
Scheduling

Moldable Parallel Streaming Tasks

on Heterogeneous Platforms

with Frequency Scaling

Sebastian Litzinger, Jörg Keller, Christoph Kessler

FernUniv. in Hagen, Linköping University,

Germany Sweden

27th European Signal Processing Conference (EUSIPCO’19),

La Coruna, Spain, Sep. 2019. IEEE, Nov. 2019.

Also presented at 12th Nordic Multicore Computing Workshop (MCC-2019), Karlskrona, Sweden.

2

Multi- / Manycore CPUs

Many small energy-efficient cores + on-chip memory units

Can be used for low-power, high-throughput computing,

e.g. processing image frame sequences

Dynamic discrete voltage and frequency scaling (DVFS)

of cores or small core groups

By Open Grid Scheduler / Grid Engine - Own work, CC0,

https://commons.wikimedia.org/w/index.php?curid=67895534

3

Streaming Computations

Streaming computations

Software pipelining

Concurrent execution of all streaming tasks in steady state

Streaming task graph (= actor network)

(Acyclic) pipeline graph of streaming tasks

Producer-consumer communication

Cf. Kahn Process Networks):
all tasks (instances) considered independent

…

4

Streaming Computations

Streaming computations

Software pipelining

Concurrent execution of all streaming tasks in steady state

Streaming task graph (= actor network)

(Acyclic) pipeline graph of streaming tasks

Producer-consumer communication

Cf. Kahn Process Networks

Steady state: Streaming task collection

Independent streaming task instances

Balance workload over all cores
to minimize the makespan
for one round of the steady state

5

Mapping Tasks for the Steady State

P1 2 3 pP P P

time

…

One round

of the pipeline

kernel

User-level

round-robin

scheduler

on each core

Generalizations:

1. Moldable tasks

2. Task-wise frequency scaling

6

Generic Heterogeneous Multicore CPU Model

Resources

p cores P1, …, Pp of 2 types

e.g., A7 (LITTLE) and A15 cores (big) in ARM big.LITTLE, same ISA

Discrete Voltage and Frequency Scaling

s discrete frequency levels F = { f1=fmin,…,fs = fmax } (ordered)

Includes voltage scaling by auto-co-scaling

big, LITTLE: 0.6, 0.8, 1.0, 1.2, 1.4GHz. (top frequency of A15 not used)

Assuming: task execution time scales linearly in f,

with measured performance coefficient r i,j = 1 for big, <1 for LITTLE

Core can change frequency dynamically at task switching

Power model: for ARM big.LITTLE [Holmbacka, Keller 2017]

Task-type specific power values Powj (f, i, j) for big and for LITTLE

Types: MEMORY, BRANCH, FMULT, SIMD, MATMUL

determined by measurements on target

0 1 2 3 4 5 6 7

7

Moldable (Parallelizable) Tasks

Moldable tasks i = 1,…,n

A task j performs fixed work tj

Can be run with (integer) w > 1 cores

(fixed before the task starts)

Resource allocation → task width wj

Arbitrary scalability functions:

efficiency 0 < ej(w) < 1 for 1 < w < Wj

Mixed task model

Streaming tasks j = 1,…,n can be

Inherently sequential (max. width Wj = 1)

Moldable, limited scalability (given maximum width Wj > 1)

Moldable, unlimited scalability (Wj > p)

wi

ej(q)

1 2 3 Wj…

1

0 q

time

8

Steady-State Task Scheduling

3 subproblems to solve (off-line):

Resource allocation

Mapping

Map each task i to wi specific cores

Discrete frequency scaling

Select for each task i a frequency Fi in { f1, …, fs }

given a throughput constraint (round makespan),

to minimize overall energy usage.

P1 P2 P3

M

P1 P2 P3

<M

?

9

Problem – Complexity!

A parallel task should start on all its assigned cores

simultaneously

Scale frequency on all cores of a parallel task equally

→ Idle times within the round that might not be scaled away

(internal fragmentation)

P1 P2 P3

<M

P4

10

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown

Example: A balanced binary crown over 8 cores

Tasks’ core allocations must be whole groups

(here, powers of 2)

Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

G0

P0 P1

G1

G3

G7 G8

P2 P3

G9 G10

P4 P5

G11 G12

P6 P7

G13 G14

G4 G5 G6

G2

11

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown

Example: A balanced binary crown over 8 cores

Tasks’ core allocations must be whole groups

(here, powers of 2)

Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

G0

P0 P1

G1

G3

G7 G8

P2 P3

G9 G10

P4 P5

G11 G12

P6 P7

G13 G14

G4 G5 G6

G2

These 2 slides are

to explain why we

12

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown

Example: A balanced binary crown over 8 cores

Tasks’ core allocations must be whole groups

(here, powers of 2)

Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

P0 P1
P2 P3 P4 P5 P6 P7

13

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown

Example: A balanced binary crown over 8 cores

Tasks’ core allocations must be whole groups

(here, powers of 2), only root group is heterogeneous

Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

P0 P1
P2 P3 P4 P5 P6 P7

14

Crown Allocation

Crown Mapping

Crown Scaling

Same order and non-increasing widths of tasks executed
“down-crown” on each core within the round

Minimizes global interferences for parallel task scaling

Only one barrier-effect at the beginning of a new round

Also, eases dynamic rescaling if tasks are dropped for a round

Crown Schedule:

one round of the

steady state of

the pipeline

Crown Scheduling

15

MILP Constraints for Crown Scheduling

xi,j,k = 1 iff task j mapped to core group i at frequency level k

Constraints:

Calculate:

Time (Gl)

Energy

Each task mapped

exactly once

Maximum

width not

exceeded

Gl = all groups

containing core l

16

3 MILPs

for different

optimization goals

Scenario 1:

Given makespan M,

min E

Scenario 2:

Given Emax,

min makespan

Scenario 3:

Given avg. power Pavg,

min Tmax

17

3 Scheduling Approaches

Task type aware, sequential tasks (TAS) – special case (Wj=1),

= [Holmbacka, Keller 2017]

Task type insensitive, parallel (TIP) – special case,

= [Melot et al. 2015] adapted for heterogeneity

Task type aware, parallel (TAP)

(this work)

18

Experimental setup

MILP solver: Gurobi 8.1 on AMD Ryzen 8 cores (16 HWT),
5 min. timeout per problem instance

Synthetic task sets with 10, 20, 40, 80 tasks each, 10 instances each

Parallelization efficiencies ej(1) = 1.0, ej(2) = 0.9, ej(4) = 0.86

Task max-widths (max. #cores) Wj

chosen depending on task type:

Deadline

Power and time coefficients from [Holmbacka, Keller 2017]

19

Optimization Time / Feasibility

20

Results:

Schedule Quality

Scenario 1:

min E, given makespan M

TAP vs. TAS:

advantage TAP for small task sets (feasible schedule in any case),

tasks executed sequentially anyway for larger task sets

TAP vs. TIP:

lower makespan (more pronounced for small task sets),

lower energy consumption (more pronounced for larger task sets),

TIP: deadline violation in 80% of all cases

21

Results (on-line appendix)

Scenario 2 (min makespan, given E budget):

TAP vs. TAS:

same behavior as for Scenario 1,

relative performance of TAP better

TAP vs. TIP:

TAP’s relative performance even better than for Scenario 1

22

Results (on-line appendix)

Scenario 3 (min makespan, Pavg given):

TAP still better than TAS for small task sets,

feasible solution can always be found (due to nature of
constraints)

TAP vs. TIP: lower makespan due to TIP overestimating
energy consumption and thus not exploiting power budget

23

Summary
Actor networks with moldable tasks on multi-/many-core architectures

Co-optimize core allocation, mapping, DVFS

Optimize for total energy, given a throughput requirement,
or throughput (round makespan) given an energy budget,

Crown-Scheduling: group hierarchy, restricts core allocations

Integrated exact solution by ILP becomes feasible

In this work generalized for heterogeneous multicores a la big.LITTLE

3 optimization scenarios – 3 MILP models

Experiments using big.LITTLE power profiles
and time coefficients measured for different task types

Task-type-awareness helps: improvements in both time and energy,
up to 53% speedup,
more feasible, fewer time-outs,¨faster opt.

Task parallelization helps: Up to 8% energy TAP/TAS for smaller task sets
Up to 30% time (TAP can avoid deadline violations)

Future work:

Modeling the communication cost between tasks

 e.g., cache misses where mapped to different core types

 Modeling dependencies for latency optimization

Real ARM board measurements for validation

APPENDIX

25

Abstract

Scheduling Moldable Parallel Streaming Tasks on

Heterogeneous Platforms with Frequency Scaling

Sebastian Litzinger, Jörg Keller, Christoph Kessler

Abstract: We extend static scheduling of parallelizable tasks

to machines with multiple core types, taking differences in

performance and power consumption due to task type into

account. Next to energy minimization for given deadline, i.e.

for given throughput requirement, we consider makespan

minimization for given energy or average power budgets. We

evaluate our approach by comparing schedules of synthetic

task sets for big.LITTLE with other schedulers from literature.

We achieve an improvement of up to 33%.

26

References
This work:

Sebastian Litzinger, Jörg Keller, Christoph Kessler: Scheduling Moldable Parallel Streaming Tasks
on Heterogeneous Platforms with Frequency Scaling. Proc. 27th European Signal Processing
Conference (EUSIPCO 2019), A Coruna, Spain, Sep. 2019, IEEE. DOI:
10.23919/EUSIPCO.2019.8903180. On-line appendix: https://e.feu.de/ii

Previous work on Crown Scheduling:

Christoph Kessler, Nicolas Melot, Patrick Eitschberger, Jörg Keller: Crown Scheduling: Energy-
Efficient Resource Allocation, Mapping and Discrete Frequency Scaling for Collections of
Malleable Streaming Tasks. In: Proc. 23rd Int. Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS 2013), Karlsruhe, Sept. 2013, pp. 215–222. © IEEE, 2013.
DOI: 10.1109/PATMOS.2013.6662176

Nicolas Melot, Christoph Kessler, Jörg Keller, Patrick Eitschberger: Fast Crown Scheduling
Heuristics for Energy-Efficient Mapping and Scaling of Moldable Streaming Tasks on Many-
Core Systems. ACM Trans. on Architecture and Code Optimization (TACO), Vol. 11(4), Art. 62,
Jan. 2015. DOI: 10.1145/2687653

Nicolas Melot, Christoph Kessler, Jörg Keller: Improving Energy-Efficiency of Static Schedules
by Core Consolidation and Switching Off Unused Cores. ParCo-2015 conference, Edinburgh,
UK, 1-4 Sep. 2015. Published in: Gerhard R. Joubert, Hugh Leather, Mark Parsons, Frans Peters,
Mark Sawyer (eds.): Advances in Parallel Computing, Volume 27: Parallel Computing: On the Road
to Exascale, IOS Press, April 2016, pages 285-294. DOI 10.3233/978-1-61499-621-7-285.

Nicolas Melot, Christoph Kessler, Jörg Keller, Patrick Eitschberger: Co-optimizing Core
Allocation, Mapping and DVFS in Streaming Programs with Moldable Tasks for Energy
Efficient Execution on Manycore Architectures. In: Proc. 19th International Conference on
Application of Concurrency to System Design (ACSD-2019), Aachen, Germany, June 23-28, 2019.
IEEE. DOI: 10.1109/ACSD.2019.00011

Previous work on task type aware scheduling of sequential streaming tasks on big.LITTLE:

S. Holmbacka, J. Keller: Workload type-aware scheduling on big.LITTLE platforms. In: S.
Ibrahim, K.-K. R. Choo, Z. Yan, and W. Pedrycz, Eds., Algorithms and Architectures for Parallel
Processing, pp. 3–17, Springer, 2017

