Investigation of Main Memory Bandwidth
on Intel Single-Chip Cloud Computer

Nicolas Melot, Kenan Avdic and Christoph Kessler Jorg Keller
Linkdpings Universitet FernUniversitat in Hagen
Dept. of Computer and Inf. Science Fac. of Math. and Computer Science
58183 Linkdping 58084 Hagen
Sweden Germany

Abstract—The Single-Chip Cloud Computer (SCC) is an exper- significant performance drop when writing to main memory.
imental processor created by Intel Labs. It comprises 48 x86 ¢es For both read and write accesses, the available bandwidth is
linked by an on-chip high performance network, as well as four strongly dependent on the memory access pattern
DDR3 memory controllers to access an off-chip main memory of : . . ' .
up to 64GiB. This work evaluates the performance of the SCC Section Il introduces the_ SCC, theh Section I_” describes
when accessing the off-chip memory. The focus of this study is the method used for stressing the main memory interface and

not on taxing the bare hardware. Instead, we are interested in discusses the results obtained. Finally Section IV coresud
the performance of applications that run on the Linux operating

system and use the SCC as it is provided. We see that the Il. THE SINGLE CHIP CLOUD COMPUTER

per-core read memory bandwidth is largely independent of the

number of cores accessing the memory simultaneously, but that The SCC provides 48 independent x86 cores, organized in

the write memory access performance drops when more cores 24 tiles. Figure 1 provides a global schematic view of the
write simultaneously to the memory. In addition, the global and chip. Tiles are linked together through a<@ mesh on-chip
per-core memory bandwidth, both writing and reading, depends network. Each tile embeds two cores with their cache and a
strongly on the memory access pattern. : .) :
message passing buffer (MPB) of 16KiB (8KiB for each core);
|. INTRODUCTION the MPB supports direct core-to-core communication.
. . _ The cores are 1A-32 x86 (P54C) cores which are provided
The S'{‘g'.e'Ch'ESC'OUd f’omp“tfr (iclc) eXpert'r:ler:a' PrGith individual L1 and L2 caches of size 32KiB and 256KiB,
cessor [1] is a 48-core “concept-vehicle™ created by nte, spectively, but no SIMD instructions. Each link of the imes

Labs as a pIatfor;n for dmany-core spftware res;a:rch.hlts 2twork is 16 bytes wide and exhibits a 4 cycles crossing
cores communicate and access main memory through a %ncy, including the routing activity.

mesh on-chip network attached to four memory controllers The overall system admits a maximum of 64GiB of main

(see Figure 1). memory accessible through 4 DDR3 memory controllers

Algorithm implementations usually make a more or Ies3\/enly distributed around the mesh. Each core is attributed

heavy use of main memory to load data and to store |nt%r- rivate domain in this main memory whose size depends on

mediate or f'T‘a' results. A(_:cess,es to main memory represgiit 4 memory available (682 MiB in the system used here).
a bottleneck in some algorithms’ performance [2], desyite t

f hes to red th itv due to limited band ng]x tiles (12 cores) share one of the four memory controllers
use of caches to reduce the penally dué to imited bandwigil 5 -cass their private memory. Furthermore, a part of the

to main memory. Caches are high-speed memories, closemtg
processing units but are rather small and their effect is le
visible when a program manipulates a larger amount of da
This leads to the design of other optimizations such as qm-cfai
pipelining for multicore processors [2].

in memory is shared between all cores; its size can vary
to several hundred megabytes. Note that private memory is
iched on cores’ L2 cache but caching for shared memory is
sabled by default in Intel’s framework RCCE. When caching

Thi Ki tiates th tual band _is activated, the SCC offers no coherency among cores’ gache
IS work Investigates the actual memory access bandwi H1the programmer. This coherency must be implemented

limits of SCC from the perspective of applications that ru[hrough software methods, by flushing caches for instance.

on the Linux operating system and use the SCC as it 'SThe SCC can be programmed in two ways: a baremetal ver-
provided to them. As thus, the focus is not what the baer-

. . n for OS development, and using Linux. In the latter sgtti
hardware is capable of, but what the system, i.e. the ense E} cores run an individual Linux kernel on top of which any

Of hardware, opergting_system and prqgramming SySte"_‘ (Com']ux program can be loaded. Also, Intel provides the RCCE
F'Ier' commugncatrl]on Illlz_raryt, etc) atlch(;g;r/es. ?urtapr;rom:th library which contains MPI-like routines to synchronizees

0 use microbenchmarking 1o create ditierent sets o .pzﬂ_ €land allow them to communicate data to each other. RCCE also
to access the memory controllers. Our experience indical

taﬁF()ws the management of voltage and frequency scaling.
that the memory controllers can support all cores reading da g g d y 9

from their private memory, but that the cores experience a

/* SIZE is a power of two

* strictly bigger than L2 cache
*|

int array[Sl ZE];

SCC die

voi d memaccess (int stride)

Lt
int i, j, top;

L1

for (j =0; j <SIZE | += stride)
tnp = array[j];

Figure 1. A schematic view of the SCC die. Each box labeled DIMN
represents 2 DIMMs.

Figure 2. Pseudo-code of the microbenchmark for reading acdes
writing, the order of the variables in the assignments is arged.
I11. EXPERIMENTAL EVALUATION

The goal of our experiments consists in the measurement of
the bandwidth available to an application that runs on top gfemory controllers’ performance, such memory operations
the Linux operating system in standard operating conditiogenerate traffic and the time necessary to read the targeted
(cores at 533 MHz, on-chip network at 800 MHz, memorgmount of data allows the calculation of the actual bandwidt
controllers at 800 MHz). Furthermore, we are interested that was globally available to all cores. The amount of data
how this bandwidth varies with the number of cores peto be read or written by each core is fixed to 200MiB. 3
forming memory operations and the nature of the operatioifs 12 cores are used, as up to twelve cores share the same
themselves, read or write. This is achieved by consecytivénemory controller. Cores run at 533 MHz and 800 MHz in two
reading respectively writing the elements of a large arrhy @ifferent experiments, while the mesh network and memory
integers, aligned by 32 bytes which is the size of a cackentrollers remain both at 800MHz. The global bandwidth and
line. Thus, consecutive access to all integers (1-intistrid- the bandwidth per core are measured: the global bandwidth
byte-stride) yields perfect spatial locality whereas Bsitrided represents the bandwidth a memory controller provides to
access (4 out of 32 bytes) to the data always results in a caélethe cores. The bandwidth per core is the bandwidth a
miss. Each participating core runs a process that executegose gets when it shares the global bandwidth with all other
program as depicted in Fig. 2, where each array is locatedrinning cores. Figures 3, 4 and 5 show the global and per core
the respective core’s private memory and through which tih@ndwidth measured in our experiments.
cores iterate exactly once. Figure 3 indicates that both read and write bandwidth are

While the 1-int-strided and 8-int-strided memory accesséfearly growing with the number of cores. Since the SCC
stresses the bandwidth difference due to cache hits ana cagfovides no hardware mechanism to manage and share the
misses, theandom access pattern stresses the memory comemory bandwidth served to cores, this shows that all cores
trollers’ throughput using a random access, making hedptes together still fail to saturate the read memory bandwidth
hardware optimizations that parallelize or cache read dtewravailable. The random access pattern offers a much lower
accesses, such as using a plurality of open rows in the atfachead throughput around 250MiB/sec with 12 cores running
SDRAMSs. To simulate random access, the array is accessgoth 533 and 800 MHz. The write throughput for random
through a functiorpi(j) that is bijective in{0,...,9ZE—1}, stride 1 shows the same performance as write stride 1 (up to
where j is same index (strided 1 int or 8 ints) used to acceg®5 and 120MHz respectively at 533 and 800MHz) and other
the array in the strided access described above. In practiagite patterns do not exceed 20MiB/sec nor about 7MiB/sec
we usepi(j) = (a-j) modSZE for a large, odd constar& for random stride 8 access pattern. This shows that memory
whereSZE is a power of two and the size of the array to beontrollers struggle to serve irregular main memory retjues
read. The random access pattern also applies the 1-idediri patterns. The absolute numbers of read bandwidth per core
8-int-strided and mixed patterns described above to thexindn the 1-int-stride experiment are stable around 205 MiB/s
j- and around 125 MiB/s with the 8-int-stride access pattern
Finally strided, mixed and random access make all the conggh cores running at 533 MHz and respectively 305 and
read or write at the same time, along the different acce®35 MiB/sec at 800 MHz, as shown in Fig. 4(a). However,
patterns they define. All these patterns also combine red@ bandwidth per core with the write accesses (Fig. 4(b))
and write operations, one half of processors performingseadrops with the number of cores from 10 MiB/sec with 3 cores
and the second half performing writes. This is denoted as ttte9 MiB/sec using 12 cores at 533 MHz and from 11 MiB/sec
combined access pattern. to 10 MiB/sec at 800MHz. The P54C’s L1 cache no-allocate-

In this experiment, a varying number of cores synchronizen-write-miss behavior may explain this performance drop:
then iterate through the array to read or write as describad write cache misses do not lead to a cache line allocation,
above. Since every memory operation leads to a cache ngsgry consecutive write results in a write request adddesse
in the 8-int-strided access and random access reduces tthehe memory controller. In both cases, the low difference

Global main memory read bandwidth at 533 and 800MHz

4000 Read stride 11t (533 4 Per core main memory read bandwidth at 533 and 800MHz
3500 - Read stride 8 int (533) —c— il 350 = =
Read mixed (533) —— Read stride 1 int (533) —4—
9 Read random 1 int (533) —&— 300 - Read stride §Ant (533) —6—, A
& 3000 Read random 8 int (533) —x— 7 Read mixed (533) —~—
[Read stride 1 int (800) —— 3 Read stride 1 int (800) —&—
S 2500 - Read stride 8 int (800) —<— @ 250 - Read stride 8 int (800) —x— 1
£ Read mixed (800) —&— @ Read mixed (800) ——
< 2000 - Read random 1 int (800) —<— S 500l A s A s N A N A A 4
] Read random 8 int (800) —— £ e
S 1500 £
] T 150 - 1
S 1000 - 2
£ 100 - 1
500 - < o g I -
0 ¥ - 50 L - ﬁ T gi7777%7:,,,,/V*77—73,,,,,”‘7
2 4 6 8 10 12
0
) Number of cores 2 4 6 8 10 12
(a) Global main memory read bandwidth at 533 and 800 MHz. Number of cores
Global main memory read bandwidth at 533 and 800MHz (a) Read memory bandwidth per core at 533 and 800 MHz.
120 Per core main memory write bandwidth at 533 and 800MHz
Write stride 1 int (533) —— 12
Write stride 8 int (533) —c— Write stride 1 int (533) ——
100 - Write mixed (533) —— A—Wrﬂéﬂud:gmt_(%%)izﬁ
9 Write random 1 int (533) —&— 10 + o Write mixed (533) —— e e — 4
@ Write random 8 int (533) —<— 9 Write stride4int (808) —2—=1—a & .]
o 80 - Write stride 1 int (800) ——— @ Write stride 8 int (800) —<— —
s Write stride 8 int (800) @ 8- Write mixed (800) —— b
£ Write mixed (8! =
< 60 - Write random 1 in £
5 g 5 1
B -]
T 40 3 af 1
s c
] © . - B
20 + m 2l = —— Y —— — V*f*f*qfi—'§777$’
2 0 L L L L
Number of cores 2 4 6 8 10 12
(b) Global main memory write bandwidth at 533 and 800 MHz. Number of cores

(b) Write memory bandwidth per core at 533 and 800 MHz.

Figure 3. Measured global memory read and write bandwidth asetién

of the number of cores involved, at 533 and 800 MHz. Figure 4. Measured per-core memory bandwidth as a functioneohtimber

of cores involved, for strided access patterns, at 533 aGd\88z.

in performance of 1-int-stride and 8-int-stride accessepas
shows that the high performance memory controllers are able

Bandwidth per core with random access

to compensate efficiently the performance losses due teecach ° A%,‘%%,%ﬂ e . A . s
misses. However the mixed access pattern, with one halofth ¢ 5| = Zaerme =~~~ =~ =
cores reading memory with a 1-int-stride and the second halfz 2 int 9ab e
with 8-int-stride, exhibits lower performance, which shlow 3 #§| 3intgapcombned 2 1
again the limited capabilities of memory controllers toveer § sl = L
irregular access patterns. 3 o i
The bandwidth measured per core for the random accesss |

pattern reveals better performance with faster cores.

‘2 . 6 8 10 12

IV. CONCLUSION

Number of cores
Memory bandwidth per core with random access pattern &t\G#3z.

The memory wall represents an important performance lim- @
Bandwidth per core with random access

iting issue still present in multicore processors, and en@n- 16 ‘
. . K . . a Sintgapmead & | a N N A R
tations of parallel algorithms are still heavily penaliagtien & 13intgapread o | © o e = = o)
: . k . 14 - v 21intgapread —— | 7 ’ ’ ’
accessing main memory frequently [2]. This work enlightens ¢ 5 int gap write —A—
the available memory bandwidth on Intel's Single Chip Cloud 5 "2 f Hintoawite]
Computer when several processors perform concurrent rea 1 || 13 int oah combinad o]
21 int gap combined —<—

and write operations. The measurements obtained here argl | |
the difficulty we experience to actually saturate the read§
memory bandwidth show that the cores embedded in thes
SCC cannot saturate all together the read memory bandwidth
available: for read access patterns behave regularly,dresc 2, 2 o s 10 12
cannot saturate. However, the measurements obtained from Number of cores

the write access patterns demonstrate a much smaller write ~(°) Memory bandwidth per core with random pattern at 800 MHz.
bandwidth available. Also, we can note that the availablgyyre 5. Measured per-core memory access bandwidth as aofundtthe
bandwidth for both read and write strongly depends on thember of cores, for random access patterns, at 533 and 800 MHz
memory access pattern, as the low bandwidth on random

access patterns indicates. Thus, there is no point in naguci ACKNOWLEDGMENTS

the degree of parallelism in order to increase the availableThe authors are thankful to Intel for providing the oppor-
bandwidth for tasks requiring a high main memory bandwidtlﬂmity to experiment with the “concept-vehicle” many-core
The measurements shown in the paper show a behawippcessor “Single-Chip Cloud Computer”. We also thank the
possibly adapted to program restructuring techniques 88chanonymous reviewers for their helpful comments on an earlie
on-chip pipelining and our previous implementation of ongersion of this paper.

chip pipelined mergesort [2]. In this implementation, many This research is partly funded by the Swedish Re-

tasks mapped to several cores fetch input data in paratiefl fr search Council (Vetenskapsradet), projetegrated Software
main memory, and a unique task running on a unique COnelining.
writes the final result back to main memory, therefore lingti
expensive main memory accesses. However, the gap between REFERENCES
the memory bandwidth available and the limited capabdiGé [1] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. JsirErraguntla,
cores to saturate it shows that there is room to add more,cores g"-goiowvaleep%nhM\-/ Grlgsy \?\/-__Dfoegte,;-ll léugd-l-??f%g. ®ils,

. - . Borkar, V. De, and R. Van Der Wijngaart, “ -Core 1A-32 rmage-
ru_n them at hl_gher frequency_ or add SIM’D ISA ex_tensmns. passing processor in 45nm CMOS using on-die message pagssihg a
Without such improvements in the cores’ processing speed DVFS for performance and power scalingEEE J. of Solid-State

and accordingly higher demands on memory bandwidth, our gifﬁuiltt% VOJl- iG,”nO- 1,dpcp-li73—|183:bJ6;n-_20él- aipelined
. . . . Aulten, J. Keller, an . Kessler, ptimized on-Ciupelined merge-
ongoing research on program restructuring technlques Sl'E%Jhsort on the Cell/B.E.” irProceedings of Euro-Par 2010, vol. 6272, 2010,

as on-chip pipelining is, for SCC, limited to implementatio pp. 187-198.

studies leading to predictions of their theoretical spegd-[3] K. Avdic, N. Melot, J. Keller, and C. Kessler, “Parallebring on
potential, rather than demonstrating (_:oncrete speed-up ongslicit'i%%f}ghﬁuﬁogr% r?gnn;f’ofg’prggrSA;'\/IIQAC(:A_\Q’S{II%O&fn
the current SCC platform. Such techniques could speed up

memory-access intensive computations such as sorting [2],

[3] on SCC-like future many-core architectures that areemor

memory bandwidth constrained.

