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Abstract

This paper describes a knowledge-based system for automatic parallelization of a wide class of
sequential numeric codes operating on vectors and dense matrices, and for execution on distributed
memory message-passing multiprocessors.

Its main feature is a fast and powerful pattern recognition tool that locally identifies frequently—
occurring computations and programming concepts in the source code. This tool works also for dusty
deck codes that have been ‘encrypted’ by former machine-specific code transformations.

Successful pattern recognition guides sophisticated code transformations including local algorithm
replacement such that the parallelized code need not emerge from the sequential program structure
by just parallelizing the loops. It allows access to an expert’s knowledge on useful parallel algorithms,
available machine—specific library routines, and powerful program transformations,

The partially restored program semantics also supports local array alignment, distribution and
redistribution, and allows for faster and more exact prediction of the performance of the parallelized
target code than is usually possible.

Key words: automatic parallelization, automatic program transformation, algorithm replacement, pattern recog-
nition in numerical codes, automatic data distribution, performance prediction

1 Introduction

Parallel computers with distributed memory are known to be difficult to program. Even more problem-
atic is automatic parallelization for such machines. The most challenging problems that a parallelizing
compiler is faced with are the following:

e Parallel code must contain explicit message passing statements. But explicit programming of mes-
sage passing is complex, tedious and error-prone.

e The efficiency of the target program depends heavily on choosing a suitable distribution (and
sometimes, even redistribution) of the arrays occurring in the source program. But for larger
applications, this is a difficult global optimization problem.

e A SPMD program generated semi—automatically from a sequential source program by adapting it to
given array distributions must in general be transformed to be efficient — just applying the owner-
computes-rule will usually not suffice. But there is no guidance on which optimizing transformations
to choose, and in which order to apply them. Moreover, there is no possibility to exploit explicitly
parallel algorithms that have been developed over the last decades for various problems on various
target architectures.

e Run time prediction for nontrivial codes on real machines is a very complex issue, due to network
contention, message protocols, buffering, undocumented hardware features, and other problems.
But reliable run time prediction is essential to estimate the quality of array distribution schemes or
of program transformations.



Message passing statements can be generated automatically today by semiautomatic parallelization
[CK88, ZBG88]. The user has to provide array distributions and optimizing transformations manually,
either in the form of interactive commands, as in SUPERB [ZBG88], or in the form of language constructs
or compiler directives in an explicitly parallel programming language such as Fortran-D [HKT91], Vienna
Fortran [CMZ92], High Performance Fortran [HPF93] and others. Nevertheless, there remains the hard
problems involved in automatic data distribution and redistribution, in automatic guidance on optimizing
transformations, and in suitably accurate performance prediction.

The problems involved in generating good parallel code for distributed memory multiprocessors (or other
complex supercomputer architectures) arise from the fact that there is often not sufficient knowledge
available of the source program and on the target machine characteristics. Thus, an automatic parallelizer
for such target architectures must be able to acquire and access as much of this knowledge as possible.
This does not work for all programs.

Many numerical programs are, however, particularly suitable for this purpose: As a result of considering
numerical algorithms in books and courses, and studying a large number of typical application codes
that are reasonable candidates to be ported to distributed memory systems, we have observed [Kefi94a]
that there is only a rather limited number of typical operations, called patterns, that often occur in these
programs, in particular in the time—consuming inner loops.

These patterns are mostly data parallel operations like elementwise operations on vectors and matrices,
various kinds of reductions and linear recurrences, difference stars, grid relaxation sweeps, convolutions
and others. A pattern is considered to be a primitive with respect to mathematical properties, data
structures of operands, memory access structure, array alignment preferences and run time behaviour.
We have collected around 150 patterns in a basic pattern library, and also recorded typical implementation
prototypes (syntactic variations) of these patterns that are used in sequential source codes [Kefl94a].

Based on this observation, we construct an automatic parallelization system called PARAMAT (“PAR-
allelize Automatically by pattern MATching”), with the following key ideas:

e The first step of parallelization must contain a pattern recognition tool that works fast and reliably.
Code pieces in the source program that are recognized as an occurrence of one of our patterns are
replaced by an instance of that pattern, looking similar to a call to an externally defined function.
The input language is structured C without pointers.

e Once the system knows what the source program locally does, it can infer additional knowledge using
mathematical properties and efficient implementations of the patterns on the target machine, and
access offline—generated information on favorable data distributions and run time behaviour of the
pattern implementations on the target machine. The parallelization system can then easily use this
knowledge to guide a sophisticated parallelization process with high—level program transformations
including local algorithm replacement.

The remainder of this paper is organized as follows: Section 2 describes pattern recognition in numerical
codes and summarizes our list of patterns. Section 3 presents the main ideas and definitions of our
pattern recognition method and gives several examples. Section 4 summarizes the PARAMAT pattern
recognition tool, gives results, and discusses some extensions. Section 5 shows how the information
supplied by pattern recognition is used to guide automatic parallelization. Section 6 lists some related
approaches to pattern recognition and pattern—driven automatic parallelization.

2 Patterns in scientific programs

In order to promote the pattern recognition approach, we have examined many sequential numerical algo-
rithms that are typical and well-suited candidates to be run on distributed memory multiprocessors, e.g.
some of the “Numerical Recipes” [PTVF92], algorithms considered in numerical textbooks like [BBC*93]
or in a numerical maths course: Basic linear algebra subroutines (see also [LHKK79, DDHHS88]), direct



| order | patterns | number |

0 scalar arithmetics, init, copy, max, min, swap, read, write, etc. 20
MULTIADD(®), MULTIMUL'?)| grid stencil 1D (HSTAR(?)) and 2D (STAR(®)) 4
1 loop accumulating scalar values (FSUM') 1

elementwise vector operations (VADD(l), VMUL(l)7 ),
scalar plus vector (VINC(I) , scalar times vector (SV(l)),
full vector triad (VADDSV 1)), accumulating vector triad (VAADDSV(l),...)7
vector init. (VINIT(l), VASSIGN™), ...), vector copy (VCOPY(l))7

vector swap (VSWAP(l)), vector read/write, etc. 32
1D reductions: total sum of vector elements (VSUI\/I(l)), total product (VPROD(l)),
inner product (SSP(l), VQSUM(l)), etc. 7

1D reductions: vector maximization/minimizations (value: VMAXVAL®, VI\/IINVAL(l)),
location: (VMAXLOC™), VMINLOC™), both (VMAXVL™M) vMINVL™))

1D relaxation steps: Jacobi (VJACOBIM)), Gauss—Seidel (VGAUSSSEIDEL (1)

first order linear recurrences (FOLR(l)7 PREVSUI\/I(l)7 SUFVSUIVI(l))

intermediate form of 1D convolution

global vector update (VLUD!)

vector shift (VSHIFT(1))

2 elementwise matrix operations (MADD™ MMULY | ..)
scalar plus matrix (l\/IINC(z))7 scalar times matrix (Sl\/l(z)),
matrix triad (MAADDSM(?)), matrix init. (MINIT®), MASSIGN(?)),
matrix copy (MCOPY(?)), matrix read/-write, etc. 17

matrix—vector multiplication (MV(z)) and related patterns 3

forward and backward substitution (FSUBST(?), BSUBST(?)) 2

2D-reductions: total sum of matrix elements (MSUM(z))7 total product (MPROD(z)),
concurrent row/col-vector sum (VVSUI\/I(z)) or product (VVPROD(z)) 4

2D-reductions: matrix maximizations/minimizations (total or row/col-wise)
value (MMAXVAL®) MMINVAL®)), location (MMAXLOC®), MMINLOC(?)),
both value and location (MMAXVL?) MMINVL(?)) 1

2D relaxation steps: Jacobi (MJACOBI?), ...), Gauss-Seidel (MGAUSSSEIDEL(?), ..

global matrix update (MLUD(Z)7 ... intermediate LU decomposition)

1D convolution (VCONV(z)); intermediate forms of 2D convolution

matrix shift (MSHIFT(?)), row/col-vector-shift (VVSHIFT(2))

3 matrix multiplication (MM')), LU decomposition (LUD'?)

intermediate forms of 2D convolution

2D relaxation loops: Jacobi (JACOBI®)), Gauss—Seidel (GAUSSSEIDEL(®))

4 2D convolution (MCONV™)
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Table 1: A brief summary of the patterns included into the current version of the Basic PARAMAT Pattern
Library. All BLAS routines operating on dense real matrices are included. A pattern’s order number (left
hand column) denotes the depth of a loop nest that is usually encountered in a straightforward sequential
implementation of that pattern. The so—called unstable patterns, e.g. general vector operation (GVOP(l)) or
multiple vector triad (VMULTIADD(l)), are not listed because they are decomposed into their basic patterns
before being submitted to the code generation stage, thus being invisible to code generation.

solvers for linear equation systems (such as Gaussian Elimination, LU, QR or Cholesky decomposi-
tion), Simplex, iterative linear equation solvers (such as Jacobi, Gaufi—Seidel, JOR, SOR and Conjugate—
Gradient solver), fixpoint iterations (e.g. square-rooting a matrix), grid relaxations (used e.g. for numer-
ical solution of partial differential equations), interpolation problems, numerical integration and differ-
entiation, and multigrid algorithms. These algorithms are the basic building blocks of many numerical
applications.

Considering these numerical algorithms in numerics books and courses, and studying a large number
of typical application codes as e.g. the Purdue Set benchmark ([MFL*92], see Table 2), the Livermore
Loops ([McMS86], see Table 3), and others (see [KeB94a]), that are reasonable candidates to be ported
to distributed memory systems, we have observed that there is only a rather limited number of typical,



mostly data parallel operations, called patterns, that often occur in these programs, in particular in the
time—consuming inner loops. A pattern is considered to be a primitive with respect to mathematical
properties, data structures of operands, memory access structure, array alignment preferences and run
time behaviour. We have collected around 150 patterns in a basic pattern library (see [Kefi94a], chapter 5
for the complete specification; Table 1 gives an overview). We have also recorded typical implementation
prototypes (syntactic variations) of these patterns that are used to occur in the sequential source codes
considered; they are specified in appendix B of [Ke394a].

Our observations are backed up by other empirical investigations on large FORTRAN codes [SLY90] and
by the typical sets of numerical routines contained in numerical linear algebra packages, which are either
supplied by hardware vendors, or offered by numerical software companies, or distributed as public domain
software.

So far, we have focussed on algorithms operating on rectangular dense real matrices since these are the
most reasonable candidates to be ported to distributed memory parallel supercomputers; nevertheless,
our approach may easily be extended to other matrix types (e.g., banded, block-banded; complex). We
are currently investigating operations on sparse matrices [Kef394al.

|N0. |Name |rec0gnized patterns |recognized loops |
1 |Trapezoidal rule FSUM 1 from 1
2 |reduction function 1 MINITSP, VVPROD, VSUM 3 from 3
3 |reduction function 2 MINIT, VVPROD, VSUM 3 from 3
4 |reduction function 3 VINIT, VINV, VSUM 3 from 3
5 |simple search MINITSP, MSUM, - 2 from 3
6 |tridiag. set of lin. eqns. VINIT (8), VMUL (4), GVOP (8), VCOPY (5), VSUM| 26 from 26
7 |Lagrange interpolation VINITSP(2), VINC (2), VINV, VPROD (2), - 7 from 8
8 |divided differences VINITSP, VSIN -, MSUM 3 from 4
9 |finite differences MINITSP, MINIT, MJACOBI, -, MCOPY, MSUM 5 from 6
11 |Fourier’s moments VINITSP, GVOP, VSUM 3 from 3
12 |array construction VINITSP (2), MINITSP, MCOPY, VCOPY (2) 6 from 6
13 |floating point arithmetic VINITSP, GVOP (3), VMULTIADD, 7 from 7
VCONDASS (VADD) , VQSUM
14 |Simpson’s and Gauss’ integration | FSUM (5) 5 from 5
15 | Chebyshev interpolation VINITSP (2), GVOP (3), VCOPY, - 6 from 7

Table 2: Analysis of the Purdue Set (sequential versions of 14 kernels from the HPF benchmark suite
[MFL*92]): currently recognizable patterns. The right—hand column indicates how many loops (after ap-
plying loop distribution) can be covered by patterns from the Library. GVOP denotes a general vector operation
that is later decomposed into atomic elementwise vector operations using temporary arrays.

3 Principles of pattern recognition

3.1 Overview

PARAMAT’s pattern recognizer works on the intermediate representation of the source program as an
abstract syntax tree. A well-structured and statically analyzable source language is assumed. The goal
is to annotate as many nodes as possible with a so—called pattern instance, a summary structure that
describes which function is computed in the subtree rooted at that node, together with the parameter
objects of that function. Speed and robustness of this method mainly result from exploiting the natural
semantic hierarchy of the patterns in the library.

The algorithm traverses the abstract syntax tree from left to right in postorder. For a leaf node (a
variable or a constant), determining its pattern is trivial (VAR or CONST, respectively). At each inner
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node v of the syntax tree, it tests, based on v’s children’s patterns already matched, whether there is a
pattern m in the library (there exists at most one) which matches the semantics of the subtree T, rooted
at v. This is technically arranged by calling a short routine, a realization of a so—called template. This
routine fails if it cannot prove that the function computed by 7T, equals the operation represented by m.
Otherwise, it returns an instance I of pattern m, maps the program objects to the corresponding slots of
I, and annotates v with I. If there are several templates admissible, these are tested concurrently (the
result is deterministic). Failing templates abort as soon as possible.

The already matched patterns of v’s children dramatically prune the search space of patterns that may
match v. Often, there is already one characteristic pattern (¢rigger pattern) of a child of v together with
v’s operator to select a single possible template. We give the formal definitions of these concepts in
subsection 3.3.

This (classical) pattern matching along ‘vertical’ edges of the abstract syntax tree corresponds to a special
deterministic bottom-up tree automaton [FSW92]. This procedure can be extended for pattern matching
along ‘horizontal’ dataflow edges, such that several (matched) instructions in the same block that belong
to the same pattern may be contracted to a single pattern instance. Several instructions may belong
to the same computation only if their operands are involved in at least one of several types of dataflow
relations. We denote important dataflow relations by dataflow edges (cross edges). Computation of these
edges (i.e., computing exact array data flow) is generally hard, but in our case, we can profit from the
simple array access structures that are characteristic for dense matrix computations and that are present
in all our patterns. We will consider this problem in subsection 3.5.

3.2 Preparing Code Transformations

Before starting pattern recognition, we apply several important normalizing transformations to make the
program as explicit as possible, by

e inlining all procedures (recursive procedures are very untypical for the application area considered);
this makes all program analysis intra—procedural,

e forward propagation of constant expressions,
e making control flow well-structured by eliminating gotos,

e recognition and replacement of induction variables (i.e., integer variables indexing arrays that are
not a loop variable of a surrounding for loop) by a term depending only on loop variables, and

e eliminating dead code.

These transformations are applied in this order just once (regarding ordering of transformations, see
[WS90]).

3.3 Patterns, Templates, and the Pattern Hierarchy Graph

Each nontrivial pattern m is a pair ( f,,, ) consisting of a specification f,, of a (mathematical) operation,
and a list £, of specifications of the types and the data structures of the parameters occurring in f,,.

For instance, the My pattern represents the operation § = Ab+ Z, with the parameters ¥, A, 5, and
¥ being real (sub-)arrays (Z may also be a constant).

For each nontrivial pattern m, we usually know several implementation prototypes (for sequential C
code). Because of the wide variety of semantics preserving code transformations, the number of such
prototypes can be large for more complex patterns (such as matrix-matrix-multiplication), expanding
the size of an automatically generated tree automaton dramatically. For this reason, we formulate the
prototypes as far as possible by using instances of (other) patterns. E.g., an implementation of Matrix-
Vector-Multiplication (MV(Q)) can be written as a single loop based on a dot product computation



for (i=1; i<=n; i++)
SSP(j=[1:ml, x[il, A[il[1:m], b[1:m], x[il);

or as a loop summing up the result vectors of vector triads

for (j=1; j<=m; j++)
VAADDSV(i=[1:n], x[1:n], b[jl, A[Ll:n][j], x[1l:nl);

because (Ab+ &)i— (1) = (X 7y Aijbs + 20) iz = 2 jey (Aijbg)imirin))j + (@) iz(1in)-
With such domain information it becomes straightforward to formulate templates, that are the rules to

determine a node’s pattern m (and pattern instance I) given the node’s operator and all its children’s
pattern instances.

Recognizing leaf nodes in the syntax tree as variables or constants is trivial. Now consider a subtree T,
rooted at a node w with several children vy, ...,v;. The operator op of w is either a for loop header,
an if header, an assignment, or a unary or binary expression operator. The children of w respectively
correspond to the loop body, the then or else branch, the left hand side variable or the right hand side
expression of the assignment, or the operand expressions.

Definition Let i be the function computed by T, as defined by the semantics of the programming
language used. Let the children v, vs,...,v; of node w already being annotated by pattern instances
I, I, ..., I, of (potentially, trivial) patterns my, ms, ..., my from the library. Let g denote a function. Let
ie{l,.., k}.

We call the k + 2—tuple S = (g, my, ..., mg, 1) a template of m, if g(finy, s finy) = frn = b
We call m; a trigger pattern; i is, depending on op, determined according to the table below.
Moreover, we call my, ..., my (potential) subpatterns of m. O

For each pattern, we realize only the most important templates (typically, we have 1 to 3 realized templates
per pattern), see [Ke394a]. The trigger pattern is chosen as follows:

operator op of node w | child of w carrying the trigger pattern |

for loop header loop body (first statement)
if header then part (first statement)
assignment root of right hand side expression
expression operator left or right subexpression

Definition A pattern hierarchy graph (PHG) for a set M of patterns m is a directed graph G = (V, E).
The set V' of nodes contains all patterns m € M. For each realized template S = (g, m1, ..., M4, ..., Mg, 0)
for a pattern m with trigger pattern m; there is an edge (m;,m) in E. a

Since m; = m is possible (i.e. a pattern may occur as a subpattern in one of its own templates), there
may exist trivial cycles from a pattern to itself. Apart from these trivial cycles, the PHG is acyclic.

We associate an order number order(m) with each pattern m that denotes the loop nesting depth
in a straightforward sequential implementation of m (i.e., without blocked loops). For example, for
matrix-vector multiplication, we have order(MV(z)) = 2, and for matrix-matrix multiplication, we have
order(MM®)) = 3. A PHG edge (m;, m) implies order(m;) < order(m).

A PHG is called complete for a pattern m, if its node set contains m and all subpatterns mq, ..., my of m
occurring in any realized template of m, and if it is complete for all m;, 1 < j < k.

It follows that the PHG complete for a subpattern m; of m is a subgraph of the PHG complete for m.

If m; is a trigger pattern in some template of m, we call m a superpattern of m;. We denote by SP(m;)
the set of all superpatterns of m;. Usually, a pattern has only a small number of superpatterns (see
[Kefi94a]). Let w be as above, then the set of possible candidate patterns that may match w is

ﬂ {m: (mj,m) edge in PHG} (1)

1<j<k
SP(m;)#0



AADDVV

(1)
VAADDSV SSP Q”NTIT
(0)/

AADDMUL sINT”

Figure 1: The pattern hierarchy graph of Matrix—Matrix—Multiplication. Solid edges mean realized templates
for ‘vertical’ pattern recognition; dashed edges for ‘horizontal’ pattern recognition along cross edges. Solid
cycles mean templates for unblocking or elimination of semantically invariant conditionals; dashed cycles
represent templates for loop rerolling or integration of initializers.

and the set of templates of these patterns that are to be tried out at w is determined analogously.

Thus pattern recognition becomes a path finding problem in the PHG. Different paths towards a pattern
m correspond to different implementations of the functionality of m. This means that a linear—sized
PHG (and thus, pattern recognizer) represents exponentially many implementation variations of the
same pattern.

The PHG has a second important advantage: it serves as a hash table that can be inspected by the
pattern recognition algorithm, because it yields all the possible superpatterns that could be matched
from a given trigger pattern. Often, the trigger pattern together with the operator of the node to be
matched suffices to select a single possible template to match that node. If there are several templates
admissible, these are tested concurrently; the result is deterministic. Failing templates abort as soon as
possible.

3.4 Examples

Matrix—Matrix—Multiplication We demonstrate the pattern recognition algorithm using a simple
example. Matrix—-Matrix—Multiplication is well suited since its functionality and subpatterns is widely
known. Its PHG is given in Figure 1.

Suppose the programmer has coded Matrix—Matrix—Multiplication as follows:

for i
for (i=1; i<=n; i++) { . .
for (j=1§ j<=m; j++) for j——for j
S1: c[il[j] = T T
for (j=1; j<=m; j++) assign for k
for (k=1; k<=r; k++) T
SQi c[il1[3] = c[il[j1+ali] (kI*b[k] [j1; clifTjl 0.0 assign

cl[il[3]

The pattern recognition algorithm traverses the abstract syntax tree from left to right in postorder. First,
it encounters at S1 a scalar initialization SINIT (c[i][j1, 0.0). For the j loop around it, we obtain an
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instance of a vector initialization VINIT( j=[1:m], c[i][1:m], 0.0). The access to array c has become
a vector, since one dimension has been bound by the loop.

Then, the algorithm considers the assignment S2 and annotates it by AADDMUL (c[il[j], alil [k],
blk1[j1, c[i1[j1) (accumulative addition of a product). Following the suitable PHG edge, this yields
a dot product for the k loop: SSP (k=[1:r], c[i]1[j], alil[1:r], b[1:r1[j1, c[i1[j]1). The accesses
to the arrays a and b have become vectors. As the accumulating scalar ¢ [i] [j] has not been initialized so
far, it has to be entered into the initialization slot of the SSP™) instance to keep data access information
consistent. In the next step, the do j loop around the SSP™ instance is recognized as an instance of
matrix—vector—multiplication. Also in this case, the accumulating vector c[1] [1:m] fills the initialization
slot. The partially matched, unparsed syntax tree now looks as follows (code parts ‘below’ recognized
nodes are not shown):

for (i=1; i<=n; i++) {
VINIT(j=[1:m], c[i][1:m], 0.0);
MV(j=[1:m],k=[1:r],c[i][1:m],ali][1:r],b[1:r][1:m],c[il[1:m]);
}

At this stage, we can continue pattern recognition only if we take care of data flow. Exact array dataflow
analysis, although generally a very hard problem [Fea91, MAL93], is dramatically simplified by the exact
data access information supplied with the pattern instances. In this example, we find that the vector
c[i] [1:m] is written in the VINIT™) instance, and read and overwritten by the MV ) instance, symbolized
by a so—called cross edge of type FLOW. Thus, we have exact information that data flows between these
two instances in an expected way. This situation can be tested by a realization of another template for
pattern recognition along cross edges. As the template matches, we can merge these two instances into
a single MV?) instance MV (k=[1:r], j=[1:ml, c[i]l[1:m], b[1:r][1:m], a[il[1:r], 0.0), ie., the
initialization slot is now filled by 0.0 from the VINIT® instance. This instance, in turn, can be matched
with the i loop into MM(k=[1:r],i=[1:n],j=1:m], c[1:n][1:m], all:n][1:r],b[1:r][1:m], 0.0)
(Matrix—Matrix—Multiplication) representing this entire piece of code.

During pattern recognition, we have followed the PHG paths SINIT® .. VINITY and AADDMUL...
SSP(l)...MV(2)...MV(§...MM(g). Common program transformations, like loop interchange or loop distri-
bution, would result in a different path being taken towards MM(3), but would not prohibit pattern
recognition.

Elimination of semantically redundant conditionals The following fragment is taken from the
MATMUL routine of the DYFESM program from the Perfect Club Benchmark Suite [Ber92]:

DO 300 J =1, M
IF (B(J,K) .NE. 0.) THEN
DO 200 T =1, L
C(I,K) C(I,K) + A(I,J)*B(J,K)
200 CONTINUE
300 CONTINUE

The programmer has added the condition IF (B(J,K) .NE.0.0) to avoid unnecessary multiplications and
additions by 0.0. Since the program’s semantics is not changed by this optimization, we realized a new
template for the vector triad VAADDSV) (and for several similar patterns) that follows a self cycle in
the PHG to remove the condition, just by copying the VAADDSVY instance at the I loop header to its
parent node, the IF header. Pattern recognition then proceeds as above.

Unblocking loops Blocked loops are very common in dusty deck programs that have been optimized
for other target architectures with caches or vector registers. In the following example, the i loop has
been blocked by a factor of k:



for (i=1; i<=n; i+=k)
for (j=i; j<=min(m,i+k-1); j++)
dy[j] = dy[j] + da*xdx[j];

The inner loop is recognized as a VAADDSV™ instance:

for (i=1; i<=n; i+=k)
VAADDSV(j=[i:min(n,i+k-1)], dy[i:min(n,i+k-1)], da, dx[i:min(n,i+k-1)], dy[i:min(n,i+k-1)]);

Another template (corresponding to another PHG self cycle) discovers that the i loop is blocked, and
annotates it by

VAADDSV(i=[1:n], dy[1l:n], da, dx[1:n], dy[1l:n]).

Similar unblocking templates exist for many other elementwise vector and matrix operations and for
many reductions. The normalizing transformation ‘loop unblocking’ has thus been integrated into the
pattern recognizer as a realization that is shared by all these templates. This integration is possible
since the syntax tree structure is not modified. However, this does not hold for loop distribution (a
loop transformation important for pattern recognition) which has to be called separately before each
recognition step.

Difference stars MULTIMUL®) matches a multi—operand product of scalars; MULTIADD® matches
a multi-operand sum of scalars or products of scalars. The trigger patterns for MULTIADD®) are
ADD, ADDMUL®, MULMUL®, MULTIMUL® and MULTIADD?; these for MULTIMUL® are MUL
and MULTIMUL(®. Distributivity is not applied. Double negations (-(-a))) or inversions (1/(1/a)) are
eliminated. Subtractions are represented as sums, divisions as products. Negations and inversions are
represented as flag bits in their operand nodes; this makes expression trees more compact and easier to
recognize.

Difference stars (stencils), in one (HSTAR®)) and two (STAR(®)) dimensions, are the most important
building blocks of grid relaxation sweeps. They are always based on an ADD, AADD or a MULTIADD®.
The following Gauss—Seidel relaxation (Livermore Loop 23)

for (j=2; j<=6; j++)
for (i=2; i<=N; i++)
ZA[i1[3j] = ZA[i1[j] + 0.175 * ( ZA[i][j+11*ZR[il[j]1 + ZA[il[j-11*ZB[i][j]
+ ZA[i+1]1 [j1*ZU[i][j] + ZA[i-11[j1*Z2Z[i][j]
- ZATil1(3] );

contains a five-point-stencil. The realization of the HSTAR®) / STAR® templates refines the just recog-
nized MULTIADD® instance to a STAR®) instance and calls itself as long as further, optional STAR®
parameters can be filled in:

for (j=2; j<=6; j++)
for (i=2; i<=N; i++)
STAR ( ZA[ilT[j1, _ , _ , 0.175000, _ , _ , _ , ZA[i1[31, _ , _ ,

_ zBLi1[51,  _,
ZZ[i1 3], 4.714286, ZU[il1[;],
_, ZROII 05, _,

i,1,1, 3,2,1);

Now, further recognition of MGAUSSSEIDEL® is straightforward.



3.5 Exploiting the cross edges

Cross edges in the syntax tree represent particular, loop-independent data flow relations among the
operands of pattern instances within the same block. Pattern instances interconnected by a cross edge
may, even if textually separated, belong to the same thread of computation, and thus, to the same
superpattern. Therefore, cross edges are well-suited to guide ‘horizontal’ pattern recognition.

In [Kef394b], we have devised a compact array access descriptor that supports fast realizations of the
important query operations equality, inclusion, disjointness and (direct) neighbourhood of array access
shapes. A descriptor is computed for each operand of a pattern instance just after generating it. Thus,
only one loop level has to be considered at a time. Furthermore, each operand has one of four possible
access modes: I (ignore), R (read), W (write), RW (read and overwrite). For non-recognized code
fragments, worst case assumptions have to be made. From this information, we easily compute five
different types of cross edges that are important for pattern recognition. A cross edge connects an
instance I; to an instance I» located textually behind I; within the same block, and has type

1. FLow if I; writes an object that is read by I, and this data flow is not killed by another instance
I3 located between I; and I, that writes to this object; this corresponds to a loop-independent data
flow dependence from I; to I.

2. ANTIif I; reads an object that is written by Iy, and this data ‘flow’ is not killed by another instance
I3 located between I; and I> that writes to this object; this corresponds to a loop-independent data
anti dependence from I; to I5.

3. iNpUT if both I; and I> read the same object that is not written to by another instance I3 located
between I; and I.

4. NEIGHBOUT if I; and I> write neighboured sections of the same object that are not read or written
by another instance I3 located between I; and I,.

5. NEIGHBIN if I} and I, read neighboured sections of the same object that are not written to by
another instance I3 located between I; and Is.

In general, the cross edges of a block form a directed acyclic graph.

Only pattern instances connected by cross edges are considered for a potential merge in pattern recogni-
tion. Selection of suitable templates is guided by the type of the cross edge and by the (trigger) pattern
name of the last pattern instance (I). If several templates should be admissible, then they can be tried
out concurrently; at most one of them may really match, thus determinism is preserved.

Cross edges of type ANTI are used at recognition of VSWAP() from three single vcorpy™ (vector copy)
instances:

- = ANTI ,__\ANTI
I1: VCOPY(i=[1:n],t1[:1, al:]1);

el Ty -7 N\
I2: VCOPY(i=[1:n],t2[:1, b[:1); VCOPY VCOPY VCOPY VCOPY VCOPY VCOPY
A Y
Il I2 N\ I3 7 14 N 15 7/ 16
(N 7z AN 7

I3: VCOPY(i=[1:n], al:1, cl[:1);
I4: VCOPY(i=[1:n], b[:]1, d[:1); -~__
I5: VCOPY(i=[1:n], c[:1,t1[:1);
I6: VCOPY(i=[1:nl, d4[:1,t2[:1);

~

“ANTI == ANTI
Instances belonging to the same VSWAP!) compu-
tation are chained by ANTI cross edges.

The interleaving of the instances does not prohibit the recognition process since it is guided by the cross
edges. We obtain

I1’: VSWAP(i=[1:n], al:], cl[:1, ti1[:1);
I27: VSWAP(i=[1:n], b[:], d[:1, t2[:1);

The following special cases of pattern matching along cross edges are particularly important for us:
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e Loop rerolling:

Loop unrolling is a common program optimization. It occurs (1) as replication on the expression
level (within the same expression) and (2) as replication on the statement level (different state-
ments in the same block). When rerolling loops, in general, several instances are merged at once.
These instances form a connected component of cross edges of type NEIGHBIN or NEIGHBOUT (see
[Ke394D]).

¢ Renaming/removing of temporary variables: Often, reduction implementations use tem-
poraries for the accumulating variables, e.g., to enforce register usage, or to avoid complicated
addressing:

for (i=1; i<=n; i++) {
SSP( j=[1:m], temp, alil[1:m], bl[1:m], 0.0 );
SCOPY( x[i]l, temp );

}

Immediately after recognition of SCOPY® and computation of cross edges, the FLOW cross edge
from the SSP) to the SCOPY® instance selects a SSP™) template that replaces the temporary
temp by x[i] and removes the (now useless) SCOPY®) instance.

Due to the one-pass nature of the pattern recognition algorithm, we do not know at this point
whether the last value of temp (i.e., the nth component of vector x) may be used later on. Thus,
to maintain consistency, we insert a correcting SCOPY? instance. After loop distribution and one
further pattern recognition step, we have

MV( i=[1:n],j=[1:m], x[1:n], all:n][1:m], b[1:m], 0.0 );
SCOPY( temp, x[n] );

The SCOPY? instance may later be removed as useless code if temp is not used any more.

3.6 The pattern recognition algorithm

The function stmtdescend() traverses the syntax tree in postorder; exprdescend() does the same for ex-
pression trees (where, however, no cross edges can occur).

function stmtdescend(node)
if node is already visited then return fi
if node is not an assignment statement then forall children s of node do stmtdescend(s) od fi
forall expressions e occurring in node do ezprdescend(e) od
/* Now all subtrees of node are visited and (perhaps) recognized x/
if node is an IF header then try_IF_distribution(node) fi
if node is a for loop header then try_loop_distribution(node) fi
forall admissible ‘vertical’ superpatterns m for node in the PHG (cf. formula 1)
do test by the ‘vertical’ template match(m,node), if there is an instance I of m matching node od
if not, return fi /% FAILED x/
annotate node with I; compute access descriptors and cross edges to I
repeat
forall direct cross predecessors x of node (in the same block)
do /* z has already been visited earlier x/
test by admissible cross templates if the sequence z; node is an incarnation of a superpattern m’
if yes, merge x and node, call the result node and annotate node with an instance I’ of m’; break;
od
until there are no mergeable cross predecessors of node left.
end stmtdescend()
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The routine try_IF_distribution tries to distribute a masked block of statements; try_loop_distribution tries,
for a loop over a block of statements, to perform scalar and vector expansion and thereafter distribute
the loop as far as possible (cf. [ZC90]). IF distribution and loop distribution modify the structure of the
syntax tree: node gets several “younger” brothers (copies of node) and moves some of the statements
from its body to theirs. After node, pattern recognition visits the new brother nodes as if these would
exist already from the beginning; but revisiting their children (that were children of node before and thus
are already matched) is not required.

Because of the deterministic nature of the method, each node is visited only once. Since selection of
admissible templates is very fast due to PHG inspection, run time cost is dominated by the linear tree
traversal time. Data flow is computed by need, i.e. only for the current loop level. Loop distribution uses
Tarjan’s algorithm for strongly connected components; its pseudocode can be found in [ZC90]. !

3.7 Recognition of data structure concepts

Beyond annotating nodes with pattern instances, pattern recognition offers the possibility to keep track
of static relations of single program objects. An illustrative example is the identification of statically
known grid hierarchies in multigrid programs. Detection of such grid hierarchies is especially important
when data is stored in a one-dimensional workspace array. Then, the additional information allows
reconstruction of the different two-dimensional grids, supporting array partitioning and load balancing.

3.8 Transformations after pattern recognition

After pattern recognition, we must eliminate useless code that may emanate from conservative cross
matching and certain transformations. Useless code computes variables that are not consumed or output
before being recomputed.

Instances of so—called unstable patterns are decomposed into their basic patterns’ instances, e.g., the
instance SVSUM(i,c, a, b[1:n], 0.0) issplit into the sequence VSUM (i, temp, b[1:n], 0.0); MUL(c,
a, temp). This extraction of a loop-invariant multiplication is a target-machine independent optimization.
Furthermore, the number of patterns that are visible for the code generation phase is additionally reduced.

LComputation of the data dependency graph for a block of k statements takes, depending on the dependence tests used,
in the worst case at least time O(k?); the data dependency graph itself may require space O(k?) which is then the input size
for Tarjan’s linear—time algorithm. This works fast for blocks of moderate size, but, of course, ruins the otherwise linear
run time of our algorithm. We tolerate this because blocks tend to be small compared with the size of the entire source
program, and because loop distribution is crucial for the robustness of our method.
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4 The PARAMAT Pattern Recognition Tool

4.1 Implementation

A prototype of the pattern recogni-
tion tool (see figure on the right) has
been implemented and tested. The cur-
rent implementation consists of around
12000 lines of C code and reliably recog-
nizes 91 nontrivial patterns with around
150 nontrivial templates. FEach tem-
plate is implemented as a C routine of
around 20 to 50 lines that tests syntac-
tic and semantic conditions and, if suc-
cessful, generates the pattern instance
and fills in the slot entries. Since many
useful syntactic and semantic predicates
have been predefined, writing code for
templates is handy and straightforward.
More patterns can easily be added. The
high degree of robustness against loop
interchange, loop distribution, loop un-
rolling and statement reordering has
been exemplified in practice.

4.2 Results

A phase (cf. [BKK93]) is a minimal set of loops around some assignment statements such that all indexing

Fortran77 I 5 c PARAMAT
source FRONTEND source
v PATTERN
Preparing Program Transformations RECOGNITION
Procedure Inlining Goto-Conversion TOOL
Constant Propagation Dead-Code-EI.
Induction Variable Recognition/Substitution
C Scanner Pattern Hierarchy Graph
+ Parser (global matching engine)

Syntax Tree

Abstract Template tests (vertical edges)

Template tests (cross edges)

Incremental Data Dep. Analysis

match(root) Exact Array Data Flow Analysis

Auxiliary Syntactic Predicates

partially

matched Symbolic Expression Evaluation

syntax tree Incremental IF Distribution

Dead Code Incremental Loop Distribution

Elimination Loop Rerolling

f%

PARAMAT Code Generation

output C + ‘stargazer’ (stencil matching)
pattern
instances grid hierarchy recording

l

currently 91 patterns, 150 templates
around 12.000 lines of C code, fast,
robustness exemplified, extendible

variables occurring in these statements are bound by loop variables.

Ideally, all phases of a program have been recognized completely as incarnations of our patterns.

The pattern recognition tool recognizes nearly all phases in 16 of the 24 Livermore Loops (see Table 3).
The recognition times are pretty fast although measured on a low-end Sun SLC, including the time for
parsing the source and printing the result. Further encouraging results have been obtained for many

other source programs; most of them are listed in the appendix of [Kefi94a].

4.3 Discussion

A possible alternative to our syntax-tree-based approach may be pattern recognition on the control flow

graph (CFG). We state:

13




|100p |c0mputation |rec0gnized patterns |rec. loops | nodes| time|

1 |Hydrofragment GVOP lof1 47| 0.2 sec.
3 |Inner Product SSp lof1 35| 0.2 sec.
5 |tri-diag. elim., below diagonal |FOLR lofl 45| 0.1 sec.
7 |equation of state fragment GVOP lof1 88| 0.3 sec.
8 |A.D.I Integration VJACOBI (3), GVOP (3) 6 of 6 320| 1.3 sec.
9 |Numerical Integration GVOP 1of1 91| 0.3 sec.
10 |Numerical Differentiation VCOPY (10), VADD (9) 19 of 19 242| 1.1 sec.
11 |First Sum PREVSUM lof1 48| 0.2 sec.
12 |First Difference VJACOBI 1of1 32| 0.1 sec.
13 |2D particle in a cell VCOPY (4), VAMOD (4),VAINC (2), VAADD (2)| 12 of 17 258| 0.9 sec.
14 |1D particle in a cell GVOP (3), VCOPY, VADD (2) 6 of 12 229| 0.7 sec.
18 |2D explicit hydrodyn. fragment |GMOP (4), MAADDSM (2) 6 of 6 608| 2.5 sec.
21 |Matrix Product MM 1of1 58| 0.1 sec.
22 |Planckian Distribution GVOP (2) 2 of 2 80| 0.2 sec.
23 |2D implicit hydrodyn. fragment | MGAUSSSEIDEL lofl 105| 0.2 sec.
24 |1D Minimization VMINLOC lofl 47| 0.1 sec.

Table 3: Livermore Loops [McM86]: 16 of the 24 kernels are (mostly completely) recognized. The fourth
column indicates how many loops (counted after applying loop distribution) were matched. The fifth column
gives the number of nodes of the abstract syntax tree; the last column the overall times for parsing, recognition
and output, measured on a low end SUN SLC, that are quite encouraging.

e The syntax tree representation is supplied by the front end. Since we only admit C statements
that produce well-structured control flow, the syntax tree contains all required control dependency
information.

e The CFG is much less structured than the abstract syntax tree. By converting the syntax tree in a
CFG, we would loose information e.g. about the loop structure (loop variables). Pattern recognition
would be harder, less clear, and slower.

e The CFG may be more useful if the source program contains many jumps (‘spaghetti code’). For our
patterns, however, jumps are rarely required, and can always be replaced by structuring constructs
like IF-THEN-ELSE or WHILE.

Future extensions to the pattern recognizer could address interprocedural matching which would handle
recursive functions (that are encountered in many FFT programs), and indirect array references and
pointers (that are required for recognition of operations on sparse matrices).

Pattern instances could also be written directly by the programmer in the source text (very similar to
Fortran 90’s array operations and intrinsic array manipulation functions), thus locally bypassing pattern
recognition.

5 Pattern-Driven Parallel Code Generation

The matched intermediate representation is machine independent and opens access to very sophisticated
program transformations. Instances of recognized patterns can now be replaced by their best known par-
allel implementation. These implementations are machine dependent and are parameterized by problem
sizes and data distributions of the operand arrays occurring in the instance. They should be written in
C with inline assembler for optimal usage of local processor features. Since we want to optimize each
pattern implementation only once, off-line at compiler generation time, we assume that the following
machine parameters are known at compiler generation time:

e the number of processors,
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sizes of local memory and communication buffers,

average communication overhead and latency,

cache size and caching strategy, if existing,

length of arithmetic pipelines and/or vector registers of the node processor, if they exist.

In principle, there are now two possibilities to generate parallel code for a recognized subtree of the
abstract syntax tree: The first alternative is the generation of a standard parallelization according to
well-known techniques that we shortly revisit in subsection 5.1 and modify for our purpose in subsection
5.2. The second option, considered in subsection 5.3, addresses the selection of an alternative parallel
implementation that computes the same function as the standard parallelization but applies a different
parallel algorithm.

5.1 Generation of standard parallel implementations

For given array distributions, a standard parallel implementation is generated according to the following,
well-known technique (cf. e.g. [ZBG88)]):

(1) Splitting: If the target machine has a host that handles all I/O operations, then a host program
is generated that performs all I/O operations, starts the node programs on each processor, sends
portions of read operands to the node processors that need them, and collects the result values from
the node processors that generate them.

(2) Adaptation: The node program maintains, in principle, the program structure of the sequential
version. For a given partitioning of the arrays, each assignment statement will be masked by
a condition depending on the node processors’s ID number that ensures that a node processor
only executes this statement if it owns? the variable on the left hand side of the assignment.
Furthermore, interprocessor communication (EXCH-statements, cf. [ZBG88]) must be generated to
ensure that non-local operands are available when the statement is executed. There is no explicit
synchronization needed if blocking receive statements are used.

(3) Optimization: The masks can often be integrated into the bounds of a surrounding loop, thus
avoiding much of the overhead due to the condition evaluation. Interprocessor communication is
moved to the topmost loop level (loop distribution) that is still possible without violating data
dependencies. Communication is vectorized as far as possible.

The standard parallelization for a single loop [ with body r consists of a specialization of this scheme: If
I indexes the dth dimension of an array occurrence AJ...] in 7, the dimension-specific mask owned;(A][...])
has to be used instead of owned(A]...]), and the dimension-specific communication statement EXCHg4(A][...])
instead of EXCH as described above.

In contrast to an explicitly parallel algorithm, the standard parallelization preserves the structure of the
sequential program.

5.2 Selection of parallel implementations

For the matched nodes v in the abstract syntax tree, there exist several possibilities to generate code for
T, beyond standard parallelization. The PARAMAT user may a priori control the selection process for
each pattern m by setting code generation switches SEQDEBUG[m], REPLSEQ[m], and NOREPLACE[m)].
Based on these switches, at each node v with pattern m = v.pat matched at v, PARAMAT selects among
the following alternatives:

(1) a sequential implementation A[m] for m (computes m on one node processor or on the host, including
the necessary communication), if the debugging bit SEQDEBUG[m] has been set. The parameters
controlling the data distribution and the problem sizes are ignored.

2A variable (e.g., a section of an array) is owned by a processor if that variable resides in its local memory due to the
given data distribution. Scalars are, in general, replicated, i.e. owned by all processors.
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(2) a replicated sequential implementation =[m] for m (sequential computation on all node processors,
corresponding to the given array distributions) if the sequentialization bit REPLSEQ[m] has been
set. The parameters controlling the data distribution are ignored.

(3) a standard parallel implementation ¥[m] (see above) for the topmost loop I occurring in Ty, if the
bit NOREPLACE[m] has been set. The implementation chosen for the body r of I depends on the
bits for the pattern r.pat.

(4) a parallel algorithm II[m] for m that is not a standard implementation, if such an algorithm exists.
This parallel implementation is also parameterized in data distribution and problem sizes.

The construction of ¥[m] deserves some clarification. Let L denote the set of loop headers | € T, that
fulfil L.pat= m (i.e., nodes in L are annotated with the same pattern name as v). The loop nesting
structure in T, as originally programmed, is still available. Several loop headers in L arise from unrolled
or blocked loops outside L. Let R be the body of the innermost loop lin, € L. Let L' C L the set of
loops that block a loop in R. Technically, we make L' U R contiguous by interchanging?® all loops I’ € L’
“downwards” with the next inner loop | € L — L', such that T, now consists of a contiguous set L — L'
of outer loops around a new body R’, consisting of the loops of L’ around R. If R’ — R # (), pattern
recognition has to be called again for the nodes in R’ — R to update the pattern instances for the loop
headers in R' — R. The same holds for L — L', if some loop had been interchanged. The structure of R
remains unchanged. For all loops | € L — L', a standard implementation is generated.

Let r' denote the root of R’. The code generation method chosen for T, depends on the code generation
switches for the (maybe updated) pattern r’.pat.

The effect of NOREPLACE[m)] is thus the same as if the loops in L — L' would not have been recognized
as pattern instances (but these in R’ would).

Example: Pattern recognition has identified the following code fragment

for (i=1; i<=n; i+=x)
for (j=1; j<=m; j++)
for (k=i; k<=min(i+x-1,n); k++)
for (1=1; 1l<=r; 1++)
aljl[k] = al[jl[k] + b[jI1[1]*c[1][k];

as an occurrence of matrix-matrix-multiplication and annotated the i loop header v = l; with the MM )
instance

MM(j,i,1, al:1[:1,b[:10:1,c:10:1,al:10:1).

Also the j loop header (call it {;) has been annotated with a MM®) instance because the i loop only
blocks the k loop. Thus we have L = {l;,1;} and L' = {l;}. Let us further assume that the PARAMAT
user has set NOREPLACE[MM®)]. Since [; blocks another loop (I;), we interchange it towards the “body”
(with [;) and obtain

for (j=1; j<=m; j++)
for (i=1; i<=n; i+=x)
for (k=i; k<=min(i+x-1,n); k++)
for (1=1; 1<=r; 1++)
aljl[k] = al[jl[k] + b[jI1[1]*c[1][k];

We recognize that, after resubmitting this code to pattern recognition, only the pattern instance of [;
would change (namely, into a MV® instance). That is why we call pattern recognition again only for
R' — R = {l;}, with the MV instance at Iy being already given.

Standard parallelization then yields

3This loop interchange is generally possible, since for blocking of interchangeable loops similar conditions hold as for
loop interchange (the blocking loop does not index any array references) — otherwise, our pattern recognition algorithm
would not have recognized [’ as a blocking loop. — As an alternative, we also may explicitly undo the blocking after the
pattern recognition phase.
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for (j=1; j<=m; j++)
EXCH_1( a[jl[:]1 ); /* communication in dimension 1 */
if ( owned_1( a[jl[:1 ) )
code for MV(i,1l, aljl[:1, b[jIC:1, cl:1[:1, aljll:1);

Note that this scheme already includes message vectorization. a

The implementations A[m], Z[m], ¥[m] and II[m] are machine dependent and are parameterized in
problem sizes and data distributions of the operand arrays occurring in the instance. They should be

written in e.g. message—passing C with inline assembler to allow optimal usage of local processor features®.

Note that a standard implementation may also result in some loop being executed sequentially if required
by the given array distributions.

For some patterns m there may not exist a (non—standard) parallel algorithm. Furthermore, the user
may a priori® forbid PARAMAT to select a parallel implementation different from the standard one for
a specific pattern m by setting a flag bit NOREPLACE(m). To enforce a standard parallelization for the
entire T,, the NOREPLACE switch must be set for all the patterns matched at the nodes of T, .

For an instance I of a pattern m, the boolean predicate NOPARALLEL[m](I) evaluates to TRUE iff it is,
given the problem sizes and data distributions, not advisable to generate parallel code for I. For this
case, the effect is the same as setting REPLSEQ[m].

For each pattern m, we build an implementation driver that generates code for any instance I of m. The
coarse structure of such a driver looks as follows:

gen_code[m](I, T,):
if SEQDEBUG[m] then generate A[m] for I; return fi;
if NOPARALLEL[m](I) can be evaluated statically
then if NOPARALLEL[m]|(I)
then generate =[m] for I
else if NOREPLACE[m] or there is no II[m]
then generate ¥[m] for L — L’ (see above) around gen_code[r’.pat](r’.matched, T} )
else generate II[m] for I fi
fi
else (some problem size is unknown at compile time)
generate target code “if (NOPARALLEL[m]|(I))”;
generate =[m] for I;
generate target code “else”;
if NOREPLACE[m] or there is no II[m] available
then generate ¥[m] for L — L’ (see above) around gen_code[r’.pat](r’.matched, T, )
else generate II[m] for I
fi

Thus, if the problem size of I is known at compile time and if it is small, PARAMAT will decide to prohibit
parallelization if sequential execution will be faster, thus avoiding slow-down of the target program. If
the problem size is not known at compile time, a suitable run time test is inserted into the generated
code.

Similar run time tests can be inserted if PARAMAT is not really sure about the value of certain important
program values. An example is the following situation that is often encountered in multigrid applications:
The programmer uses a large linear workspace array to store all (e.g., 2-dimensional) grids and indexes

4E.g. the arithmetic pipeline of the Intel iPSC/860 node processor i860 can only be used if the program is written in
machine language — the C compiler does not vectorize. [Fri91] shows how impressive performance improvements can be
reached by exploiting hardware features like arithmetic pipelines, dual operation mode or dual instruction mode that are
just ignored by the standard compilers.

5This may also be handled by a compiler option included in the program text, but as we focus on fully automatic
parallelization, this is not a viable alternative for us.
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each single grid by using an offset pointer which is, in general, an array reference itself. Such indirect
array accesses cannot be handled by compile-time data dependence analysis, and, even worse, a standard
decomposition scheme for this linear workarray will result in bad load balancing and unnecessary com-
munication. However, from the indexing schemes in recognized patterns of interpolation or restriction
operations from one grid to the next one, PARAMAT is able to detect the (potentially) different grid
parts by treating the offset array accesses as symbolic parameters. To make sure that the offset values
implement the workspace concept, a suitable run time test on the offset values must be generated that, if
successful, treats each single grid as a unique (2-dimensional) array that can be aligned and partitioned
individually, thus avoiding the performance decrease mentioned above. As the number of different grids
(and thus, the number of offsets) is usually small, this run time test does not involve much run time
overhead. As the potential benefit from a positive test result is great, this optimization is sensible. If
the assumption of a workspace grid hierarchy has been confirmed at run time, the workspace array is
decomposed into the single grids, and program control branches to an alternative implementation with
separate array distributions for each grid.

5.3 Examples for non—standard parallel implementations

This section gives some examples for parallel implementations that may differ completely from the original
sequential program structure, or that introduce useful transformations of the corresponding standard
implementation. The latter can be regarded as automatic program transformation which is hidden from
the user. There is no need for a cyclic approximation scheme of successively applying some program
optimizations, observing the results, and choosing better ones [HACZ93]. The disadvantage is that for
each pattern a separate implementation driver is required. We claim that this can be taken into account,
given that there would be a large intellectual effort devoted to the development of numerical software
libraries for any real machine. In any case, we have finally the chance to get rid of the owner—computes—
rule.

The implementations are code skeletons where the slot entries are entered in an appropriate way. They
already contain message passing statements and register allocation. In the sequel, we sketch some of them.
For a more complete survey of parallel algorithms for matrix computations, see [FJL188] or [GHNT90).

Reduction operations For instances of specific common reduction operations (cf. Table 1) like global
sum, global product, global OR, global maximum etc., we can make optimal use of optimized routines
that are, in general, already supplied with the run time environment of the target machine. Here the
non-standard parallel implementation mainly consists of a run time system call.

Grid relaxations A single grid relaxation step represents one update of all elements of a two-dimensional
grid. A sequence of such steps, e.g. a step—counting loop around them, offers additional potential for
optimizations.

Algorithm replacement must always be conservative with respect to numerical stability and convergency
properties. As the recognized pattern’s names are available, we can access mathematical background
information, e.g., on convergency properties. This information allows — if not explicitly forbidden by the
user — the replacement of, for instance, a Gauss-Seidel Wavefront relaxation by its Red-Black variant
or by two steps of Jacobi relaxation which is much better suited for parallel execution (depending on the
target machine). The basic motivation for this “aggressive” local replacement of implementations is that
the average user just wants to get the actually fastest parallel implementation on this target machine —
independent of, for instance, a particular relaxation coding.

Linear recurrences Simple linear recurrences are a classical example for algorithm replacement. Usu-
ally it appears as a sequential loop like

for (i=2;i<=n;i++) X[il=(A[i1*X[i-1]1)+B[il;

which is serialized due to a loop carried data dependence as long as standard parallelization is used.
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For recognized linear recurrences (here FOLR(l)) we can apply a suitable number of recursive doubling
steps [KS73] to gain some parallelism while taking care of growing communication overhead. The op-
timal number of recursive doubling steps (up to max(p,logn) are possible for p processors) depends on
the problem size n and the time required for interprocessor communication on the target machine. For
smaller problem sizes, the sequential variant will be faster.

Matrix-vector and matrix-matrix multiplication For matrix-vector multiplication (MV(Q)), the
standard method can be implemented as the ij—variant (the inner loop is a dot product) or as the ji-
variant (the inner loop is a “daxpy” vector update). The latter variant seems to be preferable on vector
node architectures.

Alternatively, we might use a systolic algorithm; this seems at most appropriate for transputer arrays
with comparably low communication overhead and node performance.

For Matrix—Matrix Multiplication (MM(g)), the standard method expands to one of six possible variants
(ijk, ikj etc.) since all three loops are interchangeable. An alternative would be a systolic implementa-
tion (see e.g. [FP92]). Similar systolic methods are also applicable to LU decomposition (LUD®).

Discussion Algorithm replacement must be conservative with respect to numerical stability and con-
vergency properties of the recognized patterns. For each pattern m, the nonstandard implementation
II[m] must guarantee that its numerical stability is not worse than that of ¥[m]. Where this is not pos-
sible, the user receives a warning, and thus can force PARAMAT to choose the standard implementation
by setting NOREPLACE[p].

Algorithm replacement is the most complex and strongest program transformation of all. Safe algorithm
exchange is enabled only by the availability of pattern instances. It includes all other machine specific
optimizing transformations. The implementation library can be optimized off-line by expert parallel
programmers, until optimum performance is reached. Some optimizations may even be re—introduced
which have been removed at the pattern recognition phase (e.g., loop blocking, semantically redundant
IFs, etc.). The suitable communication routines, either simple SEND and RECEIVE instructions or higher—
order communication primitives like COMBINE, REDUCE, BROADCAST, GATHER and SCATTER that are
typically supplied with the parallel environment, are a basic component of the parallel pattern implemen-
tations and need not be further optimized afterwards. Such optimizations would usually be required for
semiautomatically parallelized code, e.g. by vectorization of messages [Ger89], or by the general message
passing optimization technique proposed in [LC91].

Algorithm replacement enables local deviation from the owner-computes-rule; it forms a framework to
include all useful parallel algorithms that are known so far for the corresponding class of target ma-
chines (topology, granularity, communication properties). All expert’s knowledge becomes available for
the average user, although he/she does not need to be concerned about these algorithms or machine
parameters.

5.4 Pattern-driven data distribution

To simplify the system design a given hardware environment is regarded as fixed; in particular, hardware
resources like, the number p and the speed of the processors, the network topology, the cache size and
caching strategy, and the memory size are regarded as constant. This corresponds to a ‘dedicated’
target machine. In the following, we need not consider these hardware parameters further. Nevertheless,
scalability of parallel pattern implementations (in a more general sense) is still an important issue since
local problem granularity still depends on the problem size.

Each parallel pattern implementation accesses data in an individual manner. Thus, for each pattern
implementation, there is (at least) one favorite alignment (to minimize communication) and one favorite
distribution (to maximize parallelism) of all the arrays for this pattern. The programmer knows these
favorite alignment and distribution strategies for each pattern implementation. This information is stored
in a table and can be accessed by the data distribution driver for each instance. Some examples of array
alignment and distribution recommendations for standard parallel implementations are given in Table 4.
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| pattern | algorithm | align | distribute

MCOPY(A, B) |matrix copy A=B arbitrarily

VCOPY(V, W) |vector copy V=w arbitrarily

MJACOBI(A, B)|Jacobi step A=B quadr. blocks

MM(C, A, B) matrix multiply |[A=C VvV B = C | A repl., B by col. or A by row, B repl.
VSUM(s, V) vector sum arbitrarily arbitrarily

SSP(s,V,W) |dot product V=w arbitrarily

Table 4: Array alignment and distribution recommendations for the standard parallelizations of some patterns.

A second requirement for on-line optimization of array distributions is that the parallel implementa-
tions are specified in a data-distribution-independent way. This may be technically arranged either by
conditionals depending on the distribution parameters of one or several arrays, or by replication of par-
allel implementations, one for each possible distribution configuration. In each of these cases, it would
be advisable to limit the possible distribution alternatives, instead of admitting arbitrary block-cyclic
distributions of any block size. For vectors of length n, we allow the following distributions:

(1) contiguous distribution (block size is n/p),
(2) cyclic distribution (block size is 1) and
(3) total replication (no distribution).

For a m x n matrix, we admit the following distributions:

(1) contiguous row distribution (block size is mn/p, block shape is (m/p) x n),

(2) contiguous column distribution (block size is mn/p, block shape is m x (n/p)),

(3) cyclic row distribution (block shape is m x 1),

(4) cyclic column distribution (block shape is 1 x n),

(5) contiguous quadratic blocks (block size is mn/p, block shape is (m/,/p) x (n/,/p)) and
(6) total replication (no distribution, block shape is m x n).

This limitation of array distribution alternatives is supported by the fact that for all our patterns [Kef394a],
a locally optimal distribution for each array operand is contained in this list. We are aware of the fact
that a globally optimal data distribution configuration may be made up of only locally suboptimal array
distributions, although we believe that this scenario hardly appears in practice.

Quadratic contiguous block distributions are optimal for grid relaxation sweeps, since they minimize the
surface-to-volume-ratio of the array partitions and thus the amount of data to be exchanged. In our
framework, they are the only distribution scheme that distributes processors along more than one array
axis. For quadratic distributions, however, we must add in this case the following constraint: The array
(grid) A accessed by a matrix m must be 2—dimensional. Otherwise, imagine the following situation:
Let A be three—dimensional, with axes A;, Ay and Az, being distributed into quadratic blocks along,
say, axes Ao and Az. Let m be a matrix access along the first and second axis of A. The number of
processors along axis A, is /p, the number of processors along axis A; is 1 (not distributed). Thus,
m has only ,/p partitions, which limits parallelism unnecessarily, and, worse still, the overall number of
working processors is no longer constant for each call to the corresponding relaxation routine. Since we
do not want to do everything twice, with one extra routine version for p and one for only ,/p processors,
we generally admit quadratic block distributions only for arrays of dimensionality equal to 2.

The alignment and distribution recommendations for different pattern instances in a given program will
usually conflict with each other. The problem of resolving this conflict by determining globally optimal
data alignment and distribution is well-known to be NP—complete [LC90], thus automatic partitioning
may take exponential time in the worst case. [DHR94] proposes a branch-and-bound algorithm for
automatic partitioning. To help with the combinatorial complexity, we make use of our knowledge on
favorite local partitionings as starting configurations when performing a global search for the optimal
data distribution.
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[DHRY4] also covers static array redistribution which is a NP—complete problem itself [Kre93]. The main
problem in static redistribution is that a globally optimal distribution scheme involving redistribution
may even be made up of suboptimal data distributions for all phases of the program. However, [BKK93]
shows that for application programs of moderate size (800 lines) represented as a sequence of phases,
an optimal data distribution scheme can be found within a few CPU seconds using a fast 0-1 integer
programming tool. This method matches our approach well, since the pattern instances supply the
required phase representation, and the run time tables (see the next section) deliver suitably accurate
cost, estimates.

5.5 Pattern-driven run time prediction

Many performance prediction approaches [Gup92, Fah93, DHR94]| work analytically by estimating the
program’s run time bottom-up through the abstract syntax tree, starting at the leaves of the expression
trees, with an idealized model of the target machine in mind. Specific hardware features, like e.g. caches
or network traffic, yield actual run times that significantly differ from the prediction. For this reason, we
follow a synthetic performance prediction approach that has been proposed in [BFKK91] and [FMPB94].

For each pattern implementation, PARAMAT provides a run time prediction driver that inspects a table
of previously measured run times of that implementation with varying problem sizes and varying array
distribution schemes on the target machine. The table entries for each pattern are indexed in different
data distribution configurations, in the problem sizes (logarithmic scale), and in the NOREPLACE flag.
They also depend on the NOPARALLEL predicate. The restriction of data distribution alternatives given
above keeps the table sizes moderate. In addition, we require some table entries for the communication
routines that may be generated due to array redistribution, see [BKK93].

As a consequence, run time prediction considerably gains accuracy since now actual run times of high-level
implementations on the target architecture are available which reflect hardware properties (traffic on the
network, message buffer sizes, message protocols, undocumented communication behaviour, overlapping
of computation and communication etc.) better than theoretical, idealized estimation functions.

This synthetic run time prediction has another important advantage over the analytical approaches: it
is faster, because table lookup suffices where otherwise complex intermediate representations have to be
traversed and analyzed. For instance, the ADDAP[DHR94] system’s automatic data distribution engine
suffers mainly from slow analytical performance estimation.

Problems with performance prediction generally arise if the target machine has a cache. Then, run time
also depends on whether operands (arrays or parts thereof) already reside in the cache due to a previous
operation, or whether must be reloaded first. This scenario may be influenced by previous operations.
With a synthetic approach, however, the larger the problem sizes are, the less this effect changes the actual
run times compared with the table entries. For small problem sizes, the run time prediction drivers may
be augmented by some correction term addressing the cache effect. This issue is left to future research.

Problem sizes (corresponding to vector lengths or matrix extents) need to be considered only in a specific
interval [Nyin...Nmaz] Of interest, e.g., from 8 to 16384. The parameter extent of that problem size axis
thus contains D = log Nz — log Noin + 1 entries.

With these guidelines and with the limitation of array distribution alternatives given in the previous
section, the parametrization space (and thus, the run time table size) for a pattern implementation with
x vector operands, y matrix operands and z problem sizes contains 3” -6Y - D* entries. For the MV matrix
vector product, we obtain an (uncompressed) table size of 54D?. Of course, this does not mean that we
have to implement matrix vector product once for each of these configurations. Generally, several entries
can be handled as a whole block, e.g., by taking array alignment relations [LC90, KLS90, KN90] into
account, or ranges of problem sizes with similar run time behaviour. The run time tables can also be
compressed according to this hierarchical parametrization structure of the parallel implementation.

For run time prediction, we consider a parallel implementation (¥[m] and II[m]) of a pattern m as a black
box. We are not concerned with the issue of how their run times should behave in theory, but how they
actually behave on the concrete hardware configuration, which can substantially differ from the former.
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The synthetic performance prediction treats greater code portions as units where analytical methods
estimate the program’s run time bottom up, starting at the expression level. Synthetic prediction models
(at least partially) the cache behaviour due to the locality relations that are inherent to the parallel
implementation, the overlapping of computation and communication, and the characteristic network
traffic induced by the access structures inherent to the parallel implementation.

For true parallel algorithms (II[m]) the analytical methods (like [Gup92, Fah93, DHR94]) often fail
because they rely on standard parallelizations within a specific compilation environment. Synthetic
performance prediction works also for all nonstandard parallelizations.

As a byproduct, the run time tables will provide an extensive performance spectrum of the target machine.
Furthermore, it will show which parallel algorithms are feasible in practice, and in which range of problem
sizes and for which data distributions they are superior to others or to standard implementations.

5.6 System overview

There remains the technical problem of how to code a parallel implementation in a data-distribution-
independent way while maintaining explicit formulae for iteration and communication sets, and avoiding
the overhead involved in evaluating complicated parametrization formulae at the target program’s run
time. We do this in two steps. First, PARAMAT specifies the parallel implementation in a target-
machine-specific language like C plus inline-assembler. This specification however allows complicated
parametrization formulae or, if unavoidable, excessive replication of implementation code. Once the data
distribution engine has determined a global distribution configuration for all array operands, we can derive
the proper parallel implementation subroutines (comparable to those in the previous section) from that
data-distribution-independent specification by partial evaluation (for reference, see [JGS93]) and dead
code elimination. We obtain small and efficient message-passing—C sources that are data-distribution-
dependent, and we need to extract only those routines from the specification library that are called by
the matched user program. These are then compiled and linked together with the matched user program
that has been produced by a suitable code driver (cf. Figure 2).

These routines extracted from the specification are also used to produce the run time tables. As this is
a tedious procedure, we plan to automatize table construction.

Note that the time—consuming generation of the run time tables can be performed off-line (at compiler
generation time). We intend to develop an automatic benchmarking tool that does this tedious job.

For non-recognized code portions, PARAMAT generates standard parallelizations. The difference from
standard parallelizations of recognized code portions is only that there are no corresponding entries in
the data distribution/alignment recommendation and run time tables available; thus these code portions
do not (yet) influence the global determination of array distributions.

6 Related work

Several automatic program comprehension techniques have been developed over the last years. They vary
considerably in their application domain, method, and status of implementation.

Earlier work targeted towards automatic code optimization, vectorization or parallelization:
Snyder [Sny82] addresses idiom recognition in APL codes. His algorithm is an extended depth—first
traversal of the abstract syntax tree with linear expected run time. He applies dynamic programming
techniques to select the most profitable idiom in the presence of overlapping idioms, which appears
to be common in APL programs. — [BS87] suggests (non—constructively) to apply pattern matching
techniques for the detection of reductions and recurrences within the framework of a formal system for
automatic shared memory parallelization. — EAVE [Bos88b, Bos88a] is an expert system for interactive
vectorization of FORTRAN programs. It contains a simple pattern matching tool that can discover
order 1 patterns (vector operations, reductions). — The pattern matcher of [PP91] works on a modified
program dependence graph (PDG, see [FOWS8T7]) that has been extended in a special way to match
certain loop structures with the goal of replacing them by parallel algorithms. The cost of recognition is
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Figure 2: The overall structure of a distributed-memory back-end for PARAMAT.

higher because the rewrite rules form a graph grammar. Normalization of the PDG has to be provided
interactively by the user. — By abstract interpretation of the sequential source, [AH90] computes a
sequential memory access map (abstract store) that assigns to each array element referenced in a loop
the corresponding symbolic representation of its content. Thereafter, loops are, where possible, replaced
by their explicit representation (closed form), comparable to our pattern instances. They recognize some
patterns of order < 1, namely equivalents of POWER, VSUM®, VPROD™, PREVSUM), SSP™). Based
on the closed forms, they implemented recognition of induction variables. The method fails at unrolled or
blocked loops. — [RF93] proposes a special approach for recurrence detection. While this method offers,
at considerable computational effort, the recognition of rather general and multidimensional recurrences,
a number of assumptions are made that are hardly met by real applications. As complicated recurrences
are rare in real programs, the computational effort of this approach seems unjustified. — CMAX [SW93]
is the only commercial application of pattern matching with regard to parallelization. It translates
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FORTRANTT programs to CM-Fortran, a parallel vendor—specific Fortran dialect similar to Fortran90.
It recognizes syntactically several common loop constructs (vector operations, reductions, matrix-matrix
multiply) but does not distinguish between patterns and templates. The recognition power is slightly
weaker than PARAMAT’s, but the main advantage of CMAX is its ability to recognize FORTRAN-
specific storage conventions and to transform them in order to make the program machine-independent
and more suitable to distribution of data at that point.

Program comprehension for algorithm replacement should not be confused with pattern matching that
optimizes communication statements, e.g. in [IFKF90] and [LC91]. These approaches do not try to
understand program semantics but apply pattern matching to (implicit) message—passing code to exploit
higher—order communication routines like global combine, reduction, or broadcast, that are supplied by
most parallel run time systems. Note that such optimizations are contained in PARAMAT’s algorithm
replacement strategy.

Other current research projects: [BHRS94] concludes, from a case analysis, that current tools
for automatic parallelization are not powerful enough and recommend pattern recognition as the solu-
tion. Some general ideas are sketched, but there is no implementation. — [DI94] builds from the PDG a
database of PROLOG facts, formulates templates as PROLOG clauses and uses PROLOG’s inference en-
gine for pattern matching. This approach, although slightly more general than ours, forbids intermediate
restructuring, relies on backtracking and takes exponential run time in the worst case. The information
derived is used in an interactive system for automatic array alignment and distribution [HACZ93]; algo-
rithm replacement is not straightforward as in PARAMAT. A detailed comparison of this approach with
PARAMAT’s pattern recognizer is given in [dK96]. — A program comprehension system for FORTRAN
programs sketched in [Met95] is currently being implemented for a list of over 500 idioms of common
loop nests, which corresponds roughly to an uncompressed version of our PHG. The method works on
the PDG; it is a top—down approach that partly uses the algorithm from [Sny82].

Other problem domains: Some systems for program comprehension in a non—numerical domain
are targeted towards automatic documentation and support of software maintenance. Transformation
or replacement of code is not considered. Plan Calculus [RW90] represents code and patterns (called
“clichés”) with graph structures whose nodes correspond to subconcept instances and whose arcs capture
control and data flow relationships among them. Clichés recognition becomes thus a graph parsing process
using a set of graph grammar rules. It produces a parse tree representing a hierarchical description of
plausible concepts of the program. — The PAT approach [HN90] and following work [KNE93] uses an
abstract, object-oriented representation for syntactic and semantic concepts composing a (COBOL) source
program. Each concept is an instance of a concept class, and the classes are hierarchically structured.
Our templates are roughly comparable to their “plans”; a plan’s representation consists of a description
of the syntactical components and a description of the constraints to be satisfied by components. An
inferential pattern—directed engine derives new higher—level concepts from the existing ones, utilizing
plans as inference rules.

7 Conclusion

The PARAMAT approach to automatic parallelization consists of three basic ideas: First, we observe
that we can cover large parts of many numerical codes by a small set of typical programming patterns.
Second, we devise a recognition algorithm similar to bottom-up pattern matching which tries to locally
recover the semantics of the program, while being robust against many common code modifications such
as loop distribution, loop interchange, loop blocking or loop unrolling. Third, we use the restored program
semantics information to guide sophisticated optimizing code transformations including local algorithm
replacement,.

In this paper, we have presented a powerful framework for the detection of the patterns in scientific
programs. We applied our knowledge on the semantical correlations between the patterns for speed and
space economy. We used data access description and data flow information to compute cross edges which
guide recognition of delocalized code portions. Our prototype implementation shows (1) that pattern
recognition is robust against many common code transformations, (2) that writing code for template
realizations is rather easy, and (3) that pattern recognition is very fast.
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We have presented a framework for pattern—driven generation of parallel code. For each pattern we
can — as an alternative to standard parallelization of some loops according to given array distributions
— also select a conceptually different parallel algorithm, for instance, highly optimized system routines
supplied with the hardware environment. Safe algorithm replacement, though, is only guaranteed by
the availability of pattern instances. It provides a universal framework to integrate all known parallel
algorithms, library routines, and program transformations. Treating larger code parts as atomic building
blocks of a parallel program also supports faster and more accurate performance prediction. Thus,
PARAMAT makes the experience of parallel programming and optimization experts accessible to all
scientific programmers and thus avoids re-inventing the wheel for each program parallelization project.

PARAMAT is not interactive. This is not necessary either because the user does not have to recognize
his/her code during and after parallelization for selecting transformations or further tuning by hand. On
the other hand, this ‘non-WYSIWYG’ system offers many more possibilities for aggressive optimizations
and hides the parallelization details from the user.

The PARAMAT system is open for extensions. The pattern library can be extended by adding more pat-
tern modules according to individual application areas. The computation of the run time approximation
functions can be automatized by a universal benchmarking tool. Changing the hardware platform only
requires the loading of another base of parallel implementations, their default distributions, and their run
time functions. Thus the PARAMAT system can always be up to date with the latest available hardware
environments.

The PARAMAT system could also be modified to output HPF source programs instead of target machine
code. As HPF programs (especially, distribution and mapping directives and explicitly transformed code)
are target-machine (and compiler-) specific, generating HPF output for each pattern by the implementa-
tion drivers and distribution recommendations by the distribution drivers is, in principle, possible. This,
however, would only work if the same HPF target compiler is used to generate the machine code, since
this compiler must then also be used to generate the run time tables for the pattern implementations
written in HPF. On the one hand, this would supply a Fortran 77 (Fortran 90, C) to HPF converter for
a specific target machine; on the other hand, it is likely that this indirect approach of generating HPF
code and later compiling it again will result in a performance degradation of the final target program,
compared with direct machine code generation by PARAMAT.
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