Generating Optimal Contiguous Evaluations for

Expression DAGs

C. W. KESSLER* THOMAS RAUBER |
Computer Science Department
Universitat des Saarlandes
Postfach 151150
66041 Saarbriicken, Germany
+49-681-302-4130
FAX 49-681-302-4290

{kessler,rauber}@cs.uni-sb.de

Abstract

We consider the NP—complete problem of generating contiguous evaluations for expression
DAGs with a minimal number of registers. We present two algorithms that generate optimal
contiguous evaluation for a given DAG. The first is a modification of a complete search algorithm
that omits the generation of redundant evaluations. The second algorithm generates only the
most promising evaluations by splitting the DAG into trees with import and export nodes and
evaluating the trees with a modified labeling scheme. Experiments with randomly generated
DAGs and large DAGs from real application programs confirm that the new algorithms generate

optimal contiguous evaluations quite fast.

Key words: program optimization, basic block, expression DAG, contiguous evaluation, register

allocation, code generation

1 Introduction

Register allocation is one of the most important problems in compiler optimization. Using fewer
registers is important if the target machine has not enough registers to evaluate an expression without
storing intermediate results in the main memory (spilling). This is especially important for vector

processors that are often used in parallel computers. Vector processors usually have a small number

*Research partly supported by DFG, SFB 124, TP D4. Present address: FB 4 Informatik, Universitdt Trier, D-54286
Trier, Germany
fsupported by DFG, SFB 124, TP D4

of vector registers (e.g., the CRAY vector computers have 8 vector register of 64 x 64 bit) or a register
file that can be partitioned into a number of vector registers of a certain length (e.g., the vector
acceleration units of the CM5 have register files of length 128 x 32 bit that can be partitioned into
1, 2, 4 or 8 vector registers, see [1]). A vector operation is evaluated by splitting it into stripes that
have the length of the vector registers and computing the stripes one after another. If the register file
is partitioned into a small number of vector registers, each of these can hold more elements and the
vector operation to be evaluated is split into fewer stripes. This saves initialization costs and results
in a faster computation [2].

Scientific programs often contain large basic blocks. Large basic blocks can also result from the
application of compiler techniques like loop unrolling [3] and trace scheduling [4]. Therefore, it is
important to derive register allocation techniques that cope with large basic blocks [5].

Among the numerous register allocation schemes, register allocation and spilling via graph coloring
[6, 7] is generally accepted to yield good results. But register allocation via graph coloring uses a
fixed evaluation order within a given basic block B. This is the evaluation order specified in the input
program. Often there exists an evaluation order for B that allows to use fewer registers. By using
this order, the global register allocation generated via graph coloring could be improved.

The reordering of the operations within a basic block can be arranged by representing the basic block
by a number of directed acyclic graphs (DAGs). An algorithm to build the DAGs for a given basic
block can be found in [8]. A basic block is evaluated by evaluating the corresponding DAGs. For the
evaluation of a DAG G the following results are known:

(1) If G is a tree, the algorithm of Sethi and Ullman [9] generates an optimal evaluation in linear
time. (In this paper, optimal always means: uses as few registers as possible. Recomputations
are not allowed.)

(2) The problem of generating an optimal evaluation for G is NP—complete, if G is not restricted
[10].

In this paper, we restrict the attention to contiguous evaluations. Experiments with randomly gener-
ated DAGs and with DAGs that are derived from real programs show that for nearly all DAGs, there
exist a contiguous evaluation that is optimal. This leads to an algorithm that computes an optimal
contiguous evaluation for a given DAG in time O(n - 2¢) where d is the number of decision nodes [11].
Decision nodes are binary nodes on paths from the root of the DAG to a node with more than one
father.

This paper improves this simple O(n-2%) algorithm that performs a rather inefficient complete search,
by identifying and eliminating redundant evaluations. It also presents a new algorithm that splits
the given DAG into a number of trees with import and export nodes and evaluates the trees with a
modified labeling scheme. Import and export nodes constitute the connection between the generated
trees: when evaluating the tree, export nodes are nodes that remain into registers because they are
used later by neighboring trees. On the other hand, import nodes need not to be loaded into a

register because they have been left there by the evaluation of a neighboring tree. To find an optimal

contiguous evaluation, the new algorithm considers all possibilities to split the given DAG into trees
and selects the splitting that uses the fewest registers. Experiments with DAGs from real applications
show that the number of generated evaluations is quite small even for large DAGs. Therefore, the
running time of the algorithm remains reasonable.

After giving some basic definitions in Section 2, we describe in Section 3 how the running time of the
algorithm from [11] can be reduced by generating each evaluation only once. In Section 4, we show
how the running time can be further reduced by splitting the DAG in several trees with import and
export nodes and applying a modified labeling scheme to the trees. Section 5 describes the splitting
procedure, Section 6 presents the modified labeling scheme for trees with import and export nodes
and proves that the generated evaluations are optimal. Section 7 shows the experimental results that
confirm that the described method can be used in practice to generate optimal contiguous evaluations

even for large DAGs.

2 Evaluating DAGs

2.1 Expression DAGs

We assume that we are generating code for a single processor machine with general-purpose regis-
ters R = {Ro, R1, R, ...} and a countable sequence of memory locations. The arithmetic machine

operations are three-address instructions of the following types:

R; < R;op R; Dbinary operation, op € {+,—, x,...},
R, < op R; unary operation,
Rj, <+ Load(a) load register k£ with the value in memory location a

Store(a) < Ry store the value in register k£ into memory location a,

In the following, we assume ¢ # j # k # ¢, for Ry, R;, R; € R to facilitate the description. Note that
the following considerations are also applicable, if k =i or k = j.

Each input program can be partitioned into a number of basic blocks.

A directed graph is a pair G = (V, E), where V is a finite set of nodes and E C V x V is a set of edges.
In the following, n = |V| always stands for the number of nodes in the graph. A node w is called
operand or son of a node v, if (w,v) € E. v is called result or father of w, i.e., the edge is directed
from the son to the father. A node with no father is called a root of G. A node which has no sons is
a leaf, otherwise it is an inner node. We call a node with two sons binary and a node with only one
son unary. In the following, we suppose for simplicity that the DAGs contain only unary and binary
inner nodes.

The outdegree outdeg(w) is the number of edges leaving w, i.e., the number of its fathers.

The data dependencies in a basic block can be described by a directed acyclic graph (DAG). The leaves
of the DAG are the variables and constants occurring as operands in the basic block; the inner nodes

represent intermediate results. An example is given in Figure 1.

R; < Load(a)
R2 < —R;

R; < Load(b)
Rs < R2 + R:
Ry < Load(b
Ry LoadEc;
Rs <+ Ri1 + R>
R < R3 X R4
Ry + Load(a)
R3 +— —R»>

Ry + R3s X Ry

Qoo ocac=BSe

Aop :

R; + Load(a)
R2 < —R;

R; < Load(b)
Rs < R+ Ry
R4 < Load(c)
Rs <+ R1 + R4
R1 + R3s X Rs
Rs < Ry X Ry

Ry < Load(c
Ry < Load(b
R3 +— R1 + R»
R, < Load(a)
Ry +— — Ry

— Ri+ R>
R> < R; X R3
Rl $— R4 X R2

S0 O[T
SR a0
=
S

Figure 1: Example: The expression (—a) x ((—a + b) x (b + ¢)) can be represented by the tree T' shown above.
The tree can be evaluated by the labeling algorithm of Sethi/ Ullman with 4 registers as shown to the right. (The
labels are printed at the right—hand side of the nodes). By eliminating common subexpressions, a DAG G can be
constructed. Evaluating G in the original order results in an evaluation Ao that reduces the number of instructions
and hence the computation time of the basic block, but uses 5 instead of 4 registers. By reordering Ao as shown

to the right, we get an evaluation that needs only 4 registers.

Definition 1 (subDAG) Let G = (V,E) be a DAG. A DAG S = (V',E') is called subDAG of G, if
V'CVand E' CEN(V'xV"). A subDAGS = (V' E'") of G = (V, E) with root w is called complete,
if:

V' = {veV: Jpath from v tow } and

E' = {e€ E: e is an edge on a path from a node v € V' tow }.

2.2 DAG Evaluations

We now consider the evaluation of DAGs. Let G = (V, E) be a directed graph with n nodes. A
mapping ord: V — {1,2,...,n} with

Y(w,v) € E: ord(w) < ord(v)

is called a topologic order of the nodes of G. It is well-known that for a directed graph G a topological
order exists iff G is acyclic (e. g., [12]).

Definition 2 (evaluation of a DAG) An evaluation A of a DAG G is a permutation of the nodes in
V' such that for all nodes v € V' the following holds: If v is an inner node with sons vy, ..., vy, then

v occurs in A behind v, i =1, ... k.

This implies that the evaluation A is complete and contains no recomputations, i. e., each node of the

DAG appears exactly once in A. Moreover, the evaluation is consistent, because no node is evaluated

before all of its sons are evaluated. Thus, each topological order of G represents an evaluation, and

vice versa.

Definition 3 (contiguous evaluation) An evaluation A (represented by the topological order ord) of
a DAG G = (V,E) is called contiguous, if for each node v € V' with children v and v the following

is true: if w; is a predecessor of v, i = 1,2, and ord(vi) < ord(ve), then ord(w;) < ord(ws).

A contiguous evaluation of a node v first evaluates the complete subDAG with one of the children of
v as root before evaluating any part of the remaining subDAG with root v.

While general evaluations can be generated by variants of topological-sort®, contiguous evaluations are
generated by variants of depth—first search (dfs). From now on, we restrict our attention to contiguous
evaluations to reduce the number of generated evaluations. By doing so, we may not always get the
evaluation with the least register need. There are some DAGs for which a general evaluation exists
that uses fewer registers than every contiguous evaluation. However, these DAGs are usually quite
large and do very rarely occur in real programs. The smallest DAG of this kind that we could construct
so far has 14 nodes and is given in Figure 2. Note that for larger DAGs, it is quite difficult to decide
whether there exists a general evaluation that uses fewer registers than every contiguous evaluation.

This is because of the enormous running time of the algorithms that generate general evaluations.

Figure 2: For this DAG, the noncontiguous evaluation
(a,b,c,dye, 1, f,g,2, h, 3, 4,5, 6) uses 4 registers. There
is no contiguous evaluation that uses fewer than 5 registers.
To use 4 registers, a contiguous evaluation would have to
evaluate the subDAG with root 1 first. A contiguous eval-
uation could do this only by first evaluating the left son of
node 6, then the right son of node 5 and then the left son
of node 4. In order this evaluation to be contiguous, nodes
h and 3 must be evaluated after 1 and thus, the values of
nodes 3 and 4 must be held in two registers. But in order
to evaluate nodes f, g and 2, three more registers would be

required. Thus, the contiguous evaluation would use at least

five registers altogether.

Definition 4 (register allocation, register need, optimal evaluation) (¢f. [10]) Let num : R —
{0,1,2...}, num(R;) = @ be a function that assigns a number to each register. A mapping reg :
V' — R is called a (consistent) register allocation for A, if for all nodes u, v, w € V the following
holds: If u is a son of w, and v appears in A between u and w, then reg(u) # reg(v).

m(A) = min { max {num(reg(v)) + 1}} (1)

reg is reg. alloc. for A v appears in A

ISee [12] for a summary on topological sorting.

is called the register need of the evaluation A. An evaluation A for a DAG G is called optimal if for
all evaluations A’ of G holds m(A") > m(A).

Sethi proved in 1975 [10] that the problem of computing an optimal evaluation for a given DAG is

NP-complete. Assuming P # NP, we expect an optimal algorithm to require nonpolynomial time.

3 Counting Evaluations

In [11], we give the following definitions and prove the following lemmata:

Definition 5 (tree node)
(1) Each leaf is a tree node.

(2) An inner node is a tree node iff all its sons are tree nodes and none of them has outdegree > 1.

Definition 6 (label)
(1) For every leaf v, label(v) = 1.
(2) For a unary node v, label(v) = max{label(son(v)),2}.

(8) For a binary node v, label(v) = maz{3, max{label(lson(v)), label(rson(v))} + q}
where g = 1, if label(lson(v)) = label(rson(v)), and 0 otherwise.

Let new_reg() be a function that returns an available register and marks it to be busy. Let regfree(reg)
be a function that marks the register reg to be free again. A possible implementation is given in
Section 8. The Labeling-algorithm labelfs of Sethi and Ullman (see [9]) generates optimal evaluations

for a tree with labels by first evaluating the son with the greater label value for each binary node.

(1) function labelfs(node v)
// generates an optimal evaluation for the subtree with root v //
if v is not a leaf
then if label(lson(v)) > label(rson(v))
then labelfs(lson(v)); labelfs(rson(v))
else labelfs(rson(v)); labelfs(lson(v))
fi
fi
(6) reg(v) < mnew_reg(); print(v, reg(v));
(7) if v is not a leaf then regfree(reg(lson(v))); regfree(reg(rson(v))) fi
end labelfs;

Figure 3: A DAG with n—2 decision

nodes.

Definition 7 (decision node) A decision node is a binary node which is not a tree node.

Thus, all binary nodes that have at least one predecessor with more than one father are decision
nodes. In a tree, there are no decision nodes. For a general DAG let d be the number of decision
nodes and b be the number of binary tree nodes. Then k& = b+ d is the number of binary nodes of

the DAG. A DAG may have up to d = n — 2 decision nodes, see Figure 3.

Lemma 1 For a tree T with one root and b binary nodes, there exist exactly 2° different contiguous

evaluations.

Lemma 2 For a DAG with one root and k binary nodes, there exist at most 2F different contiguous

evaluations.

Lemma 3 Let G be a DAG with d decision nodes and b binary tree nodes which form t (disjoint)
subtrees T4, ...,Ty. Let b; be the number of binary tree nodes in T;, i = 1...t, with 22:1 b; = b.
Then the following is true: If we fix an evaluation A; for T;, then there remain at most 2% different

contiguous evaluations for G.

Corollary 4 If we evaluate all the tree nodes in a DAG G with d decision nodes by labelfs(), there

remain at most 2¢ different contiguous evaluations for G.

The following simple algorithm performs a complete search to create all 2¢ contiguous evaluations for

G, provided that a fixed contiguous evaluation for the tree nodes of G is used:

(1) algorithm complete_search

(2) Let vy,...,vq be the decision nodes of a DAG G, and

(3) let B = (Bi,...,84) € {0,1}% be a bitvector.

(4) forall 2¢ different 3 € {0,1}? do

(5) start dfs(root) with each 3, such that for 1 <i <d
(6) if ;= 0in the call dfs(v;),

(7 then the left son of v; is evaluated first

(8) else the right son of v; is evaluated first fi

(9) od

end complete_search,;

h
" g
0 b ¢ Figure 4: Example DAG.

This algorithm has exponential running time, since a DAG with n nodes can have up to d = n — 2
decision nodes, see Figure 3. The running time of the algorithm can be reduced by exploiting the
following observation (consider the example DAG in Figure 4): Assume that the algorithm to generate
a contiguous evaluation decides to evaluate the left son f of the root h first (i.e., the decision bit of h
is set to zero). Then node e appears in the evaluation before g, since e is in the subDAG of f, but g is
not. Therefore, there is no real decision necessary when node g is evaluated, because the son e of g is
already evaluated. But because g is a decision node, the algorithm generates bitvectors containing Os
and 1s for the decision bit of g, although bitvectors that only differ in the decision bit for g describe
the same evaluation.

We say that g is exzcluded from the decision by setting the decision bit of h to 0, because the son e
(and c) are already evaluated when the evaluation of g starts. We call the decision bit of g redundant
and mark it by an asterisk (x).

The following algorithm computes only those bitvectors that yield different evaluations. We suppose

again that tree nodes are evaluated by the labeling algorithm labelfs:

Let vy, ...,vq be the decision nodes in reverse topological order (i.e., the root comes first)

We call the following function descend(©,1) where © is a bitvector that contains d 0’s.

(1) function descend (bitvector [, int pos)

(2) while B,,s = * and pos < d do pos < pos+ 1 od

(3) if pos>d

(4) then if Bpos = *

(5) then print § // new evaluation found //

(6) else // By is cmpty: //

(7a) Ba =0; print 3; // new evaluation found //

(7b) Ba =1; print 3; // new evaluation found //

(8) fi

(9) else Bpos =0;

(10) mark exclusions of nodes vj, j € {pos + 1,...,d} through Ison(vpes) by Bj < *;
(11) descend(B, pos + 1);

(12) Bpos = 1;

(13) mark exclusions of nodes vj, j € {pos + 1,...,d} through rson(vpes) by B; < *;
(14) descend(3, pos + 1);

decision nodes vy, vs, ..., vs: h f g d e
start at the root: preset first bit: 0 *
propagate bits and asterisks to next stage: | 0 0 *
all bits set: first evaluation found: 0 0 = 0 x| A
0 0 *x 1 x| A,
"backtrack’: 0 1 =x =
0 1 = x 0] A;
0 1 % = Ay
"backtrack’: 1 = *
1 x 0 =«
1 = 0 x 0] As
1 = 0 == 1] Ag
‘backtrack’: 1 x 1 x x| Ay

Table 1: For the example DAG of Figure 4, the algorithm descend executes the above evaluation steps. Only 7

instead of 2° = 32 contiguous evaluations are generated.

fi

end descend,

Table 1 shows the application of descend to the example DAG of Figure 4.

Lemma 5 For a DAG G without unary nodes, the algorithm descend generates at most 24~ different

contiguous evaluations.

Proof: If there are only binary inner nodes, there must exist a DAG node v that has at least two different

fathers w1 and w2. Suppose w; is evaluated first. Then the decision bit of w» is redundant and is set to *. O

Let N be the number of different contiguous evaluations returned by the algorithm descend. We have
N =7 for the example DAG of Figure 4. We call d.y = log N the effective number of decision nodes
of G. It is degr < d — 1 because of Lemma 3 and Lemma 6.

Furthermore, we can show the following lower bound:

Lemma 6 defr > min #decision nodes on P
P path from the root to some leaf

Proof: There must be at least as many bits set to 0 or 1 in each final bitvector as there are decision nodes on
an arbitrary path from some leaf to the root, because no exclusion is possible on the path to the node being
evaluated first. The bitvector describing the path with the smallest number of decision nodes is enumerated

by the algorithm, so the lower bound follows. O

Figure 5: The example DAG is split in three steps by setting 81 = 0, 32 = 0, 84 = 0. The edges between the

generated subtrees are shown as dotted lines.

In the example above, the lower bound for d.g is 2, since the path with the least number of decision
nodes is (h, g, ¢) which has two decision nodes.

This lower bound may be used to get a lower bound (2%¢f) for the run time of the algorithm descend.

4 Reducing the Number of Evaluations

We now construct an algorithm that reduces the number of generated evaluations further. The
reduction is based on the following observation: Let v be a decision node with two children v; and v,.
Let G(v) = (V(v), E(v)) be a DAG with root v, G(v;) the complete subDAG with root v;, i = 1,2.
By deciding to evaluate v; before vy, we decide to evaluate all nodes of G(v;) before the nodes in
Grest = (Viesty Erest) With Viest = V() = V(01), Erest = E(0) N (Viest X Vyest). Let e = (u,w) € E(v)
be an edge with u € V(v1),w € V,¢st. The function descend marks w with a . This can be considered
as eliminating e: at decision node w, we do not have the choice to evaluate the son v first, because u
has already been evaluated and will be held in a register until w is evaluated. Therefore, descend can
be considered as splitting the DAG G into smaller subDAGs. We will see later that these subDAGs
are trees after the splitting has been completed. The root of each of these trees is a decision node.?
The trees are evaluated in reverse of the order in which they are generated. For the example DAG of
Figure 4, there are 7 possible ways of carrying out the splitting. The splitting steps that correspond
to evaluation A; from Table 1 are shown in Figure 5.

If we look at the subDAGs that are generated during the splitting operation, we observe that even
some of the intermediate subDAGs are trees which could be evaluated without a further splitting.
E.g., after the second splitting step (B2 = 0) in Figure 5, there is a subtree with nodes a, b, d which
does not need to be split further, because an optimal contiguous evaluation for the subtree can be
found by a variant of labelfs.. By stopping the splitting operations in these cases, the number of
generated evaluations can be reduced from 7 to 3 for the example DAG.

Depending on the structure of the DAG, the number of generated evaluations may be reduced dramat-
ically when splitting the DAG into trees. An example is given in Figure 6. To evaluate the generated

trees we need a modified labeling algorithm that is able to cope with the fact that some nodes of

2As we will see later, the root of the last generated tree is not a decision node.

10

Figure 6: The DAG to the left has 8 decision nodes. When
using the function descend, only one node gets an asterisk,
i.e. 27 evaluations are generated. When using the labeling
version, only 2 evaluations are generated: the first one eval-
uates the left son of the root first, the second one evaluates

\. the right son first.

Figure 7: The example DAG is split into 3 subtrees by
setting 81 = 0, B2 = 0, B4 = 0. The newly introduced

A ¢ import nodes are marked with a circle. They are all non—
a b permanent.

the trees must be held in a register until the last reference from any other tree is resolved. Such an
algorithm is given in Section 6. Before applying the new labeling algorithm, we explicitly split the
DAG in subtrees Ty = (V1, Ey), ..., Tk = (Vi, Ex). We suppose that these subtrees must be evaluated
in this order. The splitting procedure is described in detail in the next section. After the splitting,
we introduce additional import nodes which establish the communication between the trees. The
resulting trees to the second DAG in Figure 5 are given in Figure 7.

We present the labeling algorithm in Section 6 with the notion of import and export nodes: An ezport
node of a tree T; is a node which has to be left in a register because another tree T;(j > i) has a
reference to v, i.e., T; has an import node which corresponds to v. An import node of T; is a leaf which
is already in a register R because another tree T;(j < i) that has been evaluated earlier has left the
corresponding export node in R. Therefore, an import node need not to be loaded in a register and
does not appear again in the evaluation. For each import node, there exists a corresponding export
node. Two import nodes v; # v may have the same corresponding export node.

We distinguish two types of import nodes:

e A permanent input node v can be evaluated without being loaded in a register. v cannot be
removed from the register after the father of v is evaluated, because there is another import
node of T; or of another tree 7T); that has the same corresponding export node as v and that has

not been evaluated yet.

e A non-—permanent input node v can also be evaluated without being loaded into a register. But

the register that contains v can be freed after the father of v has been evaluated, because all

11

other import nodes that have the same corresponding export node as v are already evaluated.?

Let the DAG nodes be V =V, U...UV,. We describe the import and export nodes by the following

characteristic functions:

) 1 if v is an export node
exp:V — {0,1} with exp(v) =
0 otherwise
.) . 1 if v is a permanent import node
impp : V. — {0,1} with impp(v) =
0 otherwise
. .) 1 if v is a non-permanent import node
imppp V. —{0,1} with imppp(v) =
0 otherwise
corr: V=V with corr(v) = u, if w is the corresponding export node to v

The definition of import and export nodes implies

exp(v) + impp(v) + imppp(v) <1 for each v € V;

5 Splitting the DAG into subtrees

We now describe how the DAGs are split into subtrees and how the import and export nodes are
determined. We derive a recursive procedure descend?2 that is a modification of descend. descend2
generates a number of evaluations for a given DAG G by splitting G into subtrees and evaluating
the subtrees with a modified labeling scheme. Among the generated evaluations are all optimal
evaluations. We first describe how the splitting is executed.

Let d be the number of decision nodes. The given DAG is split into at most d subtrees to generate an
evaluation. After each split operation, export nodes are determined and corresponding import nodes
are introduced as follows: Let v = vy,05 be a decision node with children v; and vs and let G(v), G(v;)
and G5 be defined as in the previous section. We consider the case that v, is evaluated before vy
(Bpos = 0). Let u € V(v1) be a node for which an edge (u,w) € E(v) with w € V.5 exists. Then u is
an export node in G(v1). A new import node v’ is added to Grest by setting Viest = Viyest U {u'} and
Erest = Erest U{(u/,w)}. u' is the corresponding import node to u. If u has already been marked in
G(v1) as export node, then ' is a permanent import node, because there is another reference to u
(from another tree) that is evaluated later. Otherwise, u' is a non—permanent import node. If there
are other edges e; = (u,w;) € E(v) with i =1,...,k and w; € Vyes, then new edges e} = (v, w;) are

added to Erest. If k> 1, Grest is not a tree and will be split later on.

A difficulty arises if u = v is a leaf in G(v) and there is a node w # v in Vyes with e = (v1,w) € E(v),

see Figure 8. Then G(v1) = ({v1},0). w is a decision node that gets a *, v is a decision node for

3This partitioning of the import nodes is well defined, since the order of the 7} is fixed.

12

Figure 8: v has two children v; and
v2. v1 is a leaf, w is a predecessor of

V2.

which the decision has been chosen. If GG,.s; contains no other decision node except v and w, we have
the situation that G.s: is not split further, but is still a DAG after e/ = (v',w) and e = (u',v) are
added to E,.st. We solve the problem by introducing another node u" # u’ by setting

Viest = Viest U {UI: U”} and Eregt = Eregt U {(ul, U): (uu, U))}

The corresponding export node to " is u in G(v1). So vy in G(v;) is the corresponding export node
to two import nodes in Gi.est. u'' is a permanent import node, because the value of the corresponding
export node is still needed to evaluate v. If v = v; has not been marked as export node before, then '
is a non—permanent import node, because the register containing u can be freed after v is evaluated.

One splitting step is executed by the following function split_dag:

13

(1) function split_dag(node v,vi,v2, dag G = (V, E)) : dag;
// v is a decision node with children v; and vy //
) w1 = new_node();
) V=VU{ui};E=EU{(u1,v)};
) if exp(vi) == 0 then imp,,(u1) =1 else impy(u;) = 1; fi;
) exp(vi) = L;corr(u) = vy
) delete (v1,v) from E; N
) for each edge e = (v, w) € E do o <
) u; = new_node();
) V=VU{u};E=EU{(u,w)};
) impp(u1) = 1; corr(ur) = vi;
) delete e from E;
) od;
13) Let G(v) = (V(v), E(v)) be the subDAG of G with root v,
let G(v1) = (V(v1), E(v1)) be the subDAG of G with root vy
build Grest = (Viest, Brest) With Viese = V(v) — V(v1), Erest = E(0) N (Viest X Viest);
for each v € V(v1) do
if Jwy,...,w, € Viest with (u,w;) € E(v)
then wu; = new_node();
V=VU{u};E=EU{(u,w;),1 <i<n};
if exp(u) == 0 then imp,,(u1) =1 else impy(u;) =1; fi

exp(u) = 1; corr(uy) = u;

delete (u,w;) from E; 1 <i < n;

Let Get be the subDAG of G with root v;
return G,q;

end split_dag;

new_node is a function that returns a new node z and sets exp(x), impp(z) and impy,,(z) to 0. split_dag
is called by the recursive procedure descend2 that visits the decision nodes in reverse topological order
(in the same way as descend). For each decision node v with children v; and ve, descend?2 executes
two possible split operations by using the complete subDAGs with roots v; and ve. For each split
operation, two subDAGs Giesr and Gyrigne are built. If one of these subDAGs is a tree, all decision
nodes in the tree are marked with a % so that no further split is executed for these decision nodes.
The root of the tree is stored in roots. roots is a set of nodes that is empty at the beginning. If all
decision nodes are computed, the trees that have their roots in roots are evaluated according to ord

with the modified labeling scheme labelfs2 presented in the next section.

14

To evaluate a DAG G, we start descend2(0, 1,G) where O is a bitvector with 0’s at all positions. The

decision nodes vy, . ..,v4 are supposed to be sorted in reversed topological order (the root first).
(1) function descend2 (bitvector 3, int pos, dag G)

(2) while (,,s = * and pos < d do pos=pos+1 od;

(3) if pos==d+1

(4) then ord = top_sort(roots);

(5) for i =1to ddo labelfs2(ord(i)) od;

(6) else [y =0; G1 = copy(G);

(7 mark exclusions of nodes v;, j € {pos + 1, ...,d} through Ison(vp.s) with 8; = x;
(8) Glest = complete subDAG of G with root lson(vpos)

(9) if is_tree(Giest)

(10) then mark all decision nodes in Gjes; with a *; roots = roots U {lson(vpes)} fi;
(11) Gright = split_dag(vpos, 150n(Vpes), rson(vpes), G1);

(12) if is_tree(Grignt)

(13) then mark all decision nodes in Grign: with a x; roots = roots U {vyes} fi;

(14) descend2(8, pos +1,G1);

(15) Bpos = 1; G2 = copy(G);

(16) mark exclusions of nodes vj, j € {pos + 1, ...,d} through rson(vy.s) with 3; = *;
(17) Gright = complete subDAG of G» with root rson(vpes)

(18) if is_tree(Grignt)

(19) then mark all decision nodes in Grigp; With a *; roots = roots U {rson(vpes)} fi;
(20) Glest = split_dag(vpos, rs0n(Vpos), 50N (Vpos), G2);

(21) if is_tree(Giest)

(22) then mark all decision nodes in Gicps with a *; roots = roots U {vpes} fi;

(23) descend2(3, pos + 1,Gs);

(24) fi

(25) end descend?,

top_sort is a function that sorts the nodes in its argument set in topological order according to the
global DAG. If there are nodes v,v1,vs, w1, ws where v = vy, is a decision node with Bp,s = 0 and
(v1,v), (v2,v) € E and w; is a predecessor of v; and ws is a predecessor of v, then ord(w;) < ord(ws).
If Bpos = 1, then ord(ws) < ord(w1). copy is a function that yields a copy of the argument DAG.
is_tree(G) returns true, if G is a tree.

By fixing the evaluation order of the trees, we also determine the type of the import nodes* and thus

which import nodes return a free register after their evaluation. An import node is non—permanent

41f two import nodes v and vy of the same tree T; have the same corresponding export node, then the type is
determined according to the evaluation order of T; as described in the nect section. For the moment we suppose that

both nodes are permanent.

15

if it is the last reference to the corresponding export node. Otherwise it is permanent: The register

cannot be freed until the last referencing import node is computed.

6 Evaluating trees with import and export nodes

We suppose that we have a number of trees Ty = (V1, Ey), ..., Ty = (Vi, Ei) with import and export
nodes after the split operation executed by descend2. In this section, we describe how an optimal
evaluation is generated for these trees. With the definitions from Section 4 we define the following
two functions occ and freed:

occ: V — {0,1} with occ(v) = Z exp(w)

w is a proper predecessor of v

counts the number of export nodes in the subtree T'(v) with root v (excluding v), i.e. the number of
registers that remain occupied after 7'(v) has been evaluated.

freed : V — {0,1} with freed(v) = Z imppp(w)

w is a proper predecessor of v

counts the number of import nodes of the second type in T'(v), i.e. the number of registers that are
freed after T'(v) has been evaluated.
We now define for each node v of a tree T3(1 < i < k) a label label(v) which specifies the number of
registers required to evaluate v as follows:
If v is a leaf, then label(v) = 2 — 2 - (impp(v) + imppp(v)). Let v be an inner node with two children
v1 and vs. Let S; be the subtree with root v;,7 = 1,2. We have two possibilities to evaluate v, when

we use contiguous evaluations: If we evaluate S; before S, we use
my = max(label(vy), label(vs) + occ(vy) + 1 — freed(vy))

registers, provided that v; (v2) can be evaluated with label(v;) (label(vs)) registers. After S; is
evaluated, we need occ(v;) registers to hold the export nodes of S; and one register to hold v;. On

the other hand, we free freed(v,) registers, when evaluating S;. If we evaluate Sy before Sy, we use
ma = max(label(vs), label(vy) + occ(ve) + 1 — freed(vs))

registers. We suppose that the best evaluation order is chosen and set
label(v) = min(my,ms)

The following algorithm generates an evaluation for a labeled tree T with root v:

1
2
3
4

function labelfs?2 (node v)
if vis aleaf

(1)
(2)
(3) then if imp,(v) + imppy(v) == 0 then reg(v) = new_reg(); print (v, reg(v)) fi
(4)

else if v is an inner node with lson(v) = v; and rson(v) = v

16

Figure 9: Th and T are complete binary trees with height 9, so we need
10 registers to evaluate each of them. The export nodes are marked with
a circle. If a contiguous evaluation is used, we must first evaluate the left
or the right subtree of the root completely before starting the evaluation
of the other subtree. We need at least 13 registers, because 3 registers are
required to hold the export nodes and the root node of the other subtree.

A non—contiguous evaluation can evaluate the tree with 11 registers by

first evaluating 71, then T and then the rest of the tree.

(5) then if label(vy) + occ(vs) — freed(vy) > label(ve) + occ(vy) — freed(vy)
(6) then labelfs2(v1); labelfs2(vs);

(7) else labelfs2(vs2); labelfs2(vy);

(8) fi

(9) reg(v) = new_reg(); print (v, reg(v)); fi

(10) if exp(v) == 0 then regfree(reg(vy)); i

(11) if exp(ve) == 0 then regfree(reg(ve)); i

(12) fi; end labelfs2;

Now we will prove that the call labelfs2(v) generates an optimal contiguous evaluation of v and uses

label(v) registers. We prove this by two lemmata:

Lemma 7 Let T = (V,E) be a tree and v € V be an arbitrary inner node of T. labelfs2 generates an

evaluation for v that uses label(v) registers.

Lemma 8 Let T = (V,E) be a tree and v € V be an arbitrary inner node of T. label(v) is a lower

bound for the minimal number of registers needed by a contiguous evaluation for v.
Lemma 7 and Lemma 8 result in the following theorem:

Theorem 9 The presented algorithm generates a contiguous evaluation that uses mo more registers

than any other contiguous evaluation.

However, there may be a non—contiguous evaluation that needs fewer registers than the generated
contiguous one. An example is given in Figure 9.

Until now, we have assumed that two different import nodes of a tree T; have different corresponding
export nodes. We now explain what has to be done if this is not true. Let A = {wy,...,w,} CV; be
a set of import nodes of T; with the same corresponding export node that is stored in a register r. As

described above we have set

impp(wy) = ... =impp(wy) = 1 and impy,(wy) = ... = imppyp(wy,) =0

17

But 7 can be freed, after the last node of A is evaluated. By choosing an appropriate node w € A
to be evaluated last, T; eventually can be evaluated with one register less than the label of the root
specifies. We determine w by a top—down traversal of T;. Let v be an inner node of T; with children
vi and ve. Let S; be the subtree with root v;, j = 1,2. If only one of S; and S» contains nodes of A,
we descend to the root of this tree. If both S; and S contain nodes of A, we examine, whether we can
decrease the label value of v by choosing Sy or Sa. Let be a = label(v1) + occ(va) — freed(ve) and b =
label(vz) + occ(vy) — freed(vy) If @ > b, this can only be achieved by searching w in S;. If a < b, this
can only be achieved by searching w in Ss. If a = b, we cannot decrease the register need and can
search in S; or S-.

We repeat this process until we reach a leaf w € A. We set impp(w) = 0, imppp(w) = 1.

7 Experimental Results

We have implemented descend and descend?2 and have applied them to a great variety of randomly
generated test DAGs with up to 150 nodes and to large DAGs taken from real application programs,
see Tables 2 and 3. The random DAGs are generated by initializing a predefined number of nodes and
by selecting a certain number of leaf nodes. Then, the children of inner nodes are selected randomly.

The following observations can be made:

o descend reduces the number of different contiguous evaluations considerably.

e descend? often leads to a large additional improvement over descend, especially for DAGs where

descend is not so successful in reducing the number of different contiguous evaluations.
e descend?2 works even better for DAGs from real application programs than for random DAGs.

e Only one of the considered DAGs with n < 25 nodes has a non—contiguous evaluation that uses

fewer registers than the computed contiguous evaluation.®

e In almost all cases, the computational effort of descend2 seems to be justified. This means that,
in practice, an optimal contiguous evaluation (and thus, contiguous register allocation) can be

computed in acceptable time even for large DAGs.

8 Register Allocation

After the evaluation order is determined, we can compute the register allocation.

5For a subDAG of MDG with n = 24 nodes, there is a non—contiguous that uses 6 registers. The computed contiguous
evaluation takes 7 registers. The program to compute the non—contiguous evaluation has run for about 7 days, the
corresponding program for the contiguous evaluation took less than 0.1 seconds. For DAGs with n > 25 nodes it is not
possible to compute the best non—contiguous evaluation because of the runtime of the program that computes them is

growing too fast.

18

n | d Nimpte Niescend | Naescend2 n | d Nimpte Niescend | Ndescendz
24 | 12 4096 146) 20 | 14 16384 160 10
25 | 14 16384 1248 3 28 | 16 65536 784 8
28 | 16 65536 748 22 29 | 18 262144 938 32
27 | 17 131072 744 15 30 | 21 2097152 1040 64
28 | 19 524288 630 32 37| 23 8388608 13072 24
33 | 21 2097152 1148 98 38 | 24 || 16777216 11924 56
36 | 24 || 16777216 2677 312 45 | 27 || 134217728 | 100800 18
38 | 26 || 67108864 6128 408 41 | 29 || 536870912 74016 364
39 | 27 || 134217728 1280 358 41 | 31 231 3032 142
42 | 29 || 536870912 6072 64 41 | 31 231 3128 180
42 | 31 231 2454 152 44 | 33 233 40288 435
46 | 34 234 4902 707 46 | 34 234 40244 1008
o4 | 39 239 30456 5992 48 | 37 237 21488 1508
56 | 43 243 21048 4421 03 | 42 242 79872 3576

Table 2: Some examples from a test series for large random DAGs. The number of contiguous evaluations
generated by the algorithms simple, descend and descend2 are given for typical examples. The tests confirm the

large improvements of descend and descend?2.

Source DAG 1| d || Nsimpte | Ndescend | Ndescend2 | Tdescend | Tdescend2
LL 14 second loop 19|10|| 1024 432 18 0.1 sec. |< 0.1 sec.
LL 20 inner loop 23|14| 16384 992 6 0.2 sec. |< 0.1 sec.
MDG |calc. cos(f),sin(f), ... |26(15|| 32768 | 192 96 < 0.1 sec.|< 0.1 sec.
MDG |calc. forces, first part|81(59| 2°%° — 7168 — 13.6 sec.
subDAG of this |65[45|| 2%° — 532 — 0.9 sec.

subDAG of this |52[35|| 23° | 284672 272 70.2 sec. | 0.8 sec.
subDAG of this [44|30|| 23° | 172032 72 42.9 sec. | 0.3 sec.
subDAG of this [24|12| 4096 105 8 < 0.1 sec.|< 0.1 sec.
SPEC77| mult. FFT analysis |49|30| 23° | 131072 | 32768 [20.05 sec.| 21.1 sec.

Table 3: Some measurements for DAGs taken from real programs (LL = Livermore Loop Kernels; MDG =
Molecular Dynamics, and SPEC77 = atmospheric flow simulation, both from the Perfect Club Benchmark Suite).
The table also gives the run times of the algorithms descend and descend2, implemented on a SUN SPARC station
SLC. The tests show that for large DAGs descend is too slow. but the run times required by descend2 remain really

acceptable.

19

Our experiments have shown that the reordering of large basic blocks according to an optimal con-
tiguous evaluation saves about 30% of the required registers on the average (see [11]).

We use a register allocation scheme called first_free_reg that allocates, for each node, the free register
with the smallest number. Since a new register is allocated only if there is no other free register
left, the generated register allocation is optimal and the number of allocated registers is equal to the
register need of the evaluation.

The register allocation scheme uses a binary tree with the register 1,...,n as leaves. In each node,
there is a flag free that indicates, whether the subtree of this node contains a free register. In order
to allocate a free register, we walk along a path from the root to a free register by turning at each
node to its leftmost son with a TRUE free flag. After switching the flag of the leaf found to FALSE, we
traverse the path back to the root in order to update the flags. For each node on the path we set free
to FALSE iff its two sons have free = FALSE.

If a register is marked free again, we must restore the free flags on the path from this register back to
the root in the same way by setting for each node free to TRUE if at least one son has a true free flag.
The run time is O(logn) for allocating or freeing a register, thus the total run time is O(nlogn) for
the evaluation of a DAG with n nodes.

The advantage of this allocation method is that the allocated registers usually have rather different
access rates since, in general, registers with a low number are used more often than registers with a high
number. That results in an allocation scheme that is well suited for spilling registers. If we have fewer
registers available in the target machine than the evaluation requires, then we are forced to spill those
registers with the least usage. The spill cost are at a minimum, if usage is distributed as unequally as
possible over the allocated registers. The proposed heuristic first_free_reg fulfills this condition quite
well. The actual spilling algorithm is described in [2] for basic blocks of vector instructions and may
easily be adapted for the scalar case.

The general problem of computing an evaluation that is optimal with respect to spill cost seems to
be a hard problem in terms of computational complexity, but that does not really matter in practice
because a possible further gain in execution time compared to first_free_reg appears to be marginal
for real DAGs.

9 Conclusions

We have presented two variants of the simple algorithm that evaluates only the tree nodes by a
labeling algorithm and generates 2¢ contiguous evaluations where d is the number of decision nodes
of the DAG. The first variant is the exclusion of redundant decision nodes as performed by procedure
descend. The second variant is the splitting of the DAG in subtrees (performed by descend2) and the
evaluation of these by the modified labeling algorithm labelfs2. The experimental results in Section
7 confirm that this variant generates only a small number of contiguous evaluations, even for large

DAGs. Among the generated evaluations are all evaluations with the least register need. Therefore,

20

by using descend2 we find the optimal contiguous evaluation in a reasonable time even for large DAGs.

The dramatic reduction in evaluations generated makes descend?2 suitable for the use in optimizing

compilers, especially for time—critical regions of the source program.

10 Acknowledgements

The authors would like to thank Prof. Dr. R. Wilhelm and Prof. Dr. W.J. Paul for their helpful

support.

References

[1]

[10]

[11]

The Connection Machine CM-5 Technical Summary, Thinking Machines Corporation, Cambridge, MA,
1991

Kefller, C.W., Paul, W.J., Rauber, T.: Scheduling Vector Straight Line Code on Vector Processors. in:
R. Giegerich, S.L. Graham (Ed.): Code Generation — Concepts, Tools, Techniques. Springer Workshops
in Computing Series (WICS), 1992.

Dongarra, J.J., Jinds, A.R.: Unrolling Loops in Fortran, Software Practice and Experience, 9:3, 219-226
(1979)

Fisher, J,: Trace Scheduling: A Technique for Global Microcode Compaction, IEEE Transactions on
Computers, C—30:7 (1981)

Goodman J.R., Hsu Wei-Chung: Code Scheduling and Register Allocation in Large Basic Blocks, ACM

International Conference on Supercomputing, 1988, 442-452

Chaitin, G.J., Auslander M.A., Chandra A.K., Cocke J., Hopkins M.E., Markstein P.W.: Register allo-
cation via coloring. Computer Languages Vol. 6, 47-57 (1981)

Chaitin, G.J.: Register allocation & spilling via graph coloring. ACM SIGPLAN Notices 17:6, 201-207
(1982)

Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison—Wesley (1986)

Sethi, R., Ullman, J.D.: The generation of optimal code for arithmetic expressions. Journal of the ACM,
Vol. 17, 715-728 (1970)

Sethi, R.: Complete register allocation problems. STAM Journal of Computing 4, 226-248 (1975)

Kefller, C.W., Paul, W.J., Rauber, T.: A Randomized Heuristic Approach to Register Allocation. Pro-
ceedings of PLILP’91 Third International Symposium on Programming Language Implementation and

Logic Programming, Aug. 26-28, 1991, Passau, Germany. Springer LNCS Vol. 528, 195-206.
Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP—Completeness. (1984)

Aho A.V., Johnson S.C.: Optimal Code Generation for Expression Trees, Journal of the ACM 23:3
(1976), pages 488-501

Rauber, Thomas: An Optimizing Compiler for Vector Processors. Proc. ISMM International Conference

on Parallel and Distributed Computing and Systems, New York 1990, Acta press, 97-103

21

