
Appeared in: Proceedings of PLILP 91 Third International Symposium
on Programming Language Implementation and Logic Programming,

Aug. 26{28, 1991, Passau, Germany.

Springer LNCS vol. 528, pp. 195{206.

A randomized heuristic approach

to register allocation

C. W. Ke�ler�, W. J. Paul, T. Raubery

Computer Science Department, University Saarbr�ucken, Germany

Abstract

We present a randomized algorithm to generate contiguous evaluations for ex-
pression DAGs representing basic blocks of straight line code with nearly minimal
register need. This heuristic may be used to reorder the statements in a basic block
before applying a global register allocation scheme like Graph Coloring. Experi-
ments have shown that the new heuristic produces results which are about 30%
better on the average than without reordering.

1 Introduction

Register allocation is one of the most important problems in compiler optimizations.
Among the numerous register allocation schemes proposed register allocation and spilling
via graph coloring is generally accepted to give good results. But register allocation via
graph coloring has the disadvantage of using a �xed evaluation order within a given basic
block. This is the evaluation order given by the source program. But often there exists
an evaluation order for the basic block that uses less registers. By using this order the
global register allocation generated via graph coloring could be improved. The aim of
this article is to achieve such an improvement by improving the evaluation order within
the basic blocks.
We can represent a basic block by a directed acyclic graph (DAG); see Fig. 1 for an
example. An algorithm that constructs a DAG for a given basic block is given in [1]. For
the evaluation of DAGs the following results are known:

(1) If the DAG is a tree, the well{known algorithm of Sethi and Ullman (see [8])
generates an optimal evaluation in linear time (optimal means: uses as few registers
as possible).

(2) The problem of generating an optimal evaluation for a given DAG is NP{complete
(see [9]).

To generate a good evaluation order for a DAG that is not a tree, we have to �nd an
heuristic to do this task. We present such an heuristic in the following sections.
The new heuristic uses a mix of several simple evaluation strategies that also include a
randomized evaluation selection. These simple evaluation strategies are applied concur-
rently and the best evaluation generated is selected.

�research partially funded by the Leibniz program of the DFG
yresearch partially funded by DFG, SFB 124

The idea behind this approach is that there exists no uniform heuristic that generates
good evaluations for every possible DAG. But most of the DAGs encountered in real
programs belong to one of a few simple classes. For each of these classes there exists
a simple algorithm that generates good, often optimal evaluations. By running these
simple algorithms "in parallel" and choosing the best result we obtain a heuristic that
copes with most of the DAGs encountered in real programs.
In section 2 we introduce the basic formalism and two simple depth{�rst{search (dfs)
variants as evaluation strategies. In section 3 we present the randomized evaluation
strategy, in section 4 a variant of the Labeling Algorithm (see [8]). In section 5 we put
the pieces together and discuss the performance improvement reached by the reordering
with respect to the original basic block.

2 Evaluating DAGs

We assume that we are generating code for a single processor machine with general
purpose registers R = fR0; R1; R2 : : :g and a countable sequence of memory locations.
The arithmetic machine operations are three-address-instructions of the following types:

Rk Ri op Rj binary operation, op 2 f+;�;�; : : :g,
Rk op Ri unary operation,
Rk Load(a) load register k from the memory location a, or
Store(a) Rk store the contents of register k into the memory location a,

where i 6= j 6= k 6= i, Rk; Ri; Rj 2 R.
The following considerations are also applicable to the case k = i or k = j. Our claim
that the registers used by an operation must be mutually di�erent makes the handling
partially easier, but does not a�ect the validity of our results.

De�nition: A basic block is a sequence of three{address{instructions that can only be
entered via the �rst and only be left via the last statement.
A directed graph is a pair G = (V;E) where V is a �nite set of nodes and E � V � V is
a set of edges. In the following let n = jV j denote the number of nodes of the graph.
A sequence of vertices v0; v1; : : : vk with (vi; vi+1) 2 E is called a path of length k from
v0 to vk . A cycle is a path from v to v. A directed graph is called acyclic if it contains
no cycle (of length � 1).
If (w; v) 2 E, then w is called operand or son of v; v is called result or father of w, i. e. the
edge is directed from the son to the father. A node which has no sons is a leaf, otherwise
it is an inner node; in particular we call a node with two sons binary and a node with
only one son unary. A node with no father is called root of G.
The outdegree outdeg(w) of a node w 2 V is the number of edges leaving w, i. e. the
number of its fathers.
The data dependencies in a basic block can be described by a directed acyclic graph
(DAG). The leaves of the DAG are the variables and constants occurring as operands in
the basic block; the inner nodes represent intermediate results. An example is given in
Figure 1.
Let G = (V;E) be a directed graph with n nodes. A mapping ord: V ! f1; 2; : : : ; ng
with

8(w; v) 2 E : ord(w) < ord(v)

q q q

q
q

q q
q q

q q

a a

g1 g2
b b c

d

f

e

h

�

�

� �

+ +

1 1

2 2 1 1 1

33

4

4

6 6
�
��

�
�
�
�
�
��

@
@I

�
��
@
@I

@
@
@I

�
�
��
@
@I

a
g2
b
d
b
c
e
f
a
g1
h

R1 Load(a)
R2 �R1

R1 Load(b)
R3 R2 +R1

R1 Load(b)
R2 Load(c)
R1 R3 �R4

R4 R1 +R2

R2 Load(a)
R3 �R2

R2 R3 �R1

q q q
a

g
b c

d e

f

h

�

�

�

q q
+ +

q
q

q

�

�
HH

HHY

J
J
J]
J
J
J]

6

6
J
J
J]

�

A0 :
a
g

b
d
c
e
f
h

R1 Load(a)
R2 �R1

R1 Load(b)
R3 R2 +R1

R4 Load(c)
R5 R1 +R4

R1 R3 �R5

R3 R2 �R1

c
b
e
a
g
d
f
h

R1 Load(c)
R2 Load(b)
R3 R1 +R2

R1 Load(a)
R4 �R1

R1 R4 +R2

R2 R1 �R3

R1 R4 �R2

Figure 1: Example: At �rst the front end generates an expression tree for (�a)� ((�a+
b)� (b+ c)) and evaluates it according to the Labeling algorithm of Sethi/Ullman with
minimal register need 4. (The labels are printed at the right hand side of the nodes). The
optimizer recognizes common subexpressions, constructs the DAG G and evaluates G in
the original order resulting in an evaluation A0. This reduces the number of instructions
and hence the completion time of the basic block. However, now 5 instead of 4 registers
are required for the new basic block since A0 is not optimal. The better evaluation on
the right hand side obtained by reordering A0 needs only 4 registers, and that is optimal.

is called a topologic order of the nodes of G. It is well{known that for a directed graph
a topological order exists i� it is acyclic. (see e. g. [5]).
De�nition: (Evaluation of a DAG G) An evaluation A of G is a permutation of the
nodes in V such that for all nodes v 2 V the following holds: If v is an inner node with
sons v1; : : : ; vk then v appears in A after vi; i = 1; :::; k.
This means the evaluation A is complete and contains no recomputations, i. e. each node
of the DAG appears exactly once in A. Moreover the evaluation is consistent because no
node can be evaluated before all of his sons are. Thus each topological order of G is an
evaluation, and vice versa.

De�nitions: Let G = (V;E) be a DAG. A DAG S = (V 0; E0) is called subDAG of G,
if V 0 � V and E0 � E \ (V 0 � V 0). | A subDAG S = (V 0; E0) of G = (V;E) with root
w is called complete, if:
V 0 = fv 2 V : 9 path from v to w g and
E0 = fe 2 E : e is an edge on a path from a node v 2 V 0 to w g.

De�nition: (contiguous evaluation of a DAG G)
(1) Let G = (V;E) be a DAG with V = fvg, E = ;, i. e. v is the only node, root and

w
v1 v2p pp

�
�
�
�

�
�
�
�

@
@

@
@

@
@

@
@

HH��

V1 V2

V 0
Figure 2: Example to the de�nition of a
contiguous evaluation

leaf. Then A = (v) is a contiguous evaluation of G.

(2) Let G = (V;E) be a DAG with root w, let w be an inner node with sons v1; : : : ; vp
(p � 1). Let S1 = (V1; E1), . . . , Sp = (Vp; Ep) be the complete subDAGs of G with
the roots v1; : : : ; vp. Let � : f1; :::; pg ! f1; :::; pg be an arbitrary permutation.
Furthermore let A be an evaluation of G in the form

A = (A�(1); A�(2); : : : ; A�(p); w);

where the following holds for all j 2 f1; : : : ; pg: A�(j) contains exactly the nodes of

~V�(j) = V�(j) �

j�1[
i=1

V�(i)

and Aj is a contiguous evaluation of ~Gj = (~Vj ; Ej \ (~Vj � ~Vj)). Then A is a
contiguous evaluation of G.

(3) Those are all contiguous evaluations of G.
>From now on we suppose p � 2 because no node has more than two sons in our machine
model.
Example: Consider Fig. 2: Let G = (V;E) be a DAG with root w. w has the sons
v1 und v2. Let S1 = (V1; E1) and S2 = (V2; E2) be the complete subDAGs of G with
the roots v1 resp. v2. Let V 0 = V1 \ V2. Let �(1) = 1 and �(2) = 2. Then ~V1 = V1
and ~V2 = V2 � V 0. Let A1 be a contiguous evaluation of ~G1, and let A2 be a contiguous
evaluation of ~G2. Then A = (A1; A2; w) is a contiguous evaluation of G.
The advantage of a contiguous evaluation is the fact that it can be generated by simple
algorithms (variations of depth{�rst{search (dfs)). In this paper we will restrict our
attention to contiguous evaluations. This is already a heuristic because there are some
DAGs for which a noncontiguous evaluation exists that uses less registers than every
contiguous evaluation. However, in practice these cases seem to be rare. The smallest
DAG of this kind we found so far has 14 nodes and is printed in Fig. 3.
De�nitions: (cf. [9]) Let num : R ! f0; 1; 2 : : :g, num(Ri) = i be a function that
assigns a number to each register. | A mapping reg : V ! R is called a (consistent)
register allocation for A if for all nodes u, v, w 2 V the following holds: If u is a son of
w, and v appears in A between u and w, then reg(u) 6= reg(v).

m(A) = min
reg is reg: alloc: for A

f max
v appears in A

fnum(reg(v)) + 1gg

is called the register need of the evaluation A. | An evaluation A for a DAG G is called
optimal (w. r. to its register need m = m(A)) if for all evaluations A0 of Gm(A0) � m(A).
In general there will exist several optimal evaluations for a given DAG. | In this paper
we always use the word "optimal" with respect to the register need.
Sethi proved in 1975 ([9]) that the problem of computing an optimal evaluation for a given
DAG is NP{complete. Assuming P 6= NP we expect an algorithm with nonpolynomial
run time. Unfortunately, this problem often occurs in compiler construction and should
be solved fast. We will present a heuristic to produce fairly good evaluations in linear
time.

6

5

2 4

1 3

m

m

m m

mm

ja jb jd
jc je

jf jg
jh

���
���

D
D
D
D
D
D
DD

��
���

PP
PPP

��
�

HH
H

�
��

Q
QQ

�� ZZ

,��ZZ �� ZZ

Figure 3: This DAG can be evaluated noncon-
tiguously (in the order a; b; c; d; e; 1; f; g; 2; h; 3,
4, 5, 6) using 4 registers, less than each contiguous
evaluation: An evaluation using 4 registers must
evaluate the subDAG with root 1 �rst. A contigu-
ous evaluation can do this only by evaluating the
left son of node 6, the right son of node 5 and the
left son of node 4 �rst. In order the evaluation
to be contiguous nodes h and 3 must be evalu-
ated after 1 and thus the values of nodes 3 and
4 must be held in two registers. But in order to
evaluate nodes f; g and 2, three more registers are
required, thus the contiguous evaluation uses at
least �ve registers altogether.

Let new reg() be a function which returns an available register and marks it busy, and
let regfree(reg) be a function which marks the register reg free again. (For more details
see [3]).
We apply dfs{variations to evaluate the given DAG contiguously. The crucial point in
dfs is the order in which the sons of the binary nodes are visited. If we always visit the
left son �rst, we obtain left �rst search (lfs):

Let G = (V;E) be a DAG.
Set visited(v) = FALSE for all v 2 V .
(1) function lfs(node v)

(� evaluate the subDAG induced by node v 2 V �)
begin

(2) visited(v) TRUE;
(3) if v is not a leaf
(4) then if not visited(lson(v)) then lfs(lson(v)) �
(5) if not visited(rson(v)) then lfs(rson(v)) �

�

(6) reg(v) new reg(); print(v; reg(v));
(7) if v is not a leaf
(8) then if lson(v) will not be used any more then regfree(reg(lson(v))) �
(9) if rson(v) will not be used any more then regfree(reg(rson(v))) �

�

end lfs;

We get the information whether a node will be used later from a reference counter ref(v)
for each node v 2 V , which is initialized with outdeg(v) at the beginning of lfs and
decremented when using v as operand. If ref(v) = 0, v will not be needed any more; the
register containing the result of v can be marked free (line 8/9).
We observe that each node v will be held in a register from its evaluation point until the
last reference to v is reached. Thus, the register need m results from the highest marked
register number plus one, as in the de�nition above.

j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j
j
j
j

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

QQ

��

��

��

��

��

��

��

��

��

��

��

��

��

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

Figure 4: lfs(0) needs 9 registers, rfs(0)
only 4.

lfs{evaluation of the DAG in Fig. 4:

node 2 5 8 11 14 17 19 16 13 10 7 4 1 20 18 15 12 9 6 3 0

in reg. 0 1 2 3 4 5 6 7 5 4 3 2 1 0 8 6 7 5 4 3 2

rfs{evaluation of the DAG in Fig. 4:

node 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

in reg. 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

Table 1: Two examples for an evaluation of the DAG in Fig. 4

We obtain rfs() by swapping lines (4) and (5).
new reg() and regfree() have constant run time. So lfs() has run time O(n) since lfs(v) is
called exactly once for each node v 2 V .
lfs() (or rfs()) might return a very bad evaluation when the DAG has a certain structure
(see Fig. 4 and Tab. 1). For this reason we try to modify these algorithms in the next
section.

3 Random �rst search

Lemma 1 A unary node has no inuence on a contiguous evaluation generated by a
dfs{variation.

That is evident since for a unary node u with son v, dfs(u) has no other choice than to
call dfs(v).
De�nition: (tree{node)
(1) Each leaf is a tree{node.

(2) An inner node is a tree{node i� all its sons are tree{nodes and none of them has
outdegree > 1.

(3) Those are all tree{nodes.

De�nition: (label)

(1) For any leaf v is label(v) = 1.

(2) For a unary node v is label(v) = maxflabel(son(v)); 2g.

(3) For a binary node v is
label(v) = maxf3; maxflabel(lson(v)); label(rson(v))g+ qg
where q = 1 if label(lson(v)) = label(rson(v)), and 0 otherwise.

The Labeling{algorithm of Sethi and Ullman (see [8]) generates optimal evaluations for
a tree with labels:

(1) function labelfs(node v)
(� generates an optimal evaluation for the subtree with root v �)
begin

(2) if v is not a leaf
(3) then if label(lson(v)) > label(rson(v))
(4) then labelfs(lson(v)); labelfs(rson(v))
(5) else labelfs(rson(v)); labelfs(lson(v))

�

�

(6) reg(v) new reg(); print(v; reg(v));
(7) if v is not a leaf then regfree(reg(lson(v))); regfree(reg(rson(v))) �

end labelfs;

De�nition: A decision node is a binary node which is not a tree{node.
It is clear that in a tree there are no decision nodes. In general, for a DAG let d be the
number of decision nodes and b be the number of binary tree{nodes. Then k = b + d
denotes the number of all binary nodes of the DAG.

Lemma 2 For a tree T with one root and b binary nodes there exist exactly 2b di�erent
contiguous evaluations.

Proof: For each binary node there are 2 possibilities to select the order in which the subtrees

are evaluated. 2

Lemma 3 For a DAG with one root and k binary nodes there exist at most 2k di�erent
contiguous evaluations.

Proof: Each contiguous evaluation of a DAG with one root is characterized by the permuta-

tions � applied at each node (see the de�nition of a contiguous evaluation). Thus, if the inner

nodes v1; v2; : : : of the DAG have indegrees (the number of sons) d1; d2; : : :, then there are at

most
Q

i
(di!) contiguous evaluations. Since di � 2 for all i the lemma follows. 2

Lemma 4 Let G be a DAG with d decision nodes and b binary tree{nodes which form
t (disjoint) subtrees T1; : : : ; Tt; in Ti there are bi binary tree{nodes, i = 1 : : : t, withPt

i=1 bi = b. Then the following is true:
If we �x an evaluation Ai for Ti then there remain at most 2d di�erent contiguous eval-
uations for G.

� � �

� � �

q q q q

q q q qA
A

A
A

��
��
��

��
��
��

HHHHHH

HHHHHH

�
�

�
�

�
�

�
�

�
�

A
A

A
A

A
A

�
�
A
A� � �

T1 T2 T3 Tt

u1 u2 u3 ut

w1 w2 w3 wt

 � d decision nodes

 � b binary tree{nodes

 � replace Ti by leaf ui

G:

G':

To the proof of lemma 4

��
��

��
��

��
��

��
��
��
��
��
��
��
��

��
��

��
��

��
��

HH
HH

�
�
@
@

�
�
@
@

@
@
�
�
��
��

��


```
```

```̀

PP
PP

PP

@
@
�
�

A DAG with n� 2 decision nodes

Figure 5:

Proof: If we replace in G each subtree Ti with root wi (see Fig. 5) by a leaf ui, i = 1; : : : ; t,

we obtain a reduced DAG G0 with d decision nodes and 0 binary tree{nodes. According to

lemma 3 there are at most 2d di�erent contiguous evaluations A0 for G0. By replacing ui in A0

by the �xed evaluation Ai we get for each contiguous evaluation A0 of G0 exactly one contiguous

evaluation A of G. 2

Corollary 5 If we evaluate all the tree{nodes in the DAG G by labelfs(), there remain
at most 2d di�erent contiguous evaluations for G.

Let v1; : : : ; vd be the decision nodes of a DAG G and let � = (�1; : : : ; �d) 2 f0; 1gd be a
bitvector. Now we enumerate the 2d di�erent � 2 f0; 1gd and start dfs(root) with each
� such that the following holds:
�i = 0 i� in the call dfs(vi) the left son of vi should be evaluated �rst, 1 � i � d.
By doing this we obtain all (up to 2d) possible contiguous evaluations for G provided
that we use a �xed contiguous evaluation for the tree{nodes of G.
Unfortunately, the algorithm induced by that still might have exponential run time since
a DAG with n nodes can have up to d = n � 2 decision nodes (e. g. consider a binary
tree with n� 2 nodes; by adding two new nodes and n� 1 edges as given in Fig. 5, we
get a DAG with n� 2 decision nodes).
Of course we do not want to invest exponential run time if we have a lot of decision nodes.
Often a heuristic solution su�ces1. This suggests to throw coins in order to generate
several random bitvectors � and to hope that at least one of the evaluations computed
by this procedure has a register need close to the optimum.

Algorithm randomfs: We generate a �xed number zv of random bitvectors (with
prob(�i = 1) = 1=2) and apply dfs() to each �. Among the computed evaluations
we select one with the least register need.
The run time of randomfs is O(zv � n) according to the discussion of lfs.
Of course, if zv � 2d we have enough time to enumerate all possible 2d bitvectors, i. e. we
simulate a binary counter on the � = (0:::0000); (0:::0001); : : : ; (1:::1111). This procedure
surely gives an optimal contiguous evaluation for G.

1In particular if we would like to evaluate vector DAGs (the nodes represent vectors of a certain
length L) by vector processors, one or two additional registers do not matter very much, see [3]. The
details will be given in [4].



The advantage of this method lies in the fact that the quality of the generated solution
can be controlled by zv (zv may be passed as parameter to the compiler). That is why
we are interested in the questions how good the computed evaluation is on the average
and what size zv should have in order to get su�ciently good results.
We want to illustrate this problem for a special example: Consider the DAG of Fig. 4.
It is easy to see that randomfs can generate an optimal contiguous evaluation with a
register need of 4 only if at the decision nodes 0, 3, 6, 9 and 12 the right son is always
visited �rst. The probability for the subDAG with the root 15 being evaluated �rst is
p = 1=25 = 1=32, about 3%. The probability to �nd at least one optimal evaluation
among zv possibilities is

1 �

�
31

32

�zv

in this example. If we wish that probability being over 90%, we conclude

zv �
log 0:1

log 31� log 32
� 72:5;

for a probability of 50% we need zv � 22, and so on.
Of course we might be satis�ed if the generated evaluation would require �ve instead of
four registers. For the average register need with given zv we have found the following
results for our example by experiments:

zv 0 1 3 5 6 7 8 10 12 15 18 20 30 50
reg 9 8.4 7.7 6.7 6.3 5.6 5.6 5.6 5.6 5.6 5.0 5.0 4.9 4.4

We can see that already for a relatively small size of zv, e.g. 10, a fairly good average
register need is scored. Of course the improvement of the evaluation quality decreases
for increasing zv, and the probability for the same bitvector being chosen twice certainly
increases for increasing zv, e. g. for our example DAG with d = 13 decision nodes (thus
8192 possible bitvectors) the probability of at least one bitvector occuring several times
is over 50% already for zv = 107.
Certainly these computations are limited to our example DAG above; a more general
discussion of zv may be a subject of further research. For the present we will choose zv
with respect to the run time of randomfs.

4 labelfs | another heuristic

It is possible to compute labels for all nodes of the DAG according to the formula of
Sethi/Ullman for trees given above. In general a label{controlled evaluation of a DAG
which is not a tree will not be optimal (otherwise P = NP). However, labelfs often scores
fairly good results even for DAGs:

Start with visited(v) = FALSE for all v 2 V .
(1) function labelfs(node v)

(� evaluate the subDAG induced by node v �)
begin

(2) visited(v) TRUE;



l
l

l

l
l

l
l

l

l

l
l

l
l

l

l
l

l
l

l

l

l
l

l

l
l

l

l

l

l
l

l@@ @@ @@ @@ @@ @@

@@ @@ @@ @@ @@

@@ @@ @@ @@

@@ @@ @@

@@ @@

�� �� �� �� �� ��

�� �� �� �� ��

�� �� �� ��

�� �� ��

�� ��

�
�

�
�
�

��

@@

@@

@@

@@��

28

0

29

30

10

15

21 22 23 24 25 26 27

16 17 18 19 20

11 12 13 14

6 7 8 9

3 4 5

1 2

1 1 1 1 1 1 1

3 3 3 3 3 3

4 4 4 4 4

5 5 5 5

6 6 6

7 7

8

8

4

4

Figure 6: An extended 7{pyramid as
counterexample to the assumption of
labelfs giving always optimal evaluations:
labelfs(28) allocates 11 registers, rfs(28)
eight, lfs(28) nine registers. The label val-
ues are printed on the right top at each
node.

(3) if v is not a leaf
(4) then if label(lson(v)) > label(rson(v))
(5a) then if not visited(lson(v)) then labelfs(lson(v)) �;
(5b) if not visited(rson(v)) then labelfs(rson(v)) �
(6a) else if not visited(rson(v)) then labelfs(rson(v)) �;
(6b) if not visited(lson(v)) then labelfs(lson(v)) �

�

�

(7) reg(v)  new reg(); print(v; reg(v));
(8) if v is not a leaf
(9) then if lson(v) will no longer be used then regfree(reg(lson(v))) �
(10) if rson(v) will no longer be used then regfree(reg(rson(v))) �

�

end;

For the DAG of Fig. 4 labelfs gives an optimal evaluation (4 registers).
But we give a counterexample where labelfs does not the best (Fig. 6, Tab. 2).
So it seems sensible to unify all heuristics considered so far in a combination called V4
which applies all algorithms one after another and chooses the best evaluation generated.

5 V4 and its performance

V4 starts successively lfs, rfs, labelfs and zv instances of randomfs.
For test compilations (set zv = 0) we can stop after lfs since for testing programs any
correct evaluation is su�cient. For the �nal optimizing compilation of a program we
choose a great value of zv. The run time is O((zv + 3) � n) according to the discussions
above.
We use V4 to improve the register need of Graph Coloring. Graph Coloring (Chaitin,
1981, see [2]) allocates the registers by coloring the nodes of a so{called register inter-



rfs{evaluation of the counterexample:
node 27 26 20 25 19 14 24 18 13 9 23 17 12 8 5 22

in reg. 0 1 2 0 3 1 2 4 0 3 1 5 2 4 0 3

node 16 11 7 4 2 21 15 10 6 3 1 0 30 29 28

in reg. 6 1 5 2 4 0 7 3 6 1 5 2 1 3 0

labelfs{evaluation of the counterexample:

node 21 22 15 23 16 10 24 17 11 6 25 18 12 7 3 26

in reg. 0 1 2 3 4 1 5 6 3 4 7 8 5 6 3 4

node 19 13 8 4 1 27 20 14 9 5 2 0 30 29 28

in reg. 9 7 8 5 6 3 10 3 4 3 4 3 4 1 0

Table 2: Two examples for evaluating the DAG of Fig. 6: The decisive di�erence between
the labelfs{ and the rfs{evaluation in this case is the fact that labelfs visits the left son
�rst if the label values of both sons are equal. Of course we may formulate labelfs such
that with equal labels always the right son is preferred, but then the reection of the
DAG of Fig. 6 at the vertical axis would be a counterexample to labelfs too.

random DAG No. 1 2 3 4 5 6 7 8 9 10
number of nodes 128 80 43 135 100 53 32 96 98 115
reg. need with V4 27 16 8 27 21 11 7 23 22 25
reg. need with GC 31 20 15 37 23 16 12 32 26 32

random DAG No. 11 12 13 14 15 16 17 18 19 20
number of nodes 130 55 125 32 81 5 97 79 50 119
reg. need with V4 28 11 25 8 21 3 18 18 12 25
reg. need with GC 35 16 36 14 26 4 25 25 15 34

Table 3: A series of tests with 20 randomly constructed DAGs: V4 always improved the
register need of the original evaluation for the basic block (GC stands for "Graph Coloring
without reordering by V4"); here we obtained the average ratio GC / V4 � 1:38.

ference graph (RIG) which must be constructed from a �xed evaluation A (this is the
evaluation given in the original basic block). Two nodes (symbolic registers, here identi-
cal with the DAG nodes) interfere (thus they are connected in the RIG by an edge) if they
are active simultaneously in A, i.e. they cannot be assigned to the same physical register
(same color). The coloring can be computed by a linear{time heuristic (applied here) or
via backtracking (where exponential run time is possible). The number of di�erent colors
(chromatic number) needed for A corresponds to the register need m.
In order to show the advantages of the new heuristic we apply V4 with zv = 10 to
randomly constructed DAGs with 30 to 150 nodes (average ca. 80), see Tab. 3. The
result is surprisingly clear:
For the original evaluation of the basic block about 1/3 more registers are needed on the
average than for the evaluation returned by V4. The improvement achieved by V4 might
even be increased by choosing a greater zv.



This observation can only be explained by the fact that before the reordering we have
one �xed evaluation A0 (just the one which is given by the random construction of
the test DAG), and in general this A0 is noncontiguous. The probability for exactly
this evaluation having a very low register need is rather small. On the other hand, V4
examines here zv + 3 = 13 (mostly) di�erent evaluations, and only one of them must
have a lower register need than A0 to improve the result.

6 Final remarks

We are rather pleased with the results returned by V4, so we use it for the code optimizer
in the implementation of a compiler for vector PASCAL which is being developed at our
institute. For more details see [7]. The next step in that optimizer, the adaption of a
computed evaluation of a vector DAG to a special vector processor, is described in [3]
and will be presented in a later paper.

References

[1] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Addison{Wesley (1986)

[2] Chaitin, G.J. et al.: Register allocation via coloring. Computer Languages Vol. 6,
47{57 (1981)

[3] Ke�ler, C.W.: Code{Optimierung quasiskalarer vektorieller Grundbl�ocke f�ur Vek-

torrechner. Master thesis (1990), Universit�at Saarbr�ucken.

[4] Ke�ler, C.W., Paul, W.J., Rauber, T.: Scheduling Vector Straight Line Code on

Vector Processors. Submitted to: First International Conference of the Austrian
Center for Parallel Computation, Sept. 30 { Oct. 2, 1991, Salzburg (Austria).

[5] Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP{

Completeness. (1984)

[6] Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math.
Systems Theory 10, 239{251 (1977)

[7] Rauber, Thomas: An Optimizing Compiler for Vector Processors. Proc. ISMM In-
ternational Conference on Parallel and Distributed Computing and Systems, New
York 1990, Acta press, 97{103

[8] Sethi, R., Ullman, J.D.: The generation of optimal code for arithmetic expressions.

J. ACM, Vol. 17, 715{728 (1970)

[9] Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4, 226{248
(1975)


