tells us whether the ma-
trix is stored row—major or column—major. In the fol-
lowing, we summarize all data referring to the dense
matrix as an object

DNS( V(a,1l,n,1,m), n, m, 14 )

Example: In Fortran, DNS—-Matrix—vector multiplica-
tion may look like

e COO (coordinate format): A data array a (nz) stores
the nz nonzero matrix elements in arbitrary order, and
integer vectors row (nz) and col (nz) hold for each
nonzero element its row and column index. The object
representing the matrix is summarized as

coo( Vv(a,1l,nz,1), IV(row,1l,nz,1), IV(col,1l,nz,1),
nz )

Example:
look like

COO-Matrix—vector multiplication may
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Figure 1: Row-compressed (CSR) and column—compres-
sed (CSC) storage formats for sparse matrices.

b(row(k)) = b(row(k)) + a(k) * x(col(k))

The COO format occurs e.g. in the SLAP package
[43].

e CSR (row—compressed sorted storage format): A data
array a (nz) stores the nz nonzero matrix elements
a;; in row—major order, where within each row the
elements appear in the same order as in the dense
equivalent. An integer vector col (1:nz) gives the
column index for each element in a, and an inte-
ger vector firstinrow(1l:n+1) gives indices to
a such that firstinrow (¢) denotes the position in
a where row ¢ starts, 2 = 1,...,n and firstin-
row(n+1) always contains nz+1 (see Figure 1).
Thus, firstinrow (i4+1) -firstinrow (i) gives
the number of nonzero elements in row 7. A CSR ma-
trix object is summarized as

CSR(V(a, firstinrow(1l), firstinrow(n+1)-1,1),
IV(firstinrow,1,n+1,1),
IV(col, firstinrow(l), firstinrow(n+1)-1,1),
n,
nz)

Example: An idiom of a matrix vector multication for
CSR format may look like

0.0

b(i) =
DO k = firstinrow(i), firstinrow(i+1l)-1
b(i) = b(i) + a(k) * x(col(k))
ENDDO
ENDDO

Such storage formats are typical for Fortran77 imple-
mentations. CSR is used e.g. in the SLAP package
[43].

e CUR (row—compressed unsorted storage format): like
CSR, but the order of nonzeros within each row is
not important. CUR is used e.g. as the basic format
in SPARSKIT [41]. CUR matrix—vector multiplication
looks identical to the CSR version.

e XSR/XUR: an extension of CSR / CUR that addition-
ally stores in an n—element integer array lastinrow



for each compressed row its last index within the data
array A. This makes row interchanges and row reallo-
cations due to fill-in more efficient. XUR is used e.g.
in Y12M [48].

MSR (modified row—compressed storage format): like
CSR, but the elements of the main diagonal of the ma-
trix are stored separately and regardless of whether
they are zero or not. This is motivated by the fact
that, often, most of the diagonal elements are a pri-
ori known to be nonzero, and are accessed more fre-
quently than the other elements. Typically the diag-
onal elements are stored in the first n elements of a
and a (n+1) is unused. The column indices of the
diagonal elements need not be stored, thus the ele-
ments of the array firstinrow of CSR are stored
in the first n+1 entries of a two—purpose integer ar-
ray fircol. The remaining nonzero elements are
stored in a (n+2 :nz+1) and their column indices in
fircol (n+2:nz+1). A MSR matrix object is thus
given as

MSR(V(a,1l,fircol(n+1)-1,1), IV(fircol,1,n+1,1), n,
nz)

MSR is used e.g. in the sparse matrix routines of the
Numerical Recipes [37].

Example: Matrix—vector multiplication may look as
follows (routine sprsax () from [37]):

DO i1 =1, n
b(i) = a(i) * x(i);
DO k = fircol(i), fircol(i+1l)-1
b(i) = b(i) + a(k) * x(fircol(k))
ENDDO
ENDDO

CSC (column—compressed format): similar to CSR
where the a contains the nonzero elements in column—
major order and the other two arrays are defined cor-
respondingly (see Figure 1). Thus, CSC format for a
matrix A is equivalent to the CSR format for AT, and
vice versa. A CSC matrix object is summarized by

CsSC(V(a,firstincol (1), firstincol (n+1)-1,1),
IV(firstincol,1,n+1,1),
V(row, firstincol (1), firstincol (n+1)-1,1),
n, nz)

Example: CSC-Matrix—vector multiplication may
look like

DO i =1, n
DO k = firstincol(i), firstincol (i+1)-1
b(row(k)) = b(row(k)) + a(k) * x(i)
ENDDO
ENDDO

CSC is used e.g. in the Harwell MA2 8 package [17].

MSC (modified column—compressed storage format):
A MSC matrix object is similar to the CSC represen-
tation, but the elements of the main diagonal of the
matrix are stored separately, as for MSR.

o JAD (jagged diagonal format): First the rows of the

matrix are permuted to obtain decreasing numbers n;
of nonzero elements for each row i. The data ar-
ray a (1:nz) is filled as follows: The first nonzero
element of each row ¢ (the first “jagged diagonal”)
is stored in a (i), the second nonzero element of
each row ¢ in a (n+:¢) etc. The overall number njd
of jagged diagonals is at most n. An integer array
col (1:nz) holds the column index of each element
in a. An integer array firstinjdiag(1l:n) holds
indices into a resp. col indicating the beginning of a
new jagged diagonal; thus firstinjdiag (k+1) -
firstinjdiag (k) gives the number nj of ele-
ments belonging to the kth jagged diagonal. Thus, a
JAD matrix object is given by
JAD( V(a, firstinjdiag(1l), firstinjdiag(njd+1l),1),

IV(firstinjdiag,1l,njd+1,1),

V(col, firstinjdiag(l), firstinjdiag(njd+1) -

1,1),
n, nz, njd )

Example: JAD-Matrix—vector multiplication may
look like

DO i = firstinjdiag(k), firstinjdiag(k+1)-1
r = i - firstinjdiag(k)
b(r) = b(r) + a(i) * x(col(i))
ENDDO
ENDDO

followed by re—permutation of vector b if necessary.

LNK (linked list storage format): The data array
a(1l:maxnz) holds the nz nonzero elements in ar-
bitrary order, the integer array col (1 :maxnz) gives
the column index of each nonzero element. An in-
teger array nextinrow (1:maxnz) links the ele-
ments belonging to the same row in order of increasing
col index. A zero nextinrow entry marks the last
nonzero element in a row. The list head element of
each row i is indexed by the ith element of the integer
array firstinrow(1:n). Empty rows are denoted
by a zero firstinrow entry. If required by the ap-
plication, a similar linking may also be provided in the
other dimension, using two more index vectors nex-
tincol(1l:nz) and firstincol (1:n). Thus, a
singly—linked LNK matrix object is summarized by

LNK (VX (a, IV (firstinrow,1,n)),IV(firstinrow,1,n),
IV (nextinrow,1,n),
VX (col,IV(firstinrow,1,n)),n,nz,maxnz)

Example: LNK-Matrix—vector multiplication may
look like

i 1
b(i)=
k = firstinrow (i)
WHILE (k.GT.0)
b(i) = b(i) + a(k) * x(col(k))
k = nextinrow (k)
ENDWHILE
ENDDO

DO

, n
.0

[



The LNK format requires more space than the previ-
ously discussed sparse matrix formats, but it supports
efficient dynamic insertion and deletion of elements
(provided that a and next inrow have been allocated
with sufficient space reserve, maxnz).

While matrix—vector multiplication codes for a sparse
matrix look quite simple and seem to be somehow iden-
tifiable by concept matching techniques, implementations
of matrix—matrix multiplication or LU decomposition look
quite unstructured. This is mainly due to the fact that in the
course of these algorithms, some matrix elements may be-
come nonzero which were originally zero (fill-in), and thus
additional storage has to be allocated for inserting them.
Thus, the sparsity pattern may change in each step of these
algorithms, while at matrix—vector multiplication, the spar-
sity pattern (and thus, the organizational variables) is read—
only.

A simple work—around to cope with a limited number
of fill-ins is to store fill-ins in a separate temporary data
structure, or respectively, to allocate slightly more space for
the data array and the index vectors. This is e.g. applied in
SPARSE [29].

There are also many possibilities for slight modifications
and extensions of these data structures. For instance, a flag
may indicate symmetry of a matrix. Such changes are quite
ad-hoc, and it seems generally not sensible to define a new
family of concepts for each such modification. For instance,
in the Harwell routines MA3 0, the sign bit of the row resp.
column indices is “misused” to indicate whether a new col-
umn or row has just started, thus saving the firstin-
rowresp. firstincol array when sequentially scanning
through the matrix. Clearly such dirty tricks make program
comprehension more difficult.

A main consequence that arises from these data struc-
tures is that the comfortable symmetry present in the two—
dimensional arrays implementing dense matrices (DNS) is
lost. Hence, we must explicitly distinguish between trans-
posed and non—transposed matrix accesses, and between
row—wise and column—wise linearization of the storage for
the nonzero matrix elements.

Linked list data structures (e.g., the LNK format) cause
operations on them, such as traversal or insert/delete, to be
inherently sequential. Thus they are particularly good can-
didates to be completely replaced by other data structures
more suitable for exploiting parallelism, e.g. linked lists
with multiple heads for parallel access. Data structure re-
placement for a sparse matrix is possible if all operations
on it have been recognized and if alias analysis can guar-
antee that there are no other variables which may be used
to access one of these linked list elements in an unforeseen
way.

3 Concepts

This section gives a survey of concepts that are frequently
encountered in sparse matrix codes. Although this list is

concept SDOTVV {
param(out) Sr: real;
param(none) $L: range;

(
param(in) Su: vector;
param(in) $v: vector;
param(in) $init: real;

templateVertical {
pattern {
node DO_STMT $i = $1b:Sub:$st
child INCR ($rs,MUL ($el, $e2)

where {
Sel->isSimpleArrayAccess ($1i)
&& $e2->isSimpleArrayAccess ($1)
&& $s->isVar ()
&& $i->notOccurIn(S$s)
}
instance SDOTVV (Srs, newRange($i,$lb,Sub,$st),
newVector ($el, $i, $1b, Sub, $st) ,
newVector ($e2, $i, $1b, Sub, $st) ,
Srs)
}
templateHorizontal {
pattern {
sibling($s) SINIT(S$x,S$c)
£fi11($E)
node ($n) SDOTVV ($rl,sLl, $ul,$vl,s$initl)

where ($s) { $x->array() == $initl->array() }
where ($Sf) {

notOutSet = $x;

notInSet = $x;

inSet = $initl;

}
instance($s) EMPTY ()
instance($n) SDOTVV( sL1, $ul, $vl, $rl, sc )
}
}

Figure 2: A CSL specification for the SDOTVV concept (sim-
ple dot product) with two templates.

surely not exhaustive, it should at least illustrate the appli-
cation domain. The extension of this list by more concepts
to cover an even larger part of numerical software is the
subject of on-going research.

‘We have developed a concept specification language that
allows one to describe concepts and matching rules on a
level that is (more or less) independent from a particular
source language or compiler. A concept specification con-
sists of the following components: its name (naming con-
ventions are discussed below), an ordered and typed list
of its parameters, and a set of matching rules (called tem-
plates). A matching rule has several fields: a field for struc-
tural pattern matching, specified in terms of intermediate
representation constructs (loop headers, conditions, assign-
ments, and instances of the corresponding subconcepts),
fields specifying auxiliary predicates (e.g., structural prop-
erties or dataflow relations), fields for the specification of
pre- and postconditions for the slot entries implied by this
concept (see Section 4), and a field creating a concept in-
stance after successful matching. For an example specifica-
tion see Figure 2.

Our naming conventions for concepts are as follows: The
shape of operands is denoted by shorthands S (scalar), Vv
(vector), VX (indexed vector), and YYY (matrix in storage
format YYY). The result shape is given first, followed by a
mnemonic for the type of computation denoted by the con-
cept, and the shorthands of the operands. The default type
is real; integer concepts and objects are prefixed with an I.

We extend our earlier approach [24] to representing con-
cepts and concept instances in several aspects.



Operator parameters. Some concepts like VMAPVV (el-
ementwise application of a binary operator to two operand
vectors) take an operator (i.e., a function pointer) as a pa-
rameter. This makes hierarchical program omprehension
slightly more complicated, but greatly reduces the number
of different concepts, and allows for a more lean code gen-
eration interface.

Functional composition. ~We are still discussing arbi-
trary functional composition of concepts to form new con-
cepts. This idea is inspired by the work of Cole on algo-
rithmic skeletons [13]. Nevertheless, there should remain at
least some “flat” concepts for important special cases, e.g.
SDOTVV for dot product, VMATVECMV for matrix—vector
multiplication, etc. These may be regarded as “syntactic
sugar” but are to be preferred as they enhance readability
and speed up the program comprehension process.

No in—place computations. Most of our concepts rep-
resent not—in—place computations. In general, recognized
in—place computations are represented by using temporary
variables, vectors, or matrices. This abstracts even further
from the particular implementation. It is the job of the back-
end to reuse (temporary array) space where possible. In
other words, we try to track values of objects rather than
memory locations. Where it is unavoidable to have accu-
mulating concepts, they can be specified using accumulative
basic operations like INCR (increment) or SCAL (scaling).

Concept instances as parameters. Nesting of concept
instances is a natural way to represent a tree—like computa-
tion without having to specify temporary variables. As an
example, we may denote a DAXPY-like computation as

VMAPVS( V(tmp,1,n,1), MUL, V(c,1,n,1), 3.14 )
VINCRV( V(b,1,n,1), V(tmp,1,n,1) )

which is closer to the internal representation in the compiler,
or as

VINCR( V(b,1,n,1), VMAPVS(MUL,V(c,1,n,1),3.14))

which is more readable for humans. If the computation
structure is a directed acyclic graph (DAG), then we may
also obtain a DAG of concept instances, using temporary
variables and arrays for values used multiple times. In or-
der to support nesting, our notation of concept instances al-
lows to have the result parameter (if there is exactly one)
of a concept instance appear as the “return value” of a con-
cept instance, rather than as its first parameter, following the
analogy to a call to a function returning a value.

We give here an informal description of some concepts.
v, v1, vz denote (real) vectors, a a real array, tv an integer
vector, m, m1, me matrices in some format and r a range
object. 1, i1,...,i5 denote integer valued concept instances.

3.1 Base Concepts

V(a,lj, uj, Sj,-..) real vector access of array a, where [},
uj, s; are lower, upper and stride of dimension j where j

varies from 1 to the maximum number of dimensions.
v(a,li,u1,s1,...) integer vector access of array a, where
lj, uj, s; are lower, upper and stride of dimension j where j

varies from 1 to the maximum number of dimensions.

vx(i, IV (v1,...)) real indirect access of array i by array v;.
IVX(i,IV (v1...)) integer indirect access of array i by array v;.
VAR(v, 11, ..., 15) real variable access up to five dimensions.
If no indices specified, then scalar access.

IVAR(v,?1,...,45) integer variable access up to five dimensions.
If no indices specified, then scalar access.

CON(c) real constant ¢
ICON(c) integer constant ¢
VCON(r, n) vector constant size n containing real 7
IVCON(%,n) vector constant size n containing integer ¢
EMPTY() no operation

lv is the ranging variable and [b, ub, st

are the lower bound, upper bound and stride

For sake of brevity, VAR and IVAR concept instances are
written as their original expressions.

RANGE(lv, Ib, ub, st)

3.2 Concepts for scalar computations

There are concepts for binary expression operators, like
ADD, MUL, MAX, EQ etc., for unary expression operators
like NEG (negation), ABS (absolute value), INV (recipro-
cal), SOR (squaring) etc., The commutative and associative
operators, ADD, MUL, MAX etc., MIN, OR, AND may also
have more than two operands. STAR is a special version of
a multi-operand ADD denoting difference stencils [24]. The
increment operators INCR (for accumulating addition) and
SCAL (for accumulating product) are used instead of ADD
or MUL where the result variable is identical to one of the
arguments. Assignments to scalars are either SCOPY where
the assignee is a variable, or SINIT where the assignee is a
constant, or an expression operator where the assignee is a
recognized expression. The default type is real; integer ver-
sions of these concepts are prefixed with an I. For technical
reasons there are some auxiliary concepts like EMPTY (no
operation) and RANGE (to summarize a loop header).

3.3 Vector and matrix computations
VMAPVV(v, ®,v1,v2)  elementwise appl. of binary operator &
results stored in v

elementwise appl. of unary operator ©
results stored in v

VMAPVS(v, ®,v1,7) elementwise appl. with a scalar operand r
results stored in v

v(i) = v(i) +v1(3), i = 1,..., |v1]
copy vector v to v

initialize elements of v to a constant ¢
initialize elements vector v to a scalar r

VMAPV(v, ©, v1)

VINCRV(v,v1)
VCOPYV(v, v1)
VINIT(v,c)
VASGNS(v, )

SREDV(r, ®,v)
SREDLOCV(k, ®,v)

reduction r = ®‘Ji1 v(j)

some k with v(k) = @‘Jil v(j)
VPREFV(v, ®,v1) »
o(i) = @', v1(j).i = 1, o, Jui
VSUFFV(v, ®,v1)

V(&) = @y 11 (9) = [orl, -1



3.4 Searching and sorting on a vector

k =rank of 7 in v1
sort v1 and store result in v

SSRCHV(k, v1,T)
VSORTV(v, v1)
VCOLLVV(v, v1, v2)
extract all elements v () where v1(2) # 0
where ¢ = 1...|v1| and store in v.

VSWAPVV(v,v1) swap vectors v and vy

3.5 Indexed vector operations

v(i) = a(vi(2)), 1 =1,...,|v1]
a(iv(i)) = vi(7), ¢ =

VGATHERVX(v, VX (a,v1))
VXSCATTERV(V X (a,iv),v1))
].7 ceny ‘Ul |

3.6 Elementwise matrix computations

In the following list, m; for 2 = 0,1, 2, ... stands for matrix
objects XXX... in some format XXX.

MMAPMM(m, &, m1,ma) elementwise appl. of binary
operator @, results stored in m
elementwise application of unary
operator ©, results stored in m
map @ across dim. da of

mi, results stored in m
elementwise apply @ to r and all
element of m, results stored in m
MMAPVV(m, @, v1,d1,v2,d2) map @ across vy X vz, spanning
dim.’s dy, d2 of m, results stored in m
matrix copy of my to m, m and my

have the same format

like MCOPYM, but formats m and m differ
blow up vector v to a matrix m along
dimension d

matrix transpose, result stored in m
initialize all elements of m by scalar
expression r

MASGNS(m,r,1,7) initialize all elements of m by expression r
indexed by a formal row index ¢ and/or column index j

Note that outer product (MOUTERVV) is a special case of

MMAPVYV.

MMAPM(m, &, m1)
MMAPMV(m, @, m1,v1,ds2)

MMAPMS(m, &, m1,T)

MCOPYM(m, my)

MCNVTM(m, m1
MEXPANDV(m, v, d)
(

MTRANSPM(m, m;)
MINITS(m,)

3.7 Searching and sorting on a matrix

In the following list, 7v; denotes a matrix row RXXX{. .}
in some format XXX.

MCOLLM(m, m1, f,1,7) filter out all elements 1 (3, 5)
fulfilling a boolean condition f(m, i, 7), parameterized

by formal row index ¢ and/or formal column index j,

results stored in m

MGETSUBM(m, mi, S1,t1, S2, tz) extract rectangular submatrix
of my in range (s1 : t1, 82 : t2), results stored in m
MSETSUBM(ml, S1,t1, 82, t2, m2) replace submatrix
m1(81 : t1, S9 @ t2) by mso

extract element m(z, j) if it exists, and O
otherwise, results stored in r

set element m(,j) tor

extract row ¢ from matrix m, store in v
set row ¢ in matrix m to rv

extract column ¢ from matrix m,

SGETELM(r, m,1,7)

MSETELMS(m, 4, j,T)
VGETROWM(v, m, 1)
MSETROWMV(mn, i, Tv)
VGETCOLM(v, m, 1)

store in v

set column ¢ in matrix m to cv

extract diagonal ¢ from matrix m and
store in v

set diagonal ¢ in matrix m to v

extract left lower triangular matrix
(including diagonal) from m, store in m
extract right upper triangular matrix
(including diagonal) from m, store in m
permute rows of matrix m with permutation
vector v

permute columns of m with permutation
vector v

MSETCOLMV(mn, , cv)
VGETDIAM(v,m,1)

MSETDIAMV(m,i,v)
MGETLM(m, m1)

MGETUM(m, m1)
MPRMROWM(rm, v)

MPRMCOLM(m, v)

3.8 Matrix-vector and matrix-matrix prod-
uct, decompositions

VMATVECMV(v, 7, m,v1,v2) matrix-vector product v = m - vy

where v is initialized to va.

VVECMATMV (v, m1, v2) vector-matrix product v = m7 - va.

MMATMULMM(m, m1,m2) matrix-matrix-product m = myq - mo

VUSOLVEMV(v, m1, v2) backward subst. v = m7 " - v2, ma

upper triangular

forward subst. v = ml_1 - Vg, My

lower triangular

VROTVVM(v, v1, m2) Givens rotation

MMLUDM(m, m1i,ma, p,t) LU decomposition of mg, pivot

strategy p, drop tolerance ¢, results stored in m and my

VUPDROWM(v, &, m1, pr, i, ¢, space, droptol) update row

i of my in LU decomp. for pivot row pr, start column c,

dense result vector of size space, results stored in v

In order to express a transposed matrix-matrix product,

the MTRANSP concept has to be applied to the operand ma-

trix to be accessed in transposed order . For dense matrices
this can be skipped by toggling the leading dimension.

It is interesting to note that a matrix-vector multiplication

for a matrix in CSR format

VLSOLVEMV(v, m1, v2)

VMATVECMV (..., CSR(...), ...)

looks exactly like a transposed matrix-vector multiplica-
tion for CSC format

VVECMATMV (..., CSC(...), ...)

and vice versa. Furthermore, for matrix-vector product
the order of nonzero elements within the same row resp.
column is not important here, thus the concept variants for
CSR and CUR resp. CSC and CUC matrices are equivalent.
Thus, for each such pair of equivalent concept variants only
one common implementation is required for the back—end.

3.9 1/O concepts

READ and WRITE are the concepts for reading and writing
a scalar value to a file.

VREAD(v, F) read a vector v from file F’

IThe reason why we do not define three more concepts for the com-
binations of transposed operand matrices is that executing a transpose, if
not avoidable, is one order of magnitude less costly than a matrix-matrix
product, while the execution time of a transpose is in the same order as a
transposed matrix-vector product.



write a vector v to file F'
MREAD(m, F, f) read m from file F' in file storage format f
MWRITE(m, F, f) write m to file F in file storage format f

There are various file storage formats in use for sparse
matrices, e.g. the Harwell-Boeing file format, the array for-
mat, or coordinate format [8].

VWRITE(v, F)

3.10 Exception slots

For some of the concepts listed above there exist addi-
tional slots containing actions specified by the programmer
to cover cases when possible exceptions occur. For exam-
ple, the INV concept (scalar reciprocal) offers a “catch” slot
to enter a statement that handles the “division by zero” ex-
ception. As another example, for LU decomposition (LUD)
on a sparse operand matrix an exception slot indicates what
should be done if the allocated space is exceeded.

4 Speculative concept recognition

Safe identification of a sparse matrix operation consists of
(1) a test for the syntactical properties of this operation,
which can be performed by concept recognition at com-
pile time, and (2) a test for the dynamic properties which
may partially have to be performed at run time. Regarding
(parallel) code generation, this implies that two versions of
code for the corresponding program fragment must be gen-
erated: one version branching to an optimized sparse matrix
library routine if the test is positive, and a conservative ver-
sion (maybe using the inspector—executor technique, or just
sequential) that is executed otherwise.

4.1 Compile-time concept matching

The static part of our concept matching method is based on
a bottom—up rewriting approach using a deterministic finite
bottom-up 2 tree—automaton that works on the program’s
intermediate representation (IR) as an abstract syntax tree
or control flow graph, augmented by concept instances and
data—flow edges computed during the recognition. Normal-
izing transformations, such as loop distribution or rerolling
of unrolled loops, are done whenever applicable.

The matching rules for the concept idioms to be rec-
ognized, called templates, are specified as far as possible
in terms of subconcept occurrences (see Fig. 2), follow-
ing the natural hierarchical composition of computations in
the given programming language, by applying loops and
sequencing to subcomputations. Since at most one tem-
plate may match an IR node, identification of concept oc-
currences is deterministic. For efficiency reasons the ap-
plicable templates are selected by a hashtable lookup: each
rule to match an occurrence of a concept c is indexed by the
most characteristic subconcept ¢’ (called the trigger con-
cept) that occurs in a matching rule. The graph induced

2To be precise, for the unification of objects within a matching rule
we apply a top—down traversal of (nested) concept instances for already
matched nodes.

by these edges (¢, ¢) is called the frigger graph. Hence,
concept recognition becomes a path finding problem in the
trigger graph. Matched IR nodes are annotated with concept
instances. If working on an abstract syntax tree, a concept
instance holds all information that would be required to re-
construct an equivalent of the subtree it annotates.

4.1.1 Vertical matching

Vertical matching proceeds along the hierarchical nesting
structure (statements, expressions) of the program’s IR,
starting with the leaf nodes. Matching a node is only pos-
sible when all its children have been matched. The trig-
ger concept used When applying vertical matching to an IR
node, the concept that has been matched for its first child is
used as the trigger concept.

As a running example, consider the following code excerpt:

Sl: DO 1 =1, n

S2: b(i) = 0.0
S3: DO j = first(i), first(i+l)-1
S4: b(i) = b(i) + a(j) * x(col(3))
ENDDO
ENDDO

The program’s IR (e.g. syntax tree) is traversed bottom—
up from the left to the right. Statement S2 is
recognized as a scalar initialization, summarized as
SINIT(b(i),0.0). Statement S4 is matched as a
scalar update computation, summarized as INCR (b (1),
MUL(a(j),x(col(j))). Now the loop around S4
is considered. The index expressions of a and col
are bound by the loop variable j which ranges from
some loop—invariant value first (i) to some loop—
invariant value first (i+1)-1. Thus the accesses to
arrays a and col during the j loop can be summa-
rized as vectors V(a, first (i), first(i+1)-1,1) and
IV(col, first (i), first(i+l)-1,1). By a template
similar to the first one in Fig. 2, the entire j loop is matched
as an occurrence of SDOTVVX (dot product with one in-
dexed operand vector); the unparsed program is now

Sl : DOi=1, n

S2': SINIT( b(i 0.0 );

)
S3’: SDOTVVX( b(i), V(a,first(i), first(i+1)-1,1),
VX (x,IV(col, first (i), first(i+1)-1,1)),
b(i));
ENDDO

Although all statements in the body of the i loop are
matched, there is no direct way to match the i loop at this
point. We must first address the dataflow relations between
S2’ and S3':

4.1.2 Horizontal matching

Horizontal matching tries to merge several matched IR
nodes v1, vg, ... belonging to the body of the same parent
node (e.g., a loop body). If there is a common concept that
covers the functionality of, say, v; and v;, there is generally
some data flow relation between v; and v; that can be used



to guide the matching process. For each summary node we
consider the slot entries to be read or written, and compute
data flow edges (also called cross—edges) connecting slots
referring to the same value, e.g., Def-Use chains (“FLOW”
cross edges).

Continuing the example above, we obtain that the same
value of b (i) is written (generated) by the SINIT compu-
tation in S2’ and consumed (used and killed) by the INCR
computation in S3 /. Note that it suffices to consider the
current loop level: regarding horizontal matching, the val-
ues of outer loop variables can be considered as constant.
Horizontal matching, following the corresponding template
(similar to the second template in Fig. 2), “merges” ® the
two nodes and generates a “shared” concept instance:

DO 1 =1, n

S’’: SDOTVVX( b(i), V(a,first(i),first(i+1)-
1,1),
VX (x,IV(col,first(i),first(i+1l)-
1,1)), 0.0)
ENDDO

4.2 Speculative concept matching

In order to continue with this example, we now would like
to apply vertical matching to the i loop. The accesses to a
and col are supposed to be CSR matrix accesses because
the range of the loop variable j binding their index expres-
sions is controlled by expressions bound by the i loop. Un-
fortunately, the values of the £irst elements are statically
unknown. Thus it is impossible to definitively conclude that
this is an occurrence of a CSR matrix vector product.

Nevertheless we continue, with assumptions based on
syntactic observations only, concept matching in a specu-
lative way. We obtain (see also Fig. 3)

<assume first(1l)=1>
<assume monotonicity of V(first,1,n+1,1)>
<assume injectivity of V(col, first (i),
first(i+1) -
1,1) forall i in 1l:n>
S: VMATVECMV( V(b,1,n,1),
CSR(a, IV(first,1,n+1,1),
IV(col, first (1), first(n+l)-
1,1),
n, first(n+l)-1),
V(x,1,n,1), VCON(0.0,n) );

where the first three lines summarize the assumptions guid-
ing our speculative concept recognition. If they cannot be
statically eliminated, these three preconditions would, at
code generation, result in three run-time tests being sched-
uled before or concurrent to the speculative parallel execu-
tion of S as a CSR matrix vector product. The range of
the values in col needs not be bound—checked at run time
since we can safely assume that the original program runs
correctly in sequential.

Now we have a closer look at these pre- and postcondi-
tions:

3Technically, one node is hidden from further matching and code gen-
eration by annotating it with an instance of EMPTY, see Fig. 2.

T

ATVECMV(V(b,1,n,1), CSR(a,IV(first,1,n+1,1), IV(colfirst(1),first(n+1)-1,1), n, first(n+1)-1), V(x,1,n,T

DOTVVX(VAR(b,i), V(a,first(i),first(i+1)-1,1), VX(x.IV(colfirst(i),first(i+1)-1,1)),00>

TNCR(b(i), MUL(a(j)x(col(})))

Figure 3: The program graph (abstract syntax tree) of the
CSR matrix-vector multiplication code after concept recogni-
tion, generated by DOT. As a side-effect of horizontal match-
ing a pseudoconcept “EMPTY” is generated to hide a node
from code generation but allow reconstruction of children
concepts if desired.

We call an integer vector iv monotonic over an index
range [L : U] at a program point g iff for any control flow
path through ¢, iv (¢) <iv (¢ + 1) holds at entry to g for
alli e [L:U —1].

We call an integer vector iv injective over an index
range L : U at a program point q iff for any control flow path
through ¢, for all 4,7 €L:U holds ¢ # j = iv (i) #
iv(y) at entry to q. Injectivity of a vector is usually not
statically known, but is an important condition that we need
to check at various occasions.

We must verify the speculative transformation and paral-
lelization of a recognized computation on a set of program
objects which are strongly suspected to implement a sparse
matrix A. This consists typically of a check for injectivity
of an index vector, plus maybe some other checks on the
organizational variables. For instance, for non—transposed
and transposed sparse matrix—vector multiplication in CSR
or CUR row—compressed format, we have to check that

(1) first (1) equals 1,

(2) vector IV (first,1,n+1,1) is monotonic, and

(3) vectors IV (col, first(¢) , first(i+1)-1,1)
are injective for all 4 € {1,...,n}.

These properties may be checked for separately.

4.3 Speculative loop distribution

Loop distribution is an important normalization applied in
the concept recognizer. As an example, consider the fol-
lowing code fragment taken from the SPARSE-BLAS [20]
routine DGTHRZ:

DO 10 1 = 1, nz
x (1) = y(indx(i))
y(indx(i)) = 0.0DO
10 CONTINUE

In order to definitely recognize (and also in order to
parallelize) this fragment, we need to know the values of
the elements of array indx. Unfortunately, this informa-
tion is generally not statically available. But similar as for
the speculative recognition of sparse matrix operations we
speculatively assume that indx is injective in the range



1:nz. As now there remain no loop—carried dependencies,
we can apply loop distribution [46] to the i loop:

<assume injectivity of INDX(1:NZ)>

DO i1 = 1, nz
x(1) = y(indx(i))
ENDDO
DO i1 = 1, nz
y(indx(i)) = 0.0DO
ENDDO

Applying concept matching to each loop separately
makes the speculatively matched copy of the program seg-
ment look as follows:

<assumes injectivity of indx(l:nz)>
VGATHERVX (V(x,1,nz,1), VX(Y,IV(indx,1,nz,1)))
VXSCATTER (VX (y,indx(1,nz,1)), VCON(0.0,n))

Speculative loop distribution saves the original program
structure for the code generation phase. This allows to gen-
erate also the conservative code variant.

4.4 Preservation and propagation of format
properties

Even if at some program point we are statically in doubt
about whether a set of program objects really implements
a sparse matrix in a certain storage format, we may derive
static information about some format properties of a specu-
latively recognized concept instance.

For any concept (or combination of a concept and spe-
cific parameter formats) the format property preconditions
for its parameter matrices are generally known. If an in-
stance I of a concept ¢ generates a new (sparse) result ma-
trix m, it may also be generally known whether m will
have some format properties after execution of I (i.e., a
postcondition). Such a property m of m may either hold
in any case after execution of an instance of ¢, i.e. w(m)
is installed by c¢. Or, 7 may depend on some of the ac-
tual format properties m,ms,... of the operand matrices
my,ma,.... In this case, m(m) will hold after execution
of I only if 71 (my), m2(ms) etc. were valid before execu-
tion of I. In other words, this describes a propagation of
properties w1 (my) A ma(ma) A ... = m(m). Also, it is gen-
erally known which properties of operand matrices may be
(possibly) deleted by executing an instance of a concept c.

The assumptions, preservations, propagations and dele-
tions of format properties associated with each concept in-
stance are summarized by the program comprehension en-
gine in the form of pre- and postcondition annotations to the
concept instances. Note that the preservations are the com-
plementary set of the deletions; thus we renounce on listing
them. If existing program objects may be overwritten, their
old properties are clearly deleted. Note that the install
and propagate annotations are postconditions that refer
to the newly created values. The shorthand a1l stands for
all properties considered.
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For example, if a certain piece of program has been spec-
ulatively recognized as an occurrence of a CSC to CSR con-
version concept, annotations are (conceptually) inserted be-
fore the concept instance as follows:

FirstB(1l)=1>
monotonicity of IV(FirstB,1,M,1)>
injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)
forall i in 1:M>
<delete all of FirstA>
<delete all of ColA>
<install FirstA(l)=1>
<propagate (monotonicity of IV(FirstB,1,M,1))
then (monotonicity of IV(FirstA,1,N,1))>
<propagate (monotonicity of IV(FirstB,1,M,1)
and (injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)
forall i in 1:M)
then (injectivity of IV(ColA,FirstA(i),FirstA(i+1l),1)
forall 1 in 1:N)>
V(a,1,Nz,1), IV(FirstA,1,N+1,1),
Iv(Cola,1,N,1), N, NZ),
V(B,1,Nz,1), IV(FirstB,1,M+1,1),
IV(RowB,1,M,1), M, NZ) )

<assume
<assume
<assume

MCNVTM( CSR(

CSC (

If applied to an interactive program comprehension
framework, these run-time tests correspond to prompting
the user for answering yes/no questions about the proper-
ties.

4.5 Placing run-time tests

Program points are associated with each statement or con-
cept instance, i.e. with the nodes in the control flow graph
after concept matching. In an implementation all properties
m of interest for all arrays or array sections A of interest
may be stored for any program point g in bitvectors

ASSUME;, 4(q) = 1 iff 7(A) is assumed to hold at
entry to g

DELETE, A(q) = 1, iff 7(A) may be deleted by ex-
ecution of ¢q

INSTALL, 4(q) = 1iff 7(A) is installed by execu-
tion of q. — Propagations are represented by sets

PROPAGATE;; 4(gq) containing all properties 7; of ar-
rays A; that must hold at entry to g in order to infer 7(A)
at exit of g. — Moreover, we denote by

TEST,, 4(q) whether a run-time test of property m of
array section A has been scheduled immediately before
g. When starting the placement of run-time tests, all
TEST, 4(q) are zero.

For the placement of run-time tests we compute an addi-
tional property

HOLD;,. 4(q) which tells whether 7(A) holds at entry of
q. We compute it by a standard data flow technique (see
e.g. [46]) iterating over the control flow graph G = (V| E)
of the program, using the following data flow equation:

HOLDx, 4(q) = TESTx, 4(q)
()
V. /\ (HOLD: (¢) A ~DELETE; A()

(¢':0)€E VINSTALL 4(q"))
VoA A HOLD,: 4:(q)
(¢'\q)EE (w’,A’)ePROPAGATEﬂ’A(q’)



For the data flow computation of HOLD, we initialize
all HOLD entries by 1. Since the DELETFE, INSTALL,
PROPAGATE and TEST entries are constants for each ,
A, and g, the sequence of the values of HOLD,; 4(q) during
the iterative computation is monotonically decreasing and
bounded by zero, thus the data flow computation converges.

Clearly, after all necessary run-time tests have been
placed, HOLD, 4(q) must fulfill

HOLD; 4(q) > ASSUME, 4(q) forallm, A, q

in order to ensure correctness of the speculative program
comprehension. Thus we arrive, as a very general method,
at the following simple nondeterministic algorithm for plac-
ing run-time tests:

Algorithm: placing run-time tests
(1) for all 7 and A of interest do

(2) forall gdo TEST, 4(q) = 0;

3) forever do

() initialize HOLD, 4(q') =1
for all program points ¢’

%) recompute HOLD, 4(q) for all program
points ¢ according to equation (1)

(6) if HOLD, 4(q) > ASSUME, 4(q) for all ¢
then break;

7 set TEST, 4(¢') = 1 for some suitably
chosen program point ¢’

od
od

The goal is to place the run—time tests in step (7) in such
a way that the total run-time overhead induced by them in
the speculatively parallelized program is minimized. A very
simple strategy is to place a test for w(A) immediately af-
ter each statement ¢’ killing property m of A, i.e. where
KILL, 4(¢') = 1, which is defined as follows:

KILL, 4(q') := DELETE, 4(q') A ~INSTALL A(q')

A

(n',A") EPROPAGATE 4 (q')

A~ HOLDﬂ-I’AI (ql)

Of course, this initial setting will typically introduce su-
perfluous tests. For instance, for a sequence of consecutive
killings of 7(A) it is sufficient to schedule a test for w(A)
only after the last killing program point, provided that 7 (A)
may not be assumed to hold at some point within this se-
quence. Also, a test for w(A) after program point ¢’ is su-
perfluous if 7(A) is not assumed at any point ¢” that may
be executed after ¢'. These optimizations can be carried out
in a second phase by another data flow framework.

4 Alternatively, one may as well start with a test of 7(A) being in-
serted immediately before each program point ¢ with ASSUME, 4(q) A
—~HOLD, 4(q), and then eliminating all tests in a sequence of uses of
m(A) but the first one (provided that no kill of w(A) may occur in be-
tween), which is just symmetric to the strategy described above.
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4.6 A parallel algorithm for the monotonicity
tests

Monotonicity of a vector (1 : n) is very easy to check in
parallel. Each of the p processors considers a contiguous
slice of x of size at most [n/p]. The slices are tested lo-
cally; if a processor detects non—monotonicity in its local
part, it signals a FAIL and aborts the test on all processors.
Otherwise, the values at the boundary to the next upper slice
of x are checked concurrently. The test passes if no proces-
sor detects non—monotonicity for any pair of neighboring
elements.

On a distributed memory architecture, the latter, global
phase of this algorithm requires each processor (but the first
one) to send the first element of its slice of = to the proces-
sor owning the next lower slice; thus each processor (but
the last one) receives an element and compares it with the
element at the upper boundary of its slice.

4.7 A parallel algorithm for the injectivity
tests

A parallel algorithm may reduce the overhead of the injec-
tivity test. For a shared memory parallel target machine
we apply an algorithm similar to bucket sort® to test injec-
tivity for an integer array a of n elements, as it is likely
that the elements of a are within a limited range (say,
1 : m).5 We hold a shared temporary array counter of
m counters, one for each possible value, which are (in par-
allel) initialized by zero. Each processor k, & = 1,...,p
increments” the corresponding counters for the elements
a((k—1)n/p+1: kn/p). If a processor detects a counter
value to exceed 1, it posts a FAIL signal, the test returns
FALSE. Otherwise, the test accepts. The test requires m
additional shared memory cells. Concurrent write access to
the same counter (which may sequentialize access to this lo-
cation on most shared memory systems) occurs only if the
test fails. Thus, the run time is O((m + n)/p).

On a distributed memory system, we use an existing al-
gorithm for parallel sorting of an integer array of size n on a
processor network that may be appropriately embedded into
the present hardware topology. As result, processor ¢ holds
the ith slice of the sorted array, of size n/p. Furthermore,
each processor ¢ > 0 sends the first element of its slice to
its predecessor ¢ — 1 who appends it as (n/p + 1)st element
to its local slice. Each processor now checks its extended
slice for duplicate entries. If the extended slices are injec-
tive, then so is the original array. The run time is dominated
by the parallel sorting algorithm.

5 A similar test was suggested in [38].

%m is to be chosen as a conservative overestimation of the extent of the
compressed matrix dimension which is usually not statically known.

"This should be done by an atomic fetch&increment operation such as
mpadd (& (counter[a[j]]1),1) onthe SB-PRAM, cf. [27].
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S SPARAMAT Driver Implementa-
tion

This section discusses the implementation details of
SPARAMAT.

5.1 Overview

SPARAMAT has been developed as using the Polaris For-
tran compiler [7, 18]. SPARAMAT is conceptually broken
up into two major systems, the concept recognizer and the
code generator (see Figure 4 and Figure 5).

Prior to submitting any program for matching, it is nec-
essary to configure the SPARAMAT concept recognition
driver by executing the generator program. The generator
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reads specification files describing concepts and templates
and produces C++ files containing the Trigger Graph (TG)
(see Section 5.3.1) and template matching functions. The
data structure describing the TG and template functions are
compiled and linked with the SPARAMAT concept match-
ing core routines to form the driver. The internals of the
driver are discussed in Section 5.2.

The analysis of the program begins when the control flow
graph of the specified program is passed to the driver from
the Polaris front end. The driver, upon completion of analy-
sis, passes to the optimizer the control flow graph annotated
with concept instances. The run-time tests, due to pre- and
postconditions (see Section 4.2), are optimized in a sepa-
rate pass whose theory is described in Section 2.2. The op-
timizer passes the modified control flow graph to the back
end that, in turn, uses the attached concept instances and
remaining conditions to insert run-time checks and replace
matched code with calls to parallel implementations of the
concepts.

5.2 Driver

Figure 6 shows the data that is passed between the various
subsystems of the driver.

The program control flow graph, G, is first given to the
MakeTree system. The matcher of SPARAMAT, like its
predecessor PARAMAT, operates on a syntax tree (not a
control flow graph). The MakeTree subsystem adds addi-
tional pointers to the nodes in the graph to allow tree traver-
sal. DumpTree and DumpConceptTree systems traverse the
tree graphs and output DOT files for debugging. Dump-
ConceptTree is similar to DumpTree but concept names are
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used as node labels instead of Fortran code.

The Trigger Graph (see Section 5.3.1) and templates pre-
viously linked with the matcher and are used for the match-
ing process. The matcher accepts G’ and returns G"”—the
graph G’ anointed with recognized concepts.

5.3 Matcher

Matching is the process of analyzing recursively the syntax
tree and annotating each node with a concept that summa-
rizes the node. There are two types of matching that take
place: Vertical matching and horizontal matching. The im-
plementation details of these matching strategies are dis-
cussed here. For more general information see Section 4.1.1
and Section 4.1.2.

Vertical matching takes place during a post-order traver-
sal of the syntax tree. If not all the children of the current
node are annotated, then matching for the current node im-
mediately ends. After a node is matched and annotated with
a concept instance, cross-edges are attempted at the node. It
is not necessary to attempt horizontal matching until a node
is annotated by vertical matching.

Horizontal matching is currently implemented only for
data-flow cross-edges—the most common type of cross-
edge [23]. Because of limitations in Polaris a search back-
ward from the current node to find the source of the data
flow has been implemented. The requirements on the source
of the data flow and code that is passed over are expressed in
specific sets to the search. Variables in sets inSet and outSet
define which variables are expected to be read and written
to in the beginning of the data-flow cross-edge. Variables
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SDOTVV(i=[1:10:1], j, a(1:10), b(1:10), 0)

INCR(j, [ MULT(a(i), b)) 1)

Figure 7: Syntax tree, with patterns for dot product

in the sets notInSet and notOutSet specify those variables
that must not be read or written too in the code between the
source and the end of the flow cross-edge. See Section 6 for
an example of these sets in use.

When horizontal matching succeeds the relevant infor-
mation is merged with the concept at the node where the
search started, and the corresponding other node’s concept
is saved and replaced with the EMPTY concept so the code
generator will ignore it and vertical matching can continue
at the shared parent node.

5.3.1 Trigger Concepts

For horizontal and vertical matching applying all the tem-
plate functions to a particular node is impractical and un-
necessary. Consider Figure 7: When attempting to match
the code located at the DO loop the child concept INCR per-
mits only certain template functions to match. To reduce
the number of template functions applied to a specific node
during the matching process, a discriminator, the concept
name of the left most child, is used. This discriminator is
referred to as the trigger concept.

The same pruning strategy is used for horizontal match-
ing, however the current node is consulted for the trigger
concept.

Trigger Graph

The graph consisting of all concepts and edges connecting
a concept with its trigger concept for each matching rule, is
called the Trigger Graph.

The generator builds the TG from the concept specifica-
tions and outputs code that describes the edges and nodes
of the graph. Figure 8 shows the TG subgraph for SDOTVV.
The “leaf” concepts IVAR and RVAR are concepts for in-
teger and real variables that never have child nodes in the
syntax tree, therefore an artifical trigger concept NONE is
used as the trigger concept for leaf concepts. Each edge is
labeled with name of the corresponding template function.
A dotted edge denotes a horizontal template.

Note that the TG does not represent all the concepts that
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Figure 8: Trigger Graph as far as used for matching the
SDOTVYV code.

are required for a concept to match. Rather, it shows the
concepts that have a specific relationship with an already
matched node.

Internally the TG is represented by a table indexed by the
trigger concept that yields a list of reachable concepts and
thus promising template functions.

5.4 Delayed Format Resolution

In some situations the matrix format might not be clear until
a discriminating piece of code is encountered. Until then, it
may be necessary to store a set of possible formats in the
concept instance and postpone the final identification of the
format to a later point in the matching process. To support
this, we use a special nested concept summarizing the same
matrix object in a set of different possible formats within
the same slot of the concept instance.

5.5 Descriptors

When computing cross-edges it is necessary to know if two
variables intersect. Only when the variable at the definition
point intersects with the variable at the use point, does a
FLOW cross-edge exist. Determining if scalar variables in-
tersect is straightforward—compare the identifiers (remem-
ber there are no pointers in FORTRAN, and all functions
are inlined). However, determining intersection for array
accesses is not as simple. For two array accesses to inter-
sect they must not only have matching identifiers, but they
must intersect in at least one dimension. Further complicat-
ing the task is that indices are not limited to constants; they
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can be variables, arithmetic expressions involving variables
Or even array accesses.

A descriptor is a data structure that describes the extent
of a variable. The extent of a variable is the range of mem-
ory locations that are used in the accesses. For example, an
array may have ten elements but only the elements between
two and five are accessed. A descriptor captures this in-
formation for computing the intersection with another vari-
able, also represented by a descriptor. The variable could
be a scalar or an n-dimensional array—for the purpose of
computing intersection all variables are normalized to a de-
scriptor. A descriptor contains two important pieces of data:
The identifier of the variable and an array of range objects
that describe the access limits for each dimension. If the
variable is a scalar, then only the name field inside the de-
scriptor is set. A range object contains four pieces of data:
the lower bound of the access, the upper bound of the ac-
cess, the stride, and finally a pointer to another descriptor
object. If the accessed range is a constant or a non-varying
variable, say c, then the lower bound and upper bound of
the range object is set to ¢ and the stride to 0. Otherwise
the lower bound and upper bound are set to the expressions
substituting the known maximum and minimum for that ac-
cessed range. The stride is set also. If the access is an in-
direct array access, then the descriptor pointer is set to the
computed descriptor for that array, and the ranges are set to
conservative estimates.

There are two types of intersections that are computed
using the descriptors. For the nodes that the cross-edge
spans (fill nodes, see Section 6.2), an overestimate of the
intersection is necessary to insure that the cross-edge is not
broken. However, a conservative intersection must be com-
puted on the cross-edge source node to insure that accesses
of the DEF-USE chain match. See [12] and [22] for algo-
rithms for computing the intersection.

6 CSL Specification

The necessity of a concept specification language for
SPARAMAT is obvious—generating patterns by hand is a
tedious, time consuming and error prone practice best left
to automation. A generator would solve these problems
allowing the rapid concise specification of concepts and
templates in a high-level language. The structure of this
language, called CSL (Concept Specification Language), is
discussed herein.

6.1 Requirements

To adequately specify concepts and templates certain prop-
erties are required.

6.1.1 Concept Templates

A concept is matched by templates: vertical matching tem-
plates and, depending on the concept, horizontal (cross-
edge) matching templates.



Experience gained from implementing non-trivial sparse
matrix concepts by hand, reveals there are five major com-
ponents to a concept’s vertical template function:

e Matching Conditions: The conditions that must be
met for the concept to match code at the current node.
These conditions also consider child nodes’ concept
instances.

e Where Conditions: The expressions on unmatched
nodes and the slots of concept instances need to be
tested to insure certain properties.

e Run-time Preconditions: Run-time conditions that
must be met for execution of speculatively generated
replacement code, see Section 4.2. This component
is not required for concepts that do not have a corre-
sponding library function or that require no speculative
matching.

¢ Instance Creation: The code necessary to fill the slots
of the concept.

e Run-time Postconditions: The run-time conditions
that continue to be valid after code execution, assum-
ing that the preconditions held.

The templates for cross-edges have the following major
components:

e Matching Conditions: Because the driver applies a
subset of the cross-edge template functions the condi-
tions verify the starting point of the cross-edge. Ad-
ditional constraints are necessary on the code between
the current node and the start of the data flow edge. For
ease of parsing the conditions has been broken up into
two sections in the language.

e Run-time Preconditions: Run-time preconditions
must be met for this horizontal template to match.
In general, the preconditions of the cross-edge desti-
nation node is unioned with the preconditions of the
source node of the cross-edge.

e Instance Creation: The template once matched will
require new instances for the source and the target
node of the cross-edge. The old instances are saved.

o Run-time Postconditions: Postconditions if the con-
cept matches.

6.1.2 Debugging

Debugging of a template is inevitable. All hand made
changes to the generated code will be lost upon the next in-
vocation of the generator, therefore there must be directives
in the language to instruct the generator to insert debugging
information in the generated code. The debugging directive
can be applied globally to all templates or constrained to
particular concepts, or templates.
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6.2 CSL Example

The specification of a concept is fairly straightforward.
Each component, outlined in Section 6.1.1, translates di-
rectly to a construct of the language. Like most other lan-
guages, CSL is whitespace insensitive and block structured.

New concepts are created by the keyword concept fol-
lowed by the concept name and a block:

concept VMATVECMV
{

As a running example we use matrix-vector multiplica-
tion for a MSR matrix in this section. In order to com-
pletely understand the examples that follow it is useful to
refer back to the example code for matrix vector multiplica-
tion in MSR format in Section 2 on page 4.

The first section inside the concept block is a descrip-
tion of the concept’s slots, their usage, and concept group
or type.

concept VMATVECMV
{
param (out)
param (none)
param (in)
param (in)
param (in)

Sp_b: vector;
Sp_rr: range;
Sp_mf: matrix;
Sp_v: vector;
Sp_init: vector;

For dependency analysis slots are assigned usage prop-
erties: read (in), write (out), read and write (inout) and
ignore (none). Following the parameter usage is the pa-
rameter variable. The ’$’ character identifies the variable
(e.g. $p-_b in the first slot) as a slot identifier. After the
semicolon is the slot type which is either a base type or a
concept group. The valid base types of a slot are:

e range: A range concept instance holding a loop vari-
able and bounds, for book-keeping purposes.

e vector: A V concept instance.
e ivector: An IV instance.

e xvector: A VX concept instance of an indexed vector
access.

e matrix: A concept instance for a matrix object.
e real: A CON or VAR instance.
e int: An ICON or ITVAR instance.

e operator: The concept name of a matched operator
(e.g. MUL).



If a concept has only one out slot, then that slot type
is considered the result type of the concept. If the single
out slot type is one of the base types listed above then it is
added to a set of concepts with that same return type. Other
concepts may define slots using this concept group as the
type (the concept group name is simply the base type ap-
pended with “_gp”). Hence, in the pat tern construct (see
below), usage of concept instances can be type checked—
only concepts in the proper concept group can appear in the
correspondingly typed slot.

A sequence of any number of vertical and horizontal
templates for this concept are specified within the concept
block.

The start of the vertical template block is identified
by the verticalTemplate keyword. Expressing the
matching criteria is broken up into two parts: The pat-
tern keyword identifies the section describing the con-
straints on the children’s concept instances and the code on
the current node, the where keyword identifies the section
describing the constraints on slots of the child concept in-
stances and the expressions of the current node:

concept VMATVECMV
{

// b = Av

param (out) Sp_b: vector;
param (none) S$Sp_rr: range;
param (in) Sp_mf: matrix;
param (in) Sp_v: vector;
param (in) Sp_init: vector;

// MSR format, cross-edge needed

templateVertical
{
pattern
node DO_STMT $1v=$1b:$Sub:$st
child SDOTVVX (VAR ($s) ,
RANGE ($rlv, Srlb, Srub, Srst)
V($a, $1lb, Sub, S$st),
VX (Sv,
IV(sarrl, $1bl, $ubl, $stl)),
VAR($1ii))
where

The pattern described is a DO loop with one child node
annotated by a SDOTVVX instance. In the code above, the
$1v variable binds to the loop variable and $1b: $ub: $st
variables binds the lower bound, upper bound and the stride
expressions. These bindings are used to test properties of
code or specific slots in the where section. The where
section is only evaluated if the pattern criteria match.
The concept instances of the child node can contain nested
pattern instances. This powerful feature makes it easy to
specify what concept is expected to occur inside and assign
names to the slots of that inner concept instance.

The next section of the vertical template is the where
section. This section tests the run-time static properties not
expressed by the pattern clause. The C++ code in the
where section is a boolean expression consisting of calls
to library functions to test specific properties of expressions
and slots:

where
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$s == $ii // uninitialized

&& IsLowerFIRArray (Srlb, $1lv)

&& IsUpperFIRArray (Srub, $1v)

&& IsArrayIndexedOnlyBy ($s->GetExpr (), $1v)
&& IsArrayIndexedOnlyBy ($a->GetExpr (), $rlv)

()

(

IsArray (ArrayIndex (0, S$Sv->Expr()))

ArrayIndex (0, $v->GetExpr())->arra

== S$rlb->array()

IsArrayIndexedOnlyBy (ArrayIndex (0,
Srlv)

y ()

Sv->GetExpr()),

A requirement for the VMATVECMV concept for the MSR
format is that the b vector, the result, is initialized to the
product of the diagonal elements of the matrix and the v
vector elements (see Section 2). The first clause of the ex-
pression insures that the initialization slot, $11, is set to the
value it has in the preceding code. A cross-edge will be nec-
essary to determine if b is set appropriately for this format.
A common pattern in code manipulating sparse matrices in
a format that stores the indices of the rows in a separate ar-
ray (see CSR, MSR, CSC and JAD format descriptions) is
the pair of expressions £ir (i) and fir (i+1) -1 (where
fir is the array containing the starting indices of each row,
and i is a loop variable ranging over the number of rows).
The IsLowerFIRArray and IsUpperFIRArray test
if the passed expression matches these patterns. The Is-
ArrayIndexedOnlyBy function returns true if the first
argument is an array where only one index expression is
the variable in the second argument. The IsArray func-
tion merely returns true if the passed expression is an ar-
ray. Finally the ArrayIndex returns an index specified
by the first argument of the array named in the second ar-
gument. This collection of clauses tries to prove unequivo-
cally that the DO loop is linked to the SDOTVVX instance by
specific variables and the affect of the DO loop surrounding
the SDOTVVX can only mean that these two are part of a
VMATVECMV concept occurrence. However this is incon-
clusive, it still needed to show that the result vector is prop-
erly initialized. This will be done by a horizontal template
that will be specified later.

The next section started by the key word pre specifies
the run-time conditions that must be met to be certain that
the code does indeed implement a matrix vector multipli-
cation in the MSR format. Some of these conditions are
possibly removed by the optimizer (see Figure 4); the re-
maining ones are either inserted by the back end into the
generated source code or, if an interactive back end was in-
stalled instead, cause the user to be prompted. See Section
4.2 for details.

pre
{
ForAll ($1lv, $1b, Sub,
Injectivity ($rlb->array (),
$rlb, $r->GetEnd()));
Monotonicity ($rlb, $1b, S$Sub);
}

The next section creates an instance of the concept and
sets the slots. Appropriately this section is started with the
keyword instance:



instance VMATVECMV (newVector ($s, $lv, $1b, sub, $st)
newRange ($1v, $1b, $ub, $st),
newMSR (newVector ($a, 1, Sub, 1)
newlIV($Sarrl, 1, $ub+1,1),Sub, $nz)
newVector ($v, $1v, 1, $ub, 1),
newVMAPV (NEG,
newVMAPVV (
newVector ($s, $1v, $lb, Sub, $st)
MUL, newVector($a,1l,$ub,1),
newVector ($Sarrl,1,S%ub,1))))

newRange, newVector, newV, newIV and newMSR
are predefined functions that create C++ classes that repre-
sent different slot types. The initialization slot, the last slot,
is set to be the negative of the pairwise product of the matrix
diagonal and the operand vector so that the concept can still
be matched as a vector matrix multiply except without the
diagonal.

The post section that follows is very similar to the pre
section, except that it defines the run-time conditions that
are true after the code implementing the concept has been
evaluated. In our example the post conditions are the same
as the pre conditions:

pre
{
ForAll(slv, $1lb, Sub,
Injectivity ($rlb->array(),
$rlb, $rub));

Monotonicity ($rlb, $1b, sub);
}

The concept, as currently defined, is complete. How-
ever, for thoroughness code initializing the result vector
must be sought. Referring back to the code example of
VMATVECMV in Section 2 it is clear that horizontal match-
ing is necessary to locate the initialization code.

templateHorizontal

{

pattern
sibling ($s) VMAPVV(V(S$rs, $11, sul, $sl), MUL,
v(st, $12, $u2, $s2),
V($u, $13, $u3, $s3))
fill (Sf)
node ($n) VMATVECMV (V($b, $bl, $bu, $bs) ,

RANGE ($rlv, $rlb, $rub, $rst)
MSR(V(Sa, $Salb, Saub, Sast),
IV($f,sflb, $fub, $fst)
Sub, $nz) ,
V($v, $vlb, $vub, $vs),
VMAPVV (V ($b, $bl, $bu, $bs) ,
VMAPVV (MUL,
V($a, $vlb, $vub, $vs) ,
V($v,$vlb, $vub,$vs)))

NEG,

The first section, shown above, is similar to the pat-
tern section of a vertical template. Since the nodes in-
volved in a horizontal template are all siblings, the key-
words sibling and node are needed to differentiate the
nodes of the cross-edge.

However it is possible that multiple siblings are neces-
sary in the template, therefore the sibling nodes are uniquely
labeled so they can be specifically referred to in other sec-
tions. The siblings that don’t match the concepts in the pat-
terns must also be tested to be sure they do not interfere with
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the cross-edge. These nodes are referred to as “fill” and are
labeled because there might be more than one fill node.

To better explain the horizontal template it is useful to
have example code. The following matched FORTRAN
code is based on the unmatched code in Section 2 except for
the initialization of the output vector that has been moved
outside the i loop and into its own loop. There is also some
extraneous code between the two top level loops:

VMAPVV (V(b,1,n,1),
SCOPY (j,b(n+1))
VMATVECMV (V(b,1,n,1)
RANGE(i,1,n,1),
MSR(V(a,1l, fircol(n+l)-1,1),
IV(fircol,1l,n+1,1),n,nz),
Vix,1l,n,1)
VMAPV (NEG, VMAPVV(V(b,1,n,1),
MUL, V(a,1,n,1), V(x,1,n,1))))

MUL, V(a,1l,n,1), V(x,1,n,1))

The search starts at the node labeled by node that con-
tains an instance of the concept VMATVECMYV that annotates
the DO i loop. The sibling node is obviously the VMAPVV.
The fill is therefore the SCOPY node—the only sibling lo-
cated between the nodes connected by the cross-edge. Still
to be tested are the run-time properties of the concepts at
the ends of the cross-edge and if the fill node interfers with
data flow along the cross-edge.

where ($s)
{
$b == S$rs

where ($n)
{
st == Sa

&& Su == $v

}

where ($f)

{
outSet = $b;
notInSet = $b;
notOutSet = S$b;
notOutSet += $t;
notOutSet += $u;

There where keyword is followed by a label created
in the pattern section. The labels are used to order the
evaluation of the where clauses. Here, the where clause
with the n label is evaluated immediately to insure that the
cross-edge is being considered for the correct node. Next
the where clause for the sibling (s) is evaluated, but on
the previous sibling node in the tree. Whenever the where
clause fails attempting to match the source of the cross-
edge, the node is considered fill and the where clause for
$ £ evaluated. If the node does interfere with the cross-edge,
matching fails. The evaluation of the where clauses £ and
s continues until a match is found, fill code interferes, or
previous siblings in the block are exhausted.

Before and after the instance section are normally the
pre and post conditions. The conditions for this cross-
edge can be dropped because they are exactly the same as
the conditions for the VMATVECMV concept instance previ-
ously matched for node $n.

The last section of the horizontal template, the in-
stance section, creates new instances for the source and



destination of the cross-edge. In this example, the concept
and slots remain the same except for the initialization slot of
the VMATVECMY instance which is set to VCON(0.0).
This VCON (0.0) signifies that the VMATVECMYV con-
cept is complete—the result vector is properly initialized.

instance ($£f) EMPTY()

instance ($n)

VMATVECMV ($p_b, $p_rr, $p_mf, $Sp_v, newVCON(0.0,n))

7 Related work

Several automatic concept comprehension techniques have
been developed over the last years. These approaches vary
considerably in their application domain, purpose, method,
and status of implementation.

General concept recognition techniques for scientific
codes have been contributed by Snyder [44], Pinter and Pin-
ter [35], Paul and Prakash [34], diMartino [30] and KeBler
[24]. Some work focuses on recognition of induction vari-
ables and reductions [1, 36, 19] and on linear recurrences
[11, 39]. General techniques designed mainly for non—
numerical codes have been proposed by Wills et al. [40]
and Ning et al. [21, 28].

Concept recognition has been applied in some commer-
cial systems, e.g. EAVE [9] for automatic vectorization, or
CMAX [42] and a project at Convex [31] for automatic par-
allelization. Furthermore there are several academic appli-
cations [24, 30] and proposals for application [10, 3] of con-
cept recognition for automatic parallelization. Today, most
commercial compilers for high—performance computers are
able to perform at least simple reduction recognition auto-
matically.

A more detailed survey of these approaches and projects
can be found e.g. in [24] or [16].

Our former PARAMAT project (1992-94) [24] kept its
focus on dense matrix computations only, because of their
static analyzability. The same decision was also made by
other researchers [35, 30, 31, 3] and companies [42] inves-
tigating general concept recognition with the goal of auto-
matic parallelization. According to our knowledge, there is
currently no other framework that is actually able to recog-
nize sparse matrix computations in the sense given in this

paper.

8 Conclusion and future work

We have described a framework for applying program com-
prehension techniques to sparse matrix computations and
its implementation. We see that it is possible to perform
speculative program comprehension even where static anal-
ysis does not provide sufficient information; in these cases
the static tests on the syntactic properties (pattern matching)
and consistency of the organizational variables are comple-
mented by user prompting or run-time tests whose place-
ment in the code can be optimized by a static data flow
framework.
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If applied to parallel code generation, speculatively
matched program parts may be optimistically replaced by
suitable parallel library routine calls, together with the nec-
essary (parallel) run-time tests. Only if the tests are passed,
parallel execution may continue with the optimized parallel
sparse matrix library routine. Otherwise, it must fall back
to a conservative code variant.

Our automatic program comprehension techniques for
sparse matrix codes can also be used in a non—parallel
environment, e.g. for program flow analysis, for program
maintenance, debugging support, and for more freedom of
choice for a suitable data structure for sparse matrices.

Current work on the SPARAMAT implementation fo-
cuses on CSL and the generator. Once operational, we will
implement the complete list of concepts given in Section 3
with the most important templates.
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A Example code

As an example, consider the following Fortran implementation of a Hopfield neural network simulation based on a sparse
matrix describing the synapse interconnections of the neurons.

program main

integer wfirst(21), wcol(20), i, j, k, n, nz

real wdata(100), xst(20), stimul(20), val(20),
real alpha, beta, tinv, mexp, pexp, accum, tanhval

c read test matrix in csr format:
wifirst(1l)=1
read(*,*) n

do i =1, n
read(*,*) k
wiirst (i+1) = wfirst(i)+k
do j = wfirst(i),wfirst(i+1)-1

read(*,*) wdata(j)
read(*,*) wcol(3J)
enddo
enddo
nz = wfirst(n+1l)-1

c simulate a hopfield network (learning online)
¢ with interconnection matrix (wdata,wcol,wfirst):
niter=100
alpha=0.2
beta=0.7
tinv=1.0
do i =1, n
stimul (i) = -1.0
xst(i) = 0.0
enddo
do k = 1, niter
do i =1, n
accum = 0.0
do j = wfirst(i), wfirst(i+1l)-1
accum = accum + wdata(j)*xst(wcol (7))
enddo
val (i) = beta*accum + alpha*stimul (i)
enddo
do i =1, n
pexp = exp(val (i)
mexp = exp(-val (i)
tanhval = (pexp-mexp) / (pexp+mexp)
xst (i) = tanhval
enddo
doi=1, n
do j = wfirst (i), wfirst(i+l)-1
wdata (j)=wdata (j)+tinv* (xst (i) *xst (wcol(j)))
enddo
enddo
tinv = tinv * 0.9
enddo
doi=1, n
write (*,*) xst(i)
enddo
end

After applying concept matching and optimizing the format property conditions, the unparsed program looks as follows:

program main

integer wfirst(21), wcol(20), k, n, nz
real wdata(100), xst(20), stimul(20), val(20), tinv
real mexp (20), pexp(20), accum(20)

MREAD( CSR(V(wdata,l,nz,1),IV(wfirst,1l,n+1,1)
IV(col,1,n,1),n,nz, stdin, _simplehb) )

<assume monotonicity of wfirst(l:n+1)>
<assume injectivity of wcol (wfirst (i) :wfirst(i+l)) forall i in 1l:n>

SINIT(tinv,1.0)
VINIT( V(stimul,1l,n,1), -1.0)
VINIT( V(xst,1,n,1), 0.0)
do k =1, 100
VMATVECMV ( V(accum,1l,n,1)
CSR( V(wdata,l,nz,1),IV(wfirst,1l,n+1,1), IV(col,1,n,1),n,nz),
V(xst,1,n,1), VCON(0.0,n)
VMAPVV( V(val,1l,n,1), ADD, VMAPVS(MUL, V(accum,1l,n,1), 0.7)
VMAPVS (MUL, V(stimul,l,n,1), 0.2))
VMAPV( V(pexp,1l,n,1), EXP, V(val,l,n,1)
VMAPV( V(mexp,1l,n,1), EXP, VMAPV(NEG, V(val,1l,n,1)))
VMAPVV( V(xst,1,n,1), DIV,

VMAPVV (ADD, V(pexp,l,n,1 VMAPV (NEG, V(mexp,1l,n,1))),

)
VMAPVV (ADD, V(pexp,l,n,1l), V(mexp,1l,n,1)))
MOUTERVV( CSR( V(wdata,l,nz,1),IV(wfirst,1,n+1,1), IV(col,1,n,1),n,nz)
VMAPVS ( MUL, V(xst,1l,n,1), tinv ), V(xst,1l,n,1)

SCAL (tinv, 0.9)
enddo
VWRITE( V(xst,1l,n,1), stdout
end
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B CSL Grammar

The grammar below is based on Damian Conway’s excellent RecDescent Perl module [14] that builds recursive descent
parsers from grammar. Here is a legend to help understand the grammar (for an excellent treatment of RecDescent see man
page Parse: :RecDescent (1)):

rule(?) = Match one-or-zero times

rule(s) Match one-or-more times

rule(s?) Match zero-or-more times

extract_bracketed (text, end) = extract a token from the string in text
between the second argument and its matching character.

start: (debug | concept) (s)
concept: ‘concept’ concept_name concept_type(?)
'{’ slotdecl(s?) vertical(s?) horizontal(s?) '}’
concept_type: ':’ slotbasetype
slotdecl: slotkeywd ’ (' data_direction ')’ sid ’:’ slottype ’;’
slotkeywd: ‘param’ \ 'slot’ # slot or param both are OK
data_direction: ‘in’ | ‘out’ | ‘inout’ | ’‘none’
slotbasetype: ‘range’ | ‘vector’ | 'matrix’ | ’‘realconst’ | ’‘integer’
| "concept’ | ’‘xvector’| ‘intconst’ | ‘real’
| "symtabentry’
slottype: concept_gp | slotbasetype
concept_gp: /la-zA-Z]+\_gp/
vertical: ‘templateVertical’ '{' v_pattern v_where(?)
pre_conditions(?) v_instance post_conditions(?) '}’
horizontal: ‘templateHorizontal’ ‘{’ h_pattern h_where(s)
pre_conditions(?) h_instance post_conditions(?) '}’
id: /la-zA-Z_]1\w*/
v_pattern: ‘pattern’ v_node child(s?)
v_where: ‘where’ code
pre_conditions: ‘pre’ code
v_instance: ‘instance’ concept_name
{ ::extract_bracketed(Stext, ’)’); }
h_instance: ‘instance’ nid concept_name
{ ::extract_bracketed(Stext, ’)’); }
post_conditions: ’‘post’ code
h_pattern: ‘pattern’ sibling and_fill(s?) h_node

sibling_and_fill(s?)
sibling_and_fill: sibling f£ill

h_where: ‘where’ nid code
v_node: ‘node’ code_pattern
child: ‘child’ concept_pattern
code: { ::extract_bracketed($text, "}’); } # remove start/end
cond_stmt: 'ForAll’ ' (' forall_args ')’ ';' |
'‘Monontonicity’ ’(’ monon_args ')’ ;'
forall_args: sid ’,’ cond_expr ’,’ cond_expr ’,’
cond_expr
monon_args: sid ’',’ cond_expr ’,’ cond_expr
cond_expr: cond_term \ ‘Injectivity’ ‘(' inject_args ')’
cond_term: sid 11 | sid 11 | cond_array 11 | cond_num 11
11: cond_arith_op cond_term \ # empty
cond_array: sid ‘[’ cond_expr ‘]’ | sid '[’ cond_expr ']’
cond_num: /[0-9]1+/
inject_args: cond_expr ',’ cond_expr ’',’ cond_expr
cond_arith_op: S A A A A
sibling: 'sibling’ nid concept_pattern
fill: r£i11” nid
h_node: 'node’ nid concept_pattern
nid: (' sid ") # node id
code_pattern: stmt_pattern \ expr_pattern
concept_pattern: concept_name ' (’ sid_list(?) ')’ | sid
sid: 'sr o id # slot id
stmt_pattern: do_stmt | assign_stmt | if_stmt
expr_pattern: number_expr | var_expr | arith_expr | comma_expr
concept_name: /[A-2][A-20-9]1+/ # action: verify id against concept list
sid_list: sid_or_concept ’,’ sid_list | sid_or_concept
sid_or_concept: sid | concept_pattern
do_stmt: 'DO_STMT’ sid '=’ sid ’:’ sid ':’ sid
assign_stmt: "ASSIGN_STMT’ concept_pattern ‘=’ concept_pattern
if_stmt: 'IF_STMT' sid
number_expr: int_number | real_number
var_expr: scalar_var | array_var
arith_expr: "ADD_OP’ | 'MULT_OP’
comma_expr: 'COMMA_OP’
int_number: ' INTEGER_CONSTANT OP’ sid
real_number: 'REAL_CONSTANT_ OP’ sid
scalar_var: ID_OP’ sid
array_var: "ARRAY_REF_OP’
debug: '#DEBUG’ debug_arg
debug_arg: 'OUTPUT_ON’ |

'OUTPUT_OFF’
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