
Submission to EUROPAR'96, Workshop #07 Parallel Numerical Algorithms

Parallel Fourier{Motzkin Elimination

Christoph W. Ke�ler

Fachbereich 4 { Informatik

Universit�at Trier

D-54286 Trier, Germany

e-mail: kessler@psi.uni-trier.de

July 18, 1996

Abstract

Fourier{Motzkin elimination is a computationally expensive but powerful method

to solve a system of linear inequalities for real and integer solution spaces. Because it

yields an explicit representation of the solution set, in contrast to other methods such

as Simplex, one may, in some cases, take its longer run time into account.

We show in this paper that it is possible to considerably speed up Fourier{Motzkin

elimination by massively parallel processing. We present the �rst parallel implemen-

tation of this method, one variant for shared memory parallel computers, and one for

distributed memory systems.

Key words: integer linear programming, linear optimization, system of linear inequalities,

Fourier-Motzkin elimination, massive parallelism

1 Introduction

We consider the common problem of solving a system of n linear inequalities in m variables.

Formally, we would like to �nd a solution of the system

Ax � b with A 2 R

n;m

; b 2 R

n

(1)

and distinguish between two di�erent goals:

1. Does there exist a real solution x 2 R

m

of Ax � b?

2. Does there exist an integer solution x 2 Z

m

of Ax � b?

Furthermore we are interested in an explicit representation of the set of solutions.

1

The �rst problem, well{known as a special case of linear programming, has been shown to

be polynomial in time [Kha79]. Geometrically, it corresponds to the problem to determine

whether the intersection polytope of n halfspaces of the m{dimensional space is nonempty.

It is usually solved using the well{known Simplex algorithm (see e.g. [Sch86] for a survey)

which has expected run time O(nm(n + m)) but takes exponential time O(nm2

n

) in the

worst case [KM72].

The second problem, the interior point problem for integer linear programming, is well{

known to be NP{complete. Geometrically, it asks whether the intersection polytope of n

halfspaces of the m{dimensional space contains any integer point of Z

m

.

Already in 1827, the French mathematician Fourier proposed an elimination method [Fou27]

that solves both problems. As expected, this algorithm takes non{polynomial run time.

Indeed, the complexity can grow dramatically. Consequently, the method did not become

widely known, and was re{invented several times, e.g. by Motzkin in 1936 [Mot36]. For

certain cases, however, it is a quite useful tool, because it is constructive, i.e. it yields, if the

answer is \yes", a representation of the convex intersection polytope. This representation

may, of course, be used to determine the complete set of all feasible integer solutions x by an

enumeration procedure, provided that this set is �nite [DE73, Wil76, Wil83]. But it can also

be used to supply a symbolic solution. This feature is used e.g. when applying restructuring

loop transformations to a numerical program with the goal of parallelizing it, see [Ban93]

for a detailed discussion.

The special case x 2 f0; 1g

m

corresponds to an n{fold Knapsack problem and is not consid-

ered here; there exist other, more suitable methods for this binary case (cf. [Sch86]).

Clearly, its high worst{case computational complexity made Fourier{Motzkin elimination

impractical as a general tool to solve the integer case. But even if medium{sized problems

would already take too much time on a uniprocessor system, they could nevertheless be

solved on a massively parallel computer. In order to prove this claim, we show in this paper

that Fourier{Motzkin elimination o�ers a great potential for the exploitation of massive

parallelism. We give an implementation for a shared{memory multiprocessor and for a

distributed{memory system.

The rest of this paper is organized as follows: Section 2 revisits the sequential algorithm. A

parallel implementation for a shared memory parallel computer is given in Section 3. Section

4 proposes a variant for a distributed{memory parallel system. Section 5 concludes.

2 Fourier-Motzkin Elimination

Since the (sequential) algorithm is not widely known, we provide here a summary of the

excellent description given in [Ban93]. The notation that we introduce in this section will

later be used in the parallel implementations.

2.1 The algorithm

The Fourier{Motzkin elimination algorithm is subdivided into seven steps.

2

Step 1: We are given a matrix A = (a

ij

)

i;j

2 R

n;m

and a vector b 2 R

n

, representing the

system

a

11

x

1

+ a

12

x

2

+ : : : +a

1m

x

m

� b

1

.

.

.

.

.

.

.

.

. (2)

a

n1

x

1

+ a

n2

x

2

+ : : : +a

nm

x

m

� b

n

We set up a \working system", consisting of a matrix T 2 R

n:m

and a vector q 2 R

n

. We

initialize

t

ij

= a

ij

for all i; j; 1 � i � n; 1 � j � m

q

i

= b

i

for all i; 1 � i � n:

Furthermore, we initialize the current problem sizes r and s by r = m and s = n.

Step 2: We sort the s inequalities and determine indices n

1

; n

2

2 N; 1 � n

1

� n

2

� s such

that, after renaming of the indices of the inequalities, �nally

t

ir

> 0 for 1 � i � n

1

;

t

i

0

r

< 0 for n

1

+ 1 � i

0

� n

2

; and

t

i

00

r

= 0 for n

2

+ 1 � i

00

� s:

.

Step 3: We normalize the �rst n

2

inequalities as follows:

t

ij

= t

ij

=t

ir

for 1 � i � n

2

; 1 � j � r � 1

q

i

= q

i

=t

ir

for 1 � i � n

2

:

Now the system looks as follows:

t

i1

x

1

+ t

i2

x

2

+ : : : +t

i;r�1

x

r�1

+ x

r

� q

i

; 1 � i � n

1

(3)

t

i

0

1

x

1

+ t

i

0

2

x

2

+ : : : +t

i;r�1

x

r�1

+ x

r

� q

i

0

; n

1

+ 1 � i

0

� n

2

(4)

t

i

00

1

x

1

+ t

i

00

2

x

2

+ : : : +t

i;r�1

x

r�1

� q

i

00

; n

2

+ 1 � i

00

� n

2

: (5)

Step 4: From subsystem (3) we obtain

x

r

� q

i

�

r�1

X

j=1

t

ij

x

j

for all i; 1 � i � n

1

thus

B

U

r

(x

1

; :::; x

r�1

) = min

1�i�n

1

0

@

q

i

�

r�1

X

j=1

t

ij

x

j

1

A

is an upper bound for x

r

. If n

1

= 0, we set B

U

r

(x

1

; :::; x

r�1

) = +1.

In the same way, we obtain from subsystem (4) that

x

r

� q

i

0

�

r�1

X

j=1

t

i

0

j

x

j

for all i

0

; n

1

+ 1 � i

0

� n

2

3

thus

B

L

r

(x

1

; :::; x

r�1

) = max

n

1

+1�i

0

�n

2

0

@

q

i

0

�

r�1

X

j=1

t

i

0

j

x

j

1

A

is a lower bound for x

r

. If n

2

= n

1

, we set B

L

r

(x

1

; :::; x

r�1

) = �1.

Now we have the range

B

L

r

(x

1

; :::; x

r�1

) � x

r

� B

U

r

(x

1

; :::; x

r�1

)

of feasible values for variable x

r

, given in terms of feasible values for variables x

1

; :::; x

r�1

.

We record these bounds for later use.

Step 5: If r = 1, we are done, since the bounds B

L

1

, B

U

1

are constants (maybe �1). In

this case we can return the answer to the original problem:

If and only if B

L

1

� B

U

1

and q

i

00

� 0 for all i

00

; n

2

+ 1 � i

00

� s, then the system (2) has a

real solution x 2 R

m

.

This feature installs correctness of the algorithm, provided that exact arithmetic has been

used. A proof by induction is straightforward.

Otherwise, if r > 1, we have to continue:

Step 6: We eliminate x

r

from the current system. As minimizations and maximizations

cannot be directly expressed in a linear system, we do this by setting each component of the

lower bound for x

r

less than or equal to each component of the upper bound for x

r

. This

produces n

1

(n

2

� n

1

) new inequalities in r � 1 variables:

q

i

0

�

r�1

X

j=1

t

i

0

j

x

j

� x

r

� q

i

�

r�1

X

j=1

t

ij

x

j

for all i; i

0

; with 1 � i � n

1

; n

1

+ 1 � i

0

� n

2

:

To these inequalities we add the s� n

2

old inequalities from (5). This yields a new system

with s

0

= s� n

2

+ n

1

(n

2

� n

1

) inequalities in r � 1 variables. It is easy to see that this new

system has a real solution if and only if system (3,4,5) has a real solution. By induction, we

obtain that the new system has a real solution i� the original system (2) has a real solution.

If s

0

= 0, we are done; then the variables x

1

; :::; x

r�1

can be chosen arbitrarily; the system

has in�nitely many solutions. Otherwise, we continue:

Step 7: In the new system

8

<

:

P

r�1

j=1

(t

ij

� t

i

0

j

) x

j

� q

i

� q

i

0

for all i; i

0

; with 1 � i � n

1

; n

1

+ 1 � i

0

� n

2

;

P

r�1

j=1

t

i

00

j

x

j

� q

i

00

for all i; i

0

; with n

2

+ 1 � i

00

� s;

we renumber the coe�cients as t

i;j

and q

i

with 1 � i � s

0

and 1 � j � r � 1. We set s = s

0

,

r = r � 1 and iterate, starting at step 2.

2.2 Properties of the algorithm

The algorithm determines whether Ax = b has a real solution x 2 R

m

, and, if yes, supplies

| as a useful byproduct | an explicit representation of the solution set.

According to the construction of the algorithm, any real solution x 2 R

m

ful�lls

4

B

L

m

(x

1

; :::; x

m�1

) � x

m

� B

U

m

(x

1

; :::; x

m�1

)

B

L

m�1

(x

1

; :::; x

m�2

) � x

m�1

� B

U

m�1

(x

1

; :::; x

m�2

)

.

.

.

.

.

.

.

.

.

B

L

1

� x

1

� B

U

1

However, if an integer solution x 2 Z

m

is required, the answer \yes" by Fourier{Motzkin

elimination does not su�ce to guarantee an integer solution. This means that we have to

test explicitly whether the following system is ful�lled:

dB

L

m

(x

1

; :::; x

m�1

)e � x

m

� bB

U

m

(x

1

; :::; x

m�1

)c

dB

L

m�1

(x

1

; :::; x

m�2

)e � x

m�1

� bB

U

m�1

(x

1

; :::; x

m�2

)c

.

.

.

.

.

.

.

.

. (6)

dB

L

1

e � x

1

� bB

U

1

c

There are several ways to solve this question:

� If one knows (from the information provided in the course of the Fourier{Motzkin

elimination process) that the (integer) solution set is �nite, i.e. there are no upper

bounds B

U

r

= +1 for some r; 1 � r � m, and no lower bounds B

L

r

= �1 for some

r, then the following loop nest produces the complete solution set:

forall x

1

2 fdB

L

1

e; :::; bB

U

1

cg

forall x

2

2 fdB

L

2

(x

1

)e; :::; bB

U

2

(x

1

)cg

.

.

.

forall x

m

2 fdB

L

m�1

(x

1

; :::; x

m�1

)e; :::; bB

U

m�1

(x

1

; :::; x

m�1

)cg

print x

This makes, of course, only sense if the solution set does not become too large; thus

a-priori knowledge on the maximum size of the solution set is required here. Clearly,

if only the existence of an integer solution x is in question, it su�ces to abort all these

forall loops after the �rst feasible x has been found.

� If one is interested in a symbolic representation of the solution set, e.g. when deter-

mining the new loop limits for a restructured loop nest (see [Ban93] for an example),

then the bounds for x due to (6) directly supply this representation.

2.3 Run time estimation

The run time of Fourier Motzkin elimination may be disastrous in the worst case:

Let T (n;m) denote the run time of the algorithm for a system of n inequalities inm variables.

We have T (n; 1) = O(1) due to the special case r = 1 in step 5, and T (0; m) = O(1) due to

the special case s

0

= 0 in step 6. For the general case, we obtain (merely from steps 3 and 6)

T (s; r) = O(sr) + max

1�n

1

�n

2

�s

T (n

1

(n

2

� n

1

) + s� n

2

; r � 1)

5

The �rst argument of T in the recursion is maximized if n

1

= n

2

= n=2. This yields

T (n;m) � O(nm) + T (n

2

=4; m� 1)

= O

0

@

m�1

X

r=0

(m� r)

n

2

r

4

(2

r

� 1)

1

A

thus the algorithm may be quite expensive if m is not small.

Nevertheless, the average run time should be considerably lower, because of two reasons:

1. The probability that the �rst argument of T is maximal in each recursion step is rather

small.

2. The sparsity structure of A has a considerable inuence on the run time, because

n

2

� s if the matrix contains many zero elements. At least for the inequalities (5)

that do not participate in a speci�c elimination step, the sparsity pattern is preserved

by the algorithm. For the other inequalities, the number of non{negative coe�cients

may double in the worst case (�ll{in) in each iteration.

3 Parallelization for Shared Memory

3.1 Data structure

We found the following shared data structure useful for speeding up the sorting steps (step

2 and step 7) of the algorithm: Pointers to the inequalities of each iteration are stored in a

dynamically allocated array t with s entries. Thus, interchanging of two inequalities can be

done in constant time by just interchanging the pointers to them. The coe�cients t

ij

of each

inequality i in r variables are stored in a dynamically allocated array t[i] with r+1 entries.

For simplicity and space economy, we store the right hand side values q

i

as the zeroth entry

t[i][0] of each inequality array.

2

s-1
1 30 2

1

0

3

...

...

...

...

...
...

13

t

s-1,
1

s-1,

01 02 03

11 12

21 22 23

t t

t t t

ttt

t t t

t33t32t31

...ts-1,
2 r

q0

q
1

q
2

q
3

qs-1

r

t

t

t

t

0r

1r

2r

3r

The pointers t to the overall system of all iterations r are, in turn, stored in an array that

later allows accessing the lower and upper bound expressions for each x

r

.

If the original matrix A is sparse, it su�ces to store the nonzero elements t

ij

for each

inequality, together with the column index j. However, we implemented only the dense

variant because (a) sparsity becomes worse in the course of the algorithm, and (b) exploiting

sparsity only pays o� if m exceeds a certain value, which, on the other hand, may lead to

very long run times.

6

3.2 Model of parallel computation: PRAM

We assume a multiprocessor with p processors. Each processor has constant time access to a

large shared memory. Concurrent write operations are resolved by using an atomic fetch&add

construct that takes constant time, independent of the number of processors participating

in this operation. A research prototype of a machine with this ideal behaviour, the SB-

PRAM [AKP91, ADK

+

93], is currently being built by W.J. Paul's group at the University of

Saarbr�ucken. As programming language, we use Fork95, an extension of ANSI C for general{

purpose PRAM programming. We refer to [KS95] and http: //www-wjp.cs.uni-sb.de/

fork95/ for further details.

3.3 Exploiting Parallelism

Step 2 of the algorithm can be done in parallel. The mpadd instruction is an atomic fetch&add

primitive performing in 1 CPU cycle on the SB-PRAM, regardless of the number of partici-

pating processors. This feature is very helpful here; the overall sorting step

n2=0; nn = s-1;

gforall (i, 0, s, p) {

pr int mypos;

if (t_old[i][r] != 0) mypos = mpadd(&n2, 1);

else /* == 0 */ mypos = mpadd(&nn,-1);

t[mypos] = t_old[i];

}

gforall (i, 0, s, p)

t_old[i] = t[i];

n1 = 0; /* nn is now n2-1 */

gforall (i, 0, n2, p) {

pr int mypos;

if (t_old[i][r] > 0) mypos = mpadd(&n1, 1);

else /* < 0 */ mypos = mpadd(&nn,-1);

t[mypos] = t_old[i];

}

free(t_old);

producing a sorted system t from an unsorted system t old, is performed by p � n processors

in time O(s=p). gforall(i,lb,ub,p) is a macro that denotes a parallel loop whose (private)

loop index variable i globally ranges from lb to ub-1, with iterations being cyclically dis-

tributed over the participating p processors. If p exceeds the number ub-lb of iterations, the

remaining processors remain idle and could be used for further (interior) levels of parallelism.

pr is a type quali�er that declares a variable as private to each processor.

Step 3 contains n

2

(r + 1) divisions; these can be completely executed in parallel provided

that a data dependency cycle is resolved by a temporary shared array factor[]:

{ determine pi,pj with pi*pj=p, pi<=min(n1,n2-n1) maximal }

7

gforall (i, 0, n1, pi)

factor[i] = 1.0 / t[i][r];

gforall (i, 0, n1, pi)

gforall (j, 0, r+1, pj)

t[i][j] *= factor[i];

gforall (i, n1, n2, pi)

factor[i] = -(1.0 / t[i][r]);

/*then the inequality sign needs not be reversed */

gforall (i, n1, n2, pi)

gforall (j, 0, r+1, pj)

t[i][j] *= factor[i];

Thus, step 3 runs in time O(n

2

(r + 1)=p) on p � n

2

(r + 1) processors.

Step 4 records the inequalities from (3) and (4) that install upper resp. lower bounds on x

r

,

for later use. Thus, storage for these inequalities cannot be freed.

Step 5 handles the special case r = 1. Explicit computing of B

U

1

and B

L

1

is done in parallel

in time O((n

2

log p)=p) on p processors. If we are interested in an integer solution, we

can, compared to conventional parallel minimization/maximization, save the log p factor

using fast integer maximization/minimization which is supplied by the mpmax operator, a

multipre�x maximization instruction that performs in constant time on the SB-PRAM.

Step 6 constructs a new system of inequalities. The kernel of the parallel implementation is:

{ compute pi,pii,pj with pi*pii*pj=p and pi maximal }

gforall (i, 0, n1, pi) {

pr int ii;

gforall (ii, n1, n2, pii) {

pr int mypos = mpadd(&s_new, 1);

pr ineq myineq;

farm {

myineq = (ineq) alloc(r * sizeof(double));

gforall (j, 0, r, pj)

myineq[j] = t[i][j] + t[ii][j];

}

t_new[mypos] = myineq;

}

}

If p � n

1

(n

2

� n

1

)r, then this kernel executes in time O(n

1

(n

2

� n

1

)r=p). Note that we may

here also compute the position of each new inequality as mypos = i*n2+ii, without using

the mpadd instruction. alloc() performs memory allocation of permanent shared heap

blocks. Using mpadd, it runs in constant time, regardless of the number of participating

processors.

Appending the old s� n

2

inequalities from (5), we only need to copy the pointers to them:

8

n = 12; m = 4

p time [cc] speedup

1 15489470 1.00

2 7794002 1.99

4 3945966 3.93

8 1999718 7.75

16 1049920 14.75

32 553168 28.00

64 327088 47.36

128 214408 72.24

n = 16; m = 4

p time [cc] speedup

1 194009292 1.00

2 97116338 2.00

4 48602188 3.99

8 24343832 7.97

16 12648663 15.34

32 6254904 31.02

64 3166208 61.27

128 1695908 114.40

256 960648 201.96

512 592964 327.19

1024 341092 568.79

Table 1: Measurements on the SB-PRAM for feasible dense random systems. All entries are

nonzero and chosen such that n

1

� n

2

� n

1

and n

2

= s in each iteration. Speedup is almost

linear. Slight speedup degradations for large numbers of processors arise from many processors

being idle in the �rst, least expensive iterations, and from some sequential overhead. Nevertheless,

the combinatorial explosion, especially regarding space requirements, is discouraging for larger

dense systems.

gforall (i, n2, s, p) {

pr int mypos = mpadd(&s_new, 1);

t_new[mypos] = t[i];

}

resulting in run time O((s� n

2

)=p) on p � s� n

2

processors.

The renumbering as indicated in step 7 is implicitly performed during step 6; thus step 7

takes only constant time.

3.4 Results

Tables 1 and 2 show some measurements for our implementation. Since the SB-PRAM hard-

ware is not yet operational, we use the SB-PRAM simulator running on a SUN workstation.

The simulator produces exact timings; one SB-PRAM clock cycle (cc) will take 4 microsec-

onds on the SB-PRAM prototype with 4096 processors currently being built at Saarbr�ucken

University.

We are currently porting the Fork95 program to a Cray EL98 with 8 processors. The vector

units of this machine are exploited best if interior loops (e.g. the j loops) are vectorized,

which is generally possible here. Longer vectors are possible if chaining features are exploited;

this would enable processing all inequalities owned by a processor as one large vector update

operation. The measured execution times for the Cray EL98 will be included into the �nal

version of this paper.

9

n = 200; m = 10

p time [cc] speedup

1 52230692 1.00

2 26178784 2.00

4 13160404 3.97

8 6649968 7.85

16 3872185 13.49

32 1769536 29.52

64 957852 54.53

128 554952 94.12

256 363690 143.61

Table 2: Measurements on the SB-PRAM

for a sparse random system; 12.5% of the

entries a

ij

are nonzero. Sparsity consider-

ably delays the combinatorial explosion.

4 Parallelization for Distributed Memory

We sketch three di�erent scenarios for distributing data across p processors of a distributed

memory system. Each possibility has advantages and drawbacks.

1. The s inequalities are equally distributed among the processors. Step 2 of each iteration

installs the invariant that each processor holds approximately the same amount of

inequalities of each of the three categories (3), (4) and (5), namely n

1

=p, (n

2

� n

1

)=p,

and (s � n

2

)=p, respectively. Computational load is perfectly balanced. This causes

much communication for step 2 but modest communication for step 6.

2. The s inequalities are equally distributed among the processors, but the local ratios

of inequality categories do not necessary correspond to the global ratio of n

1

to n

2

to

s. Computational load is perfectly balanced. Less communication is required in step

2 but slightly more in step 6.

3. The r variables are cyclically distributed among the processors, Computational load is

not perfectly balanced for the last p�1 iterations which are probably computationally

most expensive. Step 2 and Step 6 do not require any communication at all, but Step

3 now requires a broadcast for each inequality.

Let us consider these scenarios in more detail.

4.1 Data Distribution, First Variant

We start with an arbitrary, equal distribution of the n inequalities over the p processors.

In each iteration of the algorithm, we maintain the invariant that each processor holds

approximately the same amount of inequalities of each of the three categories (3), (4) and

(5), i.e., that

n

(k)

1

� n

1

=p; n

(k)

2

� n

2

=p; for each processor k (7)

where n

(k)

1

denotes the local part of processor k of the n

1

inequalities of category (3), and

n

(k)

2

denotes the local part of processor k of the n

2

inequalities of categories (3) and (4). (7)

also implies equal load balance for step 3.

10

Step 2 sorts the inequalities in order to enforce this invariant. This requires expensive

communication. First, n

1

and n

2

have to be computed as

n

1

=

p�1

X

k=0

n

(k)

1

and n

2

=

p�1

X

k=0

n

(k)

2

: (8)

Each processor inspects the sign of the coe�cient of x

r

and computes its local contribution

to n

1

resp. n

2

. The global values of n

1

and n

2

are then computed by two global summations

and broadcast to each processor. Now each processor determines the amount of inequalities

of each category that it will hold, and the amount of each category that it would like

to send to resp. receive from other processors in order to maintain the invariant. After

some global administrative work that matches senders with receivers, parallel interprocessor

communication of O(s) messages of length r each is required; this may be imbalanced.

Altogether, the communication overhead due to step 2 is quite high, and can only partially

be overlapped with the computational work following in step 3.

Creation of new inequalities in step 6 requires parallel broadcast of the smaller set of in-

equalities to all processors:

if (n1 < n2) {

broadcast my n1/p inequalities from global range i=1,...,n1

receive n1 - n1/p inequalities from the other processors

/* now I hold all n1 inequalities in the range i=1,...,n1 */

forall these i=1,...,n1

forall my (n2-n1)/p inequalities i' from global range i'=n1+1,...,n2

build combined inequality (i,i') according to step 6

}

else /* n1 >= n2 */ {

broadcast my (n2-n1)/p inequalities from global range i=n1+1,...,n2

receive (n2-n1) - (n2-n1)/p inequalities from the other processors

/* now I hold all n2-n1 inequalities in the range i=n1+1,...,n2 */

forall these i'=n1+1,...,n2

forall my n1/p inequalities i from global range i=1,...,n1

build combined inequality (i,i') according to step 6

}

Altogether, the communication overhead of step 6, consisting of O(s) messages (equally

distributed over the processors) of length r each, will be dominated by the computational

work O(rs

2

) (again equally distributed) when building the new inequalities for the next

iteration (if s is su�ciently large); thus communication could be tolerated for a modest

number of processors.

4.2 Data Distribution, Second Variant

As in the �rst variant, we start with a cyclic distribution of the inequalities over the proces-

sors. Here, in contrast, we do not enforce the invariant (7) for step 3. Thus the computation

performed in step 3 may be imbalanced since the n

(k)

2

are generally not equal for each pro-

cessor k.

11

Step 2 now consists mainly of a local sorting of inequalities (which can be done in time

O(s=p)). Computing n

1

and n

2

is done as above (8). Step 2 is thus very much cheaper here

than for the �rst variant.

Nevertheless, for larger numbers of processors, we cannot expect that the n

(k)

1

and n

(k)

2

are

approximately equal on each processor k. But we need such a distribution in order to balance

the computational e�ort for generating the O(s

2

) new inequalities. As a consequence, the

processors must (in parallel) broadcast all s inequalities, instead of only min(n

1

; n

2

�n

1

), in

order to achieve invariant (7) immediately before step 6. This yields an equal distribution of

the s

0

new inequalities across the processors for the new system, i.e. also for the next iteration.

Step 6 thus implies a global redistribution of inequalities. The asymptotic communication

overhead is O(s=p) messages of size r each to be broadcasted/received by each processor; the

same argument on amortizing communication against computation as given in the previous

paragraph holds here again.

4.3 Data Distribution, Third Variant

We apply a cyclic distribution of the m variables over p processors. This makes step 2 and

step 6 cheaper because the data dependencies are internalized.

However, before normalization (step 3), the processor holding the coe�cients of x

r

must

broadcast the divisor to all other processors for each inequality. This communication can be

partially overlapped with the normalization computation performed at step 3.

The most crucial problem is that processor load gets imbalanced for the last p� 1 iterations

which are probably the most expensive ones. As m is usually substantially smaller than

n, and this ratio gets even more extreme in the course of the algorithm, this distribution

scenario alone is unsuitable to utilize a massively parallel computer e�ciently.

It may, however, be combined with the �rst or second variant, resulting in a two{dimensional

data distribution, i.e. we organize the processors as a two{dimensional grid with extents pi

(across the inequalities) and pj (across the variables), such that pi �pj = p. Furthermore, the

distribution across the variables has to be adapted before load balance would get substan-

tially worse: For instance, just before the iteration eliminating x

pj�1

, we halve pj, double pi,

and redistribute the current system for the new processor grid. This could be integrated into

the redistribution phase before step 6 of the second variant. For the �rst variant, it requires

additional communication time O(sr=p). Thereafter, load balance across the variables will

remain acceptable for the following pj=2 iterations.

Further experiments will show which combination is most suitable here. We are currently

implementing these alternatives using PVM on a workstation cluster. The results will be

contained in the �nal version of the paper.

5 Conclusion

Fourier{Motzkin elimination is a powerful method to solve a system of linear inequalities for

real and integer solution spaces. Because it yields an explicit representation of the solution

12

set, one is, in some cases, willing to take its longer run time into account, compared with

other methods such as Simplex.

We have shown that it is possible to considerably speed up Fourier{Motzkin elimination by

massively parallel processing, as well for shared memory as for distributed memory parallel

machines. In this way, some medium{sized problem instances can now be tackled that would

take too long on a uniprocessor machine but perform in acceptable time on a massively

parallel machine.

This is particularly interesting for the class of problem instances that are typically encoun-

tered at restructuring of loop nests for automatic parallelization [Ban93]. There the number

of variables, which is most critical for the run time behavior of Fourier{Motzkin elimination,

is typically small, less than 6 in nearly all cases. Thus, why not use the parallel variant of

Fourier{Motzkin elimination in the optimizing phase of a parallel compiler? Why should we

still compile in sequential for a parallel machine, where we have the computational power

available to get an exact solution? In this context, we regard this contribution as one of the

�rst building blocks for a future parallel parallelizer, a project that we are currently planning

for the SB-PRAM hardware platform.

References

[ADK

+

93] F. Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and D. Scheerer. On the physical

design of PRAMs. Computer Journal, 36(8):756{762, December 1993.

[AKP91] F. Abolhassan, J. Keller, and W.J. Paul. On the cost{e�ectiveness of PRAMs. In

Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing, pages

2{9. IEEE, December 1991.

[Ban93] Utpal Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.

Kluwer Academic Publishers, 1993.

[DE73] G.B. Dantzig and B.C. Eaves. Fourier{Motzkin elimination and its dual. Journal of

Combinatorial Theory, 14:288{97, 1973.

[Fou27] J.B.J. Fourier. (reported in:) Analyse des travaux de l'Acad�emie Royale des Sciences

pendant l'ann�ee 1824, Partie math�ematique, 1827. Reprinted as: Second extrait, in:

�uvres de Fourier, Tome II (G. Darboux, ed.), Gauthier{Villars, Paris, 1890. English

translation (partially) in: D.A. Kohler, Translation of a report by Fourier on his work

on linear inequalities, Opsearch 10 (1973) 38{42.

[Kha79] L.G. Khachiyan. Polynomial algorithm for Linear Programming. Doklady Akad. Nauk

USSR, 244(5):1093{96, 1979. Translated in Soviet Math. Doklady 20, pp. 191{94.

[KM72] V. Klee and G.J. Minty. How Good is the Simplex Algorithm? In O. Shishna, editor,

Inequalities III. Academic Press, New York, 1972.

[KS95] C.W. Ke�ler and H. Seidl. Integrating Synchronous and Asynchronous Paradigms:

The Fork95 Parallel Programming Language. Proc. MPPM-95 Int. Conf. on Massively

Parallel Programming Models, Berlin, Germany, 1995. See also: Technical Report 95-

05, FB IV Informatik der Universit�at Trier, 1995. http: //www-wjp. cs.uni-sb.de

/fork95/.

13

[Mot36] T.S. Motzkin. Beitr�age zur Theorie der linearen Ungleichungen. (Inaugural Dissertation

Basel), Azriel, Jerusalem, 1936. English translation: Contributions to the theory of lin-

ear inequalities, RAND Corporation Translation 22, Santa Monica, CA, 1952. Reprinted

in Theodore S. Motzkin: Selected Papers (D. Cantor, B. Gordon, B. Rothschild, eds.),

Birkh�auser, Boston, 1983, pp. 1{80.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[Wil76] H.P. Williams. Fourier{Motzkin elimination extension to integer programming. Journal

of Combinatorial Theory (A), 21:118{123, 1976.

[Wil83] H.P. Williams. A characterization of all feasible solutions to an integer program. Dis-

crete Applied Mathematics, 5:147{155, 1983.

14

