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Abstract

We consider the NP�complete problem of generating contiguous evaluations for expression

DAGs with a minimal number of registers� We present two algorithms that generate optimal

contiguous evaluation for a given DAG� The �rst is a modi�cation of a complete search algorithm

that omits the generation of redundant evaluations� The second algorithm generates only the

most promising evaluations by splitting the DAG into trees with import and export nodes and

evaluating the trees with a modi�ed labeling scheme� Experiments with randomly generated

DAGs and large DAGs from real application programs con�rm that the new algorithms generate

optimal contiguous evaluations quite fast�

Key words� program optimization� basic block� expression DAG� contiguous evaluation� register

allocation� code generation

� Introduction

Register allocation is one of the most important problems in compiler optimization� Using fewer

registers is important if the target machine has not enough registers to evaluate an expression without

storing intermediate results in the main memory �spilling�� This is especially important for vector

processors that are often used in parallel computers� Vector processors usually have a small number
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of vector registers �e�g�� the cray vector computers have � vector register of �� � �� bit� or a register

�le that can be partitioned into a number of vector registers of a certain length �e�g�� the vector

acceleration units of the CM	 have register �les of length �
� � �
 bit that can be partitioned into

�� 
� � or � vector registers� see ���� A vector operation is evaluated by splitting it into stripes that

have the length of the vector registers and computing the stripes one after another� If the register �le

is partitioned into a small number of vector registers� each of these can hold more elements and the

vector operation to be evaluated is split into fewer stripes� This saves initialization costs and results

in a faster computation �
�

Scienti�c programs often contain large basic blocks� Large basic blocks can also result from the

application of compiler techniques like loop unrolling �� and trace scheduling ��� Therefore� it is

important to derive register allocation techniques that cope with large basic blocks �	�

Among the numerous register allocation schemes� register allocation and spilling via graph coloring

��� � is generally accepted to yield good results� But register allocation via graph coloring uses a

�xed evaluation order within a given basic block B� This is the evaluation order speci�ed in the input

program� Often there exists an evaluation order for B that allows to use fewer registers� By using

this order� the global register allocation generated via graph coloring could be improved�

The reordering of the operations within a basic block can be arranged by representing the basic block

by a number of directed acyclic graphs �DAGs�� An algorithm to build the DAGs for a given basic

block can be found in ��� A basic block is evaluated by evaluating the corresponding DAGs� For the

evaluation of a DAG G the following results are known�

��� If G is a tree� the algorithm of Sethi and Ullman �� generates an optimal evaluation in linear

time� �In this paper� optimal always means� uses as few registers as possible� Recomputations

are not allowed��

�
� The problem of generating an optimal evaluation for G is NP�complete� if G is not restricted

����

In this paper� we restrict the attention to contiguous evaluations� Experiments with randomly gener�

ated DAGs and with DAGs that are derived from real programs show that for nearly all DAGs� there

exist a contiguous evaluation that is optimal� This leads to an algorithm that computes an optimal

contiguous evaluation for a given DAG in time O�n � 
d� where d is the number of decision nodes ����

Decision nodes are binary nodes on paths from the root of the DAG to a node with more than one

father�

This paper improves this simple O�n �
d� algorithm that performs a rather ine�cient complete search�

by identifying and eliminating redundant evaluations� It also presents a new algorithm that splits

the given DAG into a number of trees with import and export nodes and evaluates the trees with a

modi�ed labeling scheme� Import and export nodes constitute the connection between the generated

trees� when evaluating the tree� export nodes are nodes that remain into registers because they are

used later by neighboring trees� On the other hand� import nodes need not to be loaded into a

register because they have been left there by the evaluation of a neighboring tree� To �nd an optimal






contiguous evaluation� the new algorithm considers all possibilities to split the given DAG into trees

and selects the splitting that uses the fewest registers� Experiments with DAGs from real applications

show that the number of generated evaluations is quite small even for large DAGs� Therefore� the

running time of the algorithm remains reasonable�

After giving some basic de�nitions in Section 
� we describe in Section � how the running time of the

algorithm from ��� can be reduced by generating each evaluation only once� In Section �� we show

how the running time can be further reduced by splitting the DAG in several trees with import and

export nodes and applying a modi�ed labeling scheme to the trees� Section 	 describes the splitting

procedure� Section � presents the modi�ed labeling scheme for trees with import and export nodes

and proves that the generated evaluations are optimal� Section � shows the experimental results that

con�rm that the described method can be used in practice to generate optimal contiguous evaluations

even for large DAGs�

� Evaluating DAGs

��� Expression DAGs

We assume that we are generating code for a single processor machine with general�purpose regis�

ters R � fR�� R�� R�� � � �g and a countable sequence of memory locations� The arithmetic machine

operations are three�address instructions of the following types�

Rk � Ri op Rj binary operation� op � f������ � � �g�

Rk � op Ri unary operation�

Rk � Load�a� load register k with the value in memory location a

Store�a� � Rk store the value in register k into memory location a�

In the following� we assume i �� j �� k �� i� for Rk� Ri� Rj � R to facilitate the description� Note that

the following considerations are also applicable� if k � i or k � j�

Each input program can be partitioned into a number of basic blocks�

A directed graph is a pair G � �V�E�� where V is a �nite set of nodes and E � V �V is a set of edges�

In the following� n � jV j always stands for the number of nodes in the graph� A node w is called

operand or son of a node v� if �w� v� � E� v is called result or father of w� i�e�� the edge is directed

from the son to the father� A node with no father is called a root of G� A node which has no sons is

a leaf� otherwise it is an inner node� We call a node with two sons binary and a node with only one

son unary� In the following� we suppose for simplicity that the DAGs contain only unary and binary

inner nodes�

The outdegree outdeg�w� is the number of edges leaving w� i�e�� the number of its fathers�

The data dependencies in a basic block can be described by a directed acyclic graph �DAG�� The leaves

of the DAG are the variables and constants occurring as operands in the basic block� the inner nodes

represent intermediate results� An example is given in Figure ��
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Figure �� Example� The expression ��a�� ���a� b�� �b� c�� can be represented by the tree T shown above�

The tree can be evaluated by the labeling algorithm of Sethi�Ullman with � registers as shown to the right� �The

labels are printed at the right�hand side of the nodes�� By eliminating common subexpressions� a DAG G can be

constructed� Evaluating G in the original order results in an evaluation A� that reduces the number of instructions

and hence the computation time of the basic block� but uses � instead of � registers� By reordering A� as shown

to the right� we get an evaluation that needs only � registers�

De�nition � �subDAG� Let G � �V�E� be a DAG� A DAG S � �V �� E�� is called subDAG of G� if

V � � V and E� � E��V ��V ��� A subDAG S � �V �� E�� of G � �V�E� with root w is called complete�

if�

V � � fv � V � � path from v to w g and

E� � fe � E � e is an edge on a path from a node v � V � to w g�

��� DAG Evaluations

We now consider the evaluation of DAGs� Let G � �V�E� be a directed graph with n nodes� A

mapping ord� V 	 f�� 
� � � � � ng with


�w� v� � E � ord�w� � ord�v�

is called a topologic order of the nodes of G� It is well�known that for a directed graph G a topological

order exists i� G is acyclic �e� g�� ��
��

De�nition � �evaluation of a DAG� An evaluation A of a DAG G is a permutation of the nodes in

V such that for all nodes v � V the following holds� If v is an inner node with sons v�� � � � � vk� then

v occurs in A behind vi� i � �� ���� k�

This implies that the evaluation A is complete and contains no recomputations� i� e�� each node of the

DAG appears exactly once in A� Moreover� the evaluation is consistent� because no node is evaluated

�



before all of its sons are evaluated� Thus� each topological order of G represents an evaluation� and

vice versa�

De�nition � �contiguous evaluation� An evaluation A �represented by the topological order ord� of

a DAG G � �V�E� is called contiguous� if for each node v � V with children v� and v� the following

is true� if wi is a predecessor of vi� i � �� 
� and ord�v�� � ord�v��� then ord�w�� � ord�w���

A contiguous evaluation of a node v �rst evaluates the complete subDAG with one of the children of

v as root before evaluating any part of the remaining subDAG with root v�

While general evaluations can be generated by variants of topological�sort�� contiguous evaluations are

generated by variants of depth��rst search �dfs�� From now on� we restrict our attention to contiguous

evaluations to reduce the number of generated evaluations� By doing so� we may not always get the

evaluation with the least register need� There are some DAGs for which a general evaluation exists

that uses fewer registers than every contiguous evaluation� However� these DAGs are usually quite

large and do very rarely occur in real programs� The smallest DAG of this kind that we could construct

so far has �� nodes and is given in Figure 
� Note that for larger DAGs� it is quite di�cult to decide

whether there exists a general evaluation that uses fewer registers than every contiguous evaluation�

This is because of the enormous running time of the algorithms that generate general evaluations�
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Figure 
� For this DAG� the noncontiguous evaluation

�a� b� c� d� e� �� f� g� �� h� 	� �� �� 
� uses � registers� There

is no contiguous evaluation that uses fewer than � registers�

To use � registers� a contiguous evaluation would have to

evaluate the subDAG with root � �rst� A contiguous eval

uation could do this only by �rst evaluating the left son of

node 
� then the right son of node � and then the left son

of node �� In order this evaluation to be contiguous� nodes

h and 	 must be evaluated after � and thus� the values of

nodes 	 and � must be held in two registers� But in order

to evaluate nodes f� g and �� three more registers would be

required� Thus� the contiguous evaluation would use at least

�ve registers altogether�

De�nition � �register allocation� register need� optimal evaluation� �cf� ��	
� Let num � R 	

f�� �� 
 � � �g� num�Ri� � i be a function that assigns a number to each register� A mapping reg �

V 	 R is called a �consistent� register allocation for A� if for all nodes u� v� w � V the following

holds� If u is a son of w� and v appears in A between u and w� then reg�u� �� reg�v��

m�A� � min
reg is reg� alloc� for A

f max
v appears in A

fnum�reg�v�� � �gg ���

�See ���� for a summary on topological sorting�

	



is called the register need of the evaluation A� An evaluation A for a DAG G is called optimal if for

all evaluations A� of G holds m�A�� � m�A��

Sethi proved in ���	 ��� that the problem of computing an optimal evaluation for a given DAG is

NP�complete� Assuming P �� NP� we expect an optimal algorithm to require nonpolynomial time�

� Counting Evaluations

In ���� we give the following de�nitions and prove the following lemmata�

De�nition � �tree node�

��� Each leaf is a tree node�

��� An inner node is a tree node i� all its sons are tree nodes and none of them has outdegree � ��

De�nition � �label�

��� For every leaf v� label�v� � ��

��� For a unary node v� label�v� � maxflabel�son�v��� 
g�

�� For a binary node v� label�v� � maxf�� maxflabel�lson�v��� label�rson�v��g� qg

where q � �� if label�lson�v�� � label�rson�v��� and � otherwise�

Let new reg�� be a function that returns an available register and marks it to be busy� Let regfree�reg�

be a function that marks the register reg to be free again� A possible implementation is given in

Section �� The Labeling�algorithm labelfs of Sethi and Ullman �see ��� generates optimal evaluations

for a tree with labels by �rst evaluating the son with the greater label value for each binary node�

��� function labelfs�node v�

�� generates an optimal evaluation for the subtree with root v ��

�
� if v is not a leaf

��� then if label�lson�v�� � label�rson�v��

��� then labelfs�lson�v��� labelfs�rson�v��

�	� else labelfs�rson�v��� labelfs�lson�v��

�

�

��� reg�v� � new reg��� print�v� reg�v���

��� if v is not a leaf then regfree�reg�lson�v���� regfree�reg�rson�v��� �

end labelfs�

�
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Figure �� A DAG with n�� decision

nodes�

De�nition � �decision node� A decision node is a binary node which is not a tree node�

Thus� all binary nodes that have at least one predecessor with more than one father are decision

nodes� In a tree� there are no decision nodes� For a general DAG let d be the number of decision

nodes and b be the number of binary tree nodes� Then k � b� d is the number of binary nodes of

the DAG� A DAG may have up to d � n� 
 decision nodes� see Figure ��

Lemma � For a tree T with one root and b binary nodes� there exist exactly 
b di�erent contiguous

evaluations�

Lemma � For a DAG with one root and k binary nodes� there exist at most 
k di�erent contiguous

evaluations�

Lemma � Let G be a DAG with d decision nodes and b binary tree nodes which form t �disjoint�

subtrees T�� � � � � Tt� Let bi be the number of binary tree nodes in Ti� i � � � � � t� with
Pt

i�� bi � b�

Then the following is true� If we �x an evaluation Ai for Ti� then there remain at most 
d di�erent

contiguous evaluations for G�

Corollary � If we evaluate all the tree nodes in a DAG G with d decision nodes by labelfs��� there

remain at most 
d di�erent contiguous evaluations for G�

The following simple algorithm performs a complete search to create all 
d contiguous evaluations for

G� provided that a �xed contiguous evaluation for the tree nodes of G is used�

��� algorithm complete search

�
� Let v�� � � � � vd be the decision nodes of a DAG G� and

��� let � � ���� � � � � �d� � f�� �gd be a bitvector�

��� forall 
d di�erent � � f�� �gd do

�	� start dfs�root� with each �� such that for � � i � d

��� if �i � � in the call dfs�vi��

��� then the left son of vi is evaluated �rst

��� else the right son of vi is evaluated �rst �

��� od

end complete search�

�
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Figure �� Example DAG�

This algorithm has exponential running time� since a DAG with n nodes can have up to d � n � 


decision nodes� see Figure �� The running time of the algorithm can be reduced by exploiting the

following observation �consider the example DAG in Figure ��� Assume that the algorithm to generate

a contiguous evaluation decides to evaluate the left son f of the root h �rst �i�e�� the decision bit of h

is set to zero�� Then node e appears in the evaluation before g� since e is in the subDAG of f � but g is

not� Therefore� there is no real decision necessary when node g is evaluated� because the son e of g is

already evaluated� But because g is a decision node� the algorithm generates bitvectors containing �s

and �s for the decision bit of g� although bitvectors that only di�er in the decision bit for g describe

the same evaluation�

We say that g is excluded from the decision by setting the decision bit of h to �� because the son e

�and c� are already evaluated when the evaluation of g starts� We call the decision bit of g redundant

and mark it by an asterisk ���

The following algorithm computes only those bitvectors that yield di�erent evaluations� We suppose

again that tree nodes are evaluated by the labeling algorithm labelfs�

Let v�� � � � � vd be the decision nodes in reverse topological order �i�e�� the root comes �rst�

We call the following function descend��� �� where � is a bitvector that contains d ��s�

��� function descend � bitvector �� int pos �

�
� while �pos �  and pos � d do pos� pos� � od

��� if pos � d

��� then if �pos � 

�	� then print � �� new evaluation found ��

��� else �� �pos is empty� ��

��a� �d � �� print �� �� new evaluation found ��

��b� �d � �� print �� �� new evaluation found ��

��� �

��� else �pos � ��

���� mark exclusions of nodes vj � j � fpos� �� ���� dg through lson�vpos� by �j � �

���� descend� �� pos� ���

��
� �pos � ��

���� mark exclusions of nodes vj � j � fpos� �� ���� dg through rson�vpos� by �j � �

���� descend� �� pos� ���

�



decision nodes v�� v�� � � � � v�� h f g d e

start at the root� preset �rst bit� 	 

propagate bits and asterisks to next stage� � 	  

all bits set� �rst evaluation found� � �  	  A�

� �  �  A�

�backtrack�� � �  

� �   	 A�

� �   � A�

�backtrack�� �  

�  	 

�  �  	 A�

�  �  � A�

�backtrack�� �  �   A�

Table �� For the example DAG of Figure �� the algorithm descend executes the above evaluation steps� Only �

instead of �� 	 
� contiguous evaluations are generated�

�

end descend�

Table � shows the application of descend to the example DAG of Figure ��

Lemma � For a DAG G without unary nodes� the algorithm descend generates at most 
d�� di�erent

contiguous evaluations�

Proof� If there are only binary inner nodes� there must exist a DAG node v that has at least two di�erent

fathers w� and w�� Suppose w� is evaluated �rst� Then the decision bit of w� is redundant and is set to �� �

Let N be the number of di�erent contiguous evaluations returned by the algorithm descend� We have

N � � for the example DAG of Figure �� We call de� � logN the e�ective number of decision nodes

of G� It is de� � d� � because of Lemma � and Lemma ��

Furthermore� we can show the following lower bound�

Lemma � de� � min
P path from the root to some leaf

�decision nodes on P

Proof� There must be at least as many bits set to  or � in each �nal bitvector as there are decision nodes on

an arbitrary path from some leaf to the root� because no exclusion is possible on the path to the node being

evaluated �rst� The bitvector describing the path with the smallest number of decision nodes is enumerated

by the algorithm� so the lower bound follows� �

�
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Figure 	� The example DAG is split in three steps by setting �� 	 � �� 	 � �� 	 � The edges between the

generated subtrees are shown as dotted lines�

In the example above� the lower bound for de� is 
� since the path with the least number of decision

nodes is �h� g� c� which has two decision nodes�

This lower bound may be used to get a lower bound �
de�� for the run time of the algorithm descend�

� Reducing the Number of Evaluations

We now construct an algorithm that reduces the number of generated evaluations further� The

reduction is based on the following observation� Let v be a decision node with two children v� and v��

Let G�v� � �V �v�� E�v�� be a DAG with root v� G�vi� the complete subDAG with root vi� i � �� 
�

By deciding to evaluate v� before v�� we decide to evaluate all nodes of G�v�� before the nodes in

Grest � �Vrest� Erest� with Vrest � V �v��V �v��� Erest � E�v�� �Vrest �Vrest�� Let e � �u�w� � E�v�

be an edge with u � V �v��� w � Vrest� The function descend marks w with a � This can be considered

as eliminating e� at decision node w� we do not have the choice to evaluate the son u �rst� because u

has already been evaluated and will be held in a register until w is evaluated� Therefore� descend can

be considered as splitting the DAG G into smaller subDAGs� We will see later that these subDAGs

are trees after the splitting has been completed� The root of each of these trees is a decision node��

The trees are evaluated in reverse of the order in which they are generated� For the example DAG of

Figure �� there are � possible ways of carrying out the splitting� The splitting steps that correspond

to evaluation A� from Table � are shown in Figure 	�

If we look at the subDAGs that are generated during the splitting operation� we observe that even

some of the intermediate subDAGs are trees which could be evaluated without a further splitting�

E�g�� after the second splitting step ��� � �� in Figure 	� there is a subtree with nodes a� b� d which

does not need to be split further� because an optimal contiguous evaluation for the subtree can be

found by a variant of labelfs�� By stopping the splitting operations in these cases� the number of

generated evaluations can be reduced from � to � for the example DAG�

Depending on the structure of the DAG� the number of generated evaluations may be reduced dramat�

ically when splitting the DAG into trees� An example is given in Figure �� To evaluate the generated

trees we need a modi�ed labeling algorithm that is able to cope with the fact that some nodes of

�As we will see later� the root of the last generated tree is not a decision node�

��



r
�

��r
����r r

����r r
����r r

����r r
����r r

����r r
��r
XXXXXXXXXXr

����r r

Figure �� The DAG to the left has � decision nodes� When

using the function descend� only one node gets an asterisk�

i�e� �� evaluations are generated� When using the labeling

version� only � evaluations are generated� the �rst one eval

uates the left son of the root �rst� the second one evaluates

the right son �rst�
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Figure �� The example DAG is split into 	 subtrees by

setting �� 	 � �� 	 � �� 	 � The newly introduced

import nodes are marked with a circle� They are all non�

permanent�

the trees must be held in a register until the last reference from any other tree is resolved� Such an

algorithm is given in Section �� Before applying the new labeling algorithm� we explicitly split the

DAG in subtrees T� � �V�� E��� � � � � Tk � �Vk� Ek�� We suppose that these subtrees must be evaluated

in this order� The splitting procedure is described in detail in the next section� After the splitting�

we introduce additional import nodes which establish the communication between the trees� The

resulting trees to the second DAG in Figure 	 are given in Figure ��

We present the labeling algorithm in Section � with the notion of import and export nodes� An export

node of a tree Ti is a node which has to be left in a register because another tree Tj�j � i� has a

reference to v� i�e�� Tj has an import node which corresponds to v� An import node of Ti is a leaf which

is already in a register R because another tree Tj�j � i� that has been evaluated earlier has left the

corresponding export node in R� Therefore� an import node need not to be loaded in a register and

does not appear again in the evaluation� For each import node� there exists a corresponding export

node� Two import nodes v� �� v� may have the same corresponding export node�

We distinguish two types of import nodes�

� A permanent input node v can be evaluated without being loaded in a register� v cannot be

removed from the register after the father of v is evaluated� because there is another import

node of Ti or of another tree Tj that has the same corresponding export node as v and that has

not been evaluated yet�

� A non�permanent input node v can also be evaluated without being loaded into a register� But

the register that contains v can be freed after the father of v has been evaluated� because all

��



other import nodes that have the same corresponding export node as v are already evaluated��

Let the DAG nodes be V � V� � � � � � Vk � We describe the import and export nodes by the following

characteristic functions�

exp � V 	 f�� �g with exp�v� �

��
�

� if v is an export node

� otherwise

impp � V 	 f�� �g with impp�v� �

��
�

� if v is a permanent import node

� otherwise

impnp � V 	 f�� �g with impnp�v� �

��
�

� if v is a non�permanent import node

� otherwise

corr � V 	 V with corr�v� � u� if u is the corresponding export node to v

The de�nition of import and export nodes implies

exp�v� � impp�v� � impnp�v� � � for each v � Vi

� Splitting the DAG into subtrees

We now describe how the DAGs are split into subtrees and how the import and export nodes are

determined� We derive a recursive procedure descend� that is a modi�cation of descend� descend�

generates a number of evaluations for a given DAG G by splitting G into subtrees and evaluating

the subtrees with a modi�ed labeling scheme� Among the generated evaluations are all optimal

evaluations� We �rst describe how the splitting is executed�

Let d be the number of decision nodes� The given DAG is split into at most d subtrees to generate an

evaluation� After each split operation� export nodes are determined and corresponding import nodes

are introduced as follows� Let v � vpos be a decision node with children v� and v� and let G�v�� G�v��

and Grest be de�ned as in the previous section� We consider the case that v� is evaluated before v�

��pos � ��� Let u � V �v�� be a node for which an edge �u�w� � E�v� with w � Vrest exists� Then u is

an export node in G�v��� A new import node u� is added to Grest by setting Vrest � Vrest � fu�g and

Erest � Erest � f�u�� w�g� u� is the corresponding import node to u� If u has already been marked in

G�v�� as export node� then u� is a permanent import node� because there is another reference to u

�from another tree� that is evaluated later� Otherwise� u� is a non�permanent import node� If there

are other edges ei � �u�wi� � E�v� with i � �� � � � � k and wi � Vrest� then new edges e�i � �u�� wi� are

added to Erest� If k � �� Grest is not a tree and will be split later on�

A di�culty arises if u � v� is a leaf in G�v� and there is a node w �� v in Vrest with e � �v�� w� � E�v��

see Figure �� Then G�v�� � �fv�g� ��� w is a decision node that gets a � v is a decision node for

�This partitioning of the import nodes is well dened� since the order of the Ti is xed�

�
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Figure �� v has two children v� and

v�� v� is a leaf� w is a predecessor of

v��

which the decision has been chosen� If Grest contains no other decision node except v and w� we have

the situation that Grest is not split further� but is still a DAG after e� � �u�� w� and e�� � �u�� v� are

added to Erest� We solve the problem by introducing another node u�� �� u� by setting

Vrest � Vrest � fu
�� u��g and Erest � Erest � f�u

�� v�� �u��� w�g

The corresponding export node to u�� is u in G�v��� So v� in G�v�� is the corresponding export node

to two import nodes in Grest� u
�� is a permanent import node� because the value of the corresponding

export node is still needed to evaluate v� If u � v� has not been marked as export node before� then u
�

is a non�permanent import node� because the register containing u can be freed after v is evaluated�

One splitting step is executed by the following function split dag�

��



��� function split dag�node v� v�� v�� dag G � �V�E�� � dag�

�� v is a decision node with children v� and v� ��

�
� u� � new node���

��� V � V � fu�g�E � E � f�u�� v�g�

��� if exp�v�� �� � then impnp�u�� � � else impp�u�� � �� ��

�	� exp�v�� � �� corr�u�� � v��

��� delete �v�� v� from E�

��� for each edge e � �v�� w� � E do

��� u� � new node���

��� V � V � fu�g�E � E � f�u�� w�g�

���� impp�u�� � �� corr�u�� � v��

���� delete e from E�

��
� od�

���� Let G�v� � �V �v�� E�v�� be the subDAG of G with root v�

let G�v�� � �V �v��� E�v��� be the subDAG of G with root v�

build Grest � �Vrest� Erest� with Vrest � V �v�� V �v��� Erest � E�v� � �Vrest � Vrest��

���� for each u � V �v�� do

��	� if �w�� � � � � wn � Vrest with �u�wi� � E�v�

���� then u� � new node���

���� V � V � fu�g�E � E � f�u�� wi�� � � i � ng�

���� if exp�u� �� � then impnp�u�� � � else impp�u�� � �� �

���� exp�u� � �� corr�u�� � u�

�
�� delete �u�wi� from E� � � i � n�

�
�� ��

�

� od�

�
�� Let Gret be the subDAG of G with root v�

�
�� return Gret�

�
	� end split dag�
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new node is a function that returns a new node x and sets exp�x�� impp�x� and impnp�x� to �� split dag

is called by the recursive procedure descend� that visits the decision nodes in reverse topological order

�in the same way as descend�� For each decision node v with children v� and v�� descend� executes

two possible split operations by using the complete subDAGs with roots v� and v�� For each split

operation� two subDAGs Gleft and Gright are built� If one of these subDAGs is a tree� all decision

nodes in the tree are marked with a  so that no further split is executed for these decision nodes�

The root of the tree is stored in roots� roots is a set of nodes that is empty at the beginning� If all

decision nodes are computed� the trees that have their roots in roots are evaluated according to ord

with the modi�ed labeling scheme labelfs� presented in the next section�

��



To evaluate a DAG G� we start descend���� �� G� where � is a bitvector with ��s at all positions� The

decision nodes v�� � � � � vd are supposed to be sorted in reversed topological order �the root �rst��

��� function descend� � bitvector �� int pos� dag G �

�
� while �pos �  and pos � d do pos � pos� � od�

��� if pos �� d� �

��� then ord � top sort�roots��

�	� for i � � to d do labelfs��ord�i�� od�

��� else �pos � �� G� � copy�G��

��� mark exclusions of nodes vj � j � fpos� �� ���� dg through lson�vpos� with �j � �

��� Gleft � complete subDAG of G� with root lson�vpos�

��� if is tree�Gleft�

���� then mark all decision nodes in Gleft with a � roots � roots � flson�vpos�g ��

���� Gright � split dag�vpos� lson�vpos�� rson�vpos�� G���

��
� if is tree�Gright�

���� then mark all decision nodes in Gright with a � roots � roots � fvposg ��

���� descend�� �� pos� �� G���

��	� �pos � �� G� � copy�G��

���� mark exclusions of nodes vj � j � fpos� �� ���� dg through rson�vpos� with �j � �

���� Gright � complete subDAG of G� with root rson�vpos�

���� if is tree�Gright�

���� then mark all decision nodes in Gright with a � roots � roots � frson�vpos�g ��

�
�� Gleft � split dag�vpos� rson�vpos�� lson�vpos�� G���

�
�� if is tree�Gleft�

�

� then mark all decision nodes in Gleft with a � roots � roots � fvposg ��

�
�� descend�� �� pos� �� G���

�
�� �

�
	� end descend��

top sort is a function that sorts the nodes in its argument set in topological order according to the

global DAG� If there are nodes v� v�� v�� w�� w� where v � vpos is a decision node with �pos � � and

�v�� v�� �v�� v� � E and w� is a predecessor of v� and w� is a predecessor of v�� then ord�w�� � ord�w���

If �pos � �� then ord�w�� � ord�w��� copy is a function that yields a copy of the argument DAG�

is tree�G� returns true� if G is a tree�

By �xing the evaluation order of the trees� we also determine the type of the import nodes� and thus

which import nodes return a free register after their evaluation� An import node is non�permanent

�If two import nodes v� and v� of the same tree Ti have the same corresponding export node� then the type is

determined according to the evaluation order of Ti as described in the nect section� For the moment we suppose that

both nodes are permanent�

�	



if it is the last reference to the corresponding export node� Otherwise it is permanent� The register

cannot be freed until the last referencing import node is computed�

� Evaluating trees with import and export nodes

We suppose that we have a number of trees T� � �V�� E��� � � �� Tk � �Vk � Ek� with import and export

nodes after the split operation executed by descend�� In this section� we describe how an optimal

evaluation is generated for these trees� With the de�nitions from Section � we de�ne the following

two functions occ and freed�

occ � V 	 f�� �g with occ�v� �
X

w is a proper predecessor of v

exp�w�

counts the number of export nodes in the subtree T �v� with root v �excluding v�� i�e� the number of

registers that remain occupied after T �v� has been evaluated�

freed � V 	 f�� �g with freed�v� �
X

w is a proper predecessor of v

impnp�w�

counts the number of import nodes of the second type in T �v�� i�e� the number of registers that are

freed after T �v� has been evaluated�

We now de�ne for each node v of a tree Ti�� � i � k� a label label�v� which speci�es the number of

registers required to evaluate v as follows�

If v is a leaf� then label�v� � 
� 
 � �impp�v� � impnp�v��� Let v be an inner node with two children

v� and v�� Let Si be the subtree with root vi� i � �� 
� We have two possibilities to evaluate v� when

we use contiguous evaluations� If we evaluate S� before S�� we use

m� � max�label�v��� label�v�� � occ�v�� � �� freed�v���

registers� provided that v� �v�� can be evaluated with label�v�� �label�v��� registers� After S� is

evaluated� we need occ�v�� registers to hold the export nodes of S� and one register to hold v�� On

the other hand� we free freed�v�� registers� when evaluating S�� If we evaluate S� before S�� we use

m� � max�label�v��� label�v�� � occ�v�� � �� freed�v���

registers� We suppose that the best evaluation order is chosen and set

label�v� � min�m��m��

The following algorithm generates an evaluation for a labeled tree T with root v�

��� function labelfs� � node v �

�
� if v is a leaf

��� then if impp�v� � impnp�v� �� � then reg�v� � new reg��� print �v� reg�v�� �

��� else if v is an inner node with lson�v� � v� and rson�v� � v�

��
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Figure �� T� and T� are complete binary trees with height �� so we need

�� registers to evaluate each of them� The export nodes are marked with

a circle� If a contiguous evaluation is used� we must �rst evaluate the left

or the right subtree of the root completely before starting the evaluation

of the other subtree� We need at least �	 registers� because 	 registers are

required to hold the export nodes and the root node of the other subtree�

A non�contiguous evaluation can evaluate the tree with �� registers by

�rst evaluating T�� then T� and then the rest of the tree�

�	� then if label�v�� � occ�v��� freed�v�� � label�v�� � occ�v��� freed�v��

��� then labelfs��v��� labelfs��v���

��� else labelfs��v��� labelfs��v���

��� �

��� reg�v� � new reg��� print �v� reg�v��� �

���� if exp�v�� �� � then regfree�reg�v���� �

���� if exp�v�� �� � then regfree�reg�v���� �

��
� �� end labelfs��

Now we will prove that the call labelfs��v� generates an optimal contiguous evaluation of v and uses

label�v� registers� We prove this by two lemmata�

Lemma � Let T � �V�E� be a tree and v � V be an arbitrary inner node of T � labelfs� generates an

evaluation for v that uses label�v� registers�

Lemma 
 Let T � �V�E� be a tree and v � V be an arbitrary inner node of T � label�v� is a lower

bound for the minimal number of registers needed by a contiguous evaluation for v�

Lemma � and Lemma � result in the following theorem�

Theorem � The presented algorithm generates a contiguous evaluation that uses no more registers

than any other contiguous evaluation�

However� there may be a non�contiguous evaluation that needs fewer registers than the generated

contiguous one� An example is given in Figure ��

Until now� we have assumed that two di�erent import nodes of a tree Ti have di�erent corresponding

export nodes� We now explain what has to be done if this is not true� Let A � fw�� � � � � wng � Vi be

a set of import nodes of Ti with the same corresponding export node that is stored in a register r� As

described above we have set

impp�w�� � � � � � impp�wn� � � and impnp�w�� � � � � � impnp�wn� � �

��



But r can be freed� after the last node of A is evaluated� By choosing an appropriate node w � A

to be evaluated last� Ti eventually can be evaluated with one register less than the label of the root

speci�es� We determine w by a top�down traversal of Ti� Let v be an inner node of Ti with children

v� and v�� Let Sj be the subtree with root vj � j � �� 
� If only one of S� and S� contains nodes of A�

we descend to the root of this tree� If both S� and S� contain nodes of A� we examine� whether we can

decrease the label value of v by choosing S� or S�� Let be a � label�v�� � occ�v��� freed�v�� and b �

label�v�� � occ�v��� freed�v�� If a � b� this can only be achieved by searching w in S�� If a � b� this

can only be achieved by searching w in S�� If a � b� we cannot decrease the register need and can

search in S� or S��

We repeat this process until we reach a leaf w � A� We set impp�w� � �� impnp�w� � ��

� Experimental Results

We have implemented descend and descend� and have applied them to a great variety of randomly

generated test DAGs with up to �	� nodes and to large DAGs taken from real application programs�

see Tables 
 and �� The random DAGs are generated by initializing a prede�ned number of nodes and

by selecting a certain number of leaf nodes� Then� the children of inner nodes are selected randomly�

The following observations can be made�

� descend reduces the number of di�erent contiguous evaluations considerably�

� descend� often leads to a large additional improvement over descend� especially for DAGs where

descend is not so successful in reducing the number of di�erent contiguous evaluations�

� descend� works even better for DAGs from real application programs than for random DAGs�

� Only one of the considered DAGs with n � 
	 nodes has a non�contiguous evaluation that uses

fewer registers than the computed contiguous evaluation��

� In almost all cases� the computational e�ort of descend� seems to be justi�ed� This means that�

in practice� an optimal contiguous evaluation �and thus� contiguous register allocation� can be

computed in acceptable time even for large DAGs�

� Register Allocation

After the evaluation order is determined� we can compute the register allocation�

�For a subDAG of MDG with n � �� nodes� there is a non�contiguous that uses 
 registers� The computed contiguous

evaluation takes � registers� The program to compute the non�contiguous evaluation has run for about � days� the

corresponding program for the contiguous evaluation took less than ��� seconds� For DAGs with n � �� nodes it is not

possible to compute the best non�contiguous evaluation because of the runtime of the program that computes them is

growing too fast�
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Table 
� Some examples from a test series for large random DAGs� The number of contiguous evaluations

generated by the algorithms simple� descend and descend� are given for typical examples� The tests con�rm the

large improvements of descend and descend��

Source DAG n d Nsimple Ndescend Ndescend� Tdescend Tdescend�

LL �� second loop �� �� ��
� ��
 �� ��� sec� � ��� sec�

LL 
� inner loop 
� �� ����� ��
 � ��
 sec� � ��� sec�

MDG calc� cos���� sin���� ��� 
� �	 �
��� ��
 �� � ��� sec� � ��� sec�

MDG calc� forces� �rst part �� 	� 
�	 � ���� � ���� sec�

subDAG of this �	 �	 
�� � 	�
 � ��� sec�

subDAG of this 	
 �	 
�� 
����
 
�
 ���
 sec� ��� sec�

subDAG of this �� �� 
�� ��
��
 �
 �
�� sec� ��� sec�

subDAG of this 
� �
 ���� ��	 � � ��� sec� � ��� sec�

SPEC�� mult� FFT analysis �� �� 
�� �����
 �
��� 
���	 sec� 
��� sec�

Table �� Some measurements for DAGs taken from real programs �LL � Livermore Loop Kernels� MDG �

Molecular Dynamics� and SPEC�� � atmospheric �ow simulation� both from the Perfect Club Benchmark Suite��

The table also gives the run times of the algorithms descend and descend�� implemented on a SUN SPARC station

SLC� The tests show that for large DAGs descend is too slow� but the run times required by descend� remain really

acceptable�

��



Our experiments have shown that the reordering of large basic blocks according to an optimal con�

tiguous evaluation saves about ��� of the required registers on the average �see �����

We use a register allocation scheme called �rst free reg that allocates� for each node� the free register

with the smallest number� Since a new register is allocated only if there is no other free register

left� the generated register allocation is optimal and the number of allocated registers is equal to the

register need of the evaluation�

The register allocation scheme uses a binary tree with the register ������n as leaves� In each node�

there is a �ag free that indicates� whether the subtree of this node contains a free register� In order

to allocate a free register� we walk along a path from the root to a free register by turning at each

node to its leftmost son with a TRUE free �ag� After switching the �ag of the leaf found to FALSE� we

traverse the path back to the root in order to update the �ags� For each node on the path we set free

to FALSE i� its two sons have free � FALSE�

If a register is marked free again� we must restore the free �ags on the path from this register back to

the root in the same way by setting for each node free to TRUE if at least one son has a true free �ag�

The run time is O�log n� for allocating or freeing a register� thus the total run time is O�n log n� for

the evaluation of a DAG with n nodes�

The advantage of this allocation method is that the allocated registers usually have rather di�erent

access rates since� in general� registers with a low number are used more often than registers with a high

number� That results in an allocation scheme that is well suited for spilling registers� If we have fewer

registers available in the target machine than the evaluation requires� then we are forced to spill those

registers with the least usage� The spill cost are at a minimum� if usage is distributed as unequally as

possible over the allocated registers� The proposed heuristic �rst free reg ful�lls this condition quite

well� The actual spilling algorithm is described in �
 for basic blocks of vector instructions and may

easily be adapted for the scalar case�

The general problem of computing an evaluation that is optimal with respect to spill cost seems to

be a hard problem in terms of computational complexity� but that does not really matter in practice

because a possible further gain in execution time compared to �rst free reg appears to be marginal

for real DAGs�

� Conclusions

We have presented two variants of the simple algorithm that evaluates only the tree nodes by a

labeling algorithm and generates 
d contiguous evaluations where d is the number of decision nodes

of the DAG� The �rst variant is the exclusion of redundant decision nodes as performed by procedure

descend� The second variant is the splitting of the DAG in subtrees �performed by descend�� and the

evaluation of these by the modi�ed labeling algorithm labelfs�� The experimental results in Section

� con�rm that this variant generates only a small number of contiguous evaluations� even for large

DAGs� Among the generated evaluations are all evaluations with the least register need� Therefore�


�



by using descend� we �nd the optimal contiguous evaluation in a reasonable time even for large DAGs�

The dramatic reduction in evaluations generated makes descend� suitable for the use in optimizing

compilers� especially for time�critical regions of the source program�
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