
Investigation of Main Memory Bandwidth
on Intel Single-Chip Cloud Computer

Nicolas Melot, Kenan Avdic and Christoph Kessler
Linköpings Universitet

Dept. of Computer and Inf. Science
58183 Linköping

Sweden

Jörg Keller
FernUniversität in Hagen

Fac. of Math. and Computer Science
58084 Hagen

Germany

Abstract—The Single-Chip Cloud Computer (SCC) is an exper-
imental processor created by Intel Labs. It comprises 48 x86 cores
linked by an on-chip high performance network, as well as four
DDR3 memory controllers to access an off-chip main memory of
up to 64GiB. This work evaluates the performance of the SCC
when accessing the off-chip memory. The focus of this study is
not on taxing the bare hardware. Instead, we are interested in
the performance of applications that run on the Linux operating
system and use the SCC as it is provided. We see that the
per-core read memory bandwidth is largely independent of the
number of cores accessing the memory simultaneously, but that
the write memory access performance drops when more cores
write simultaneously to the memory. In addition, the global and
per-core memory bandwidth, both writing and reading, depends
strongly on the memory access pattern.

I. I NTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core “concept-vehicle” created by Intel
Labs as a platform for many-core software research. Its 48
cores communicate and access main memory through a 2D
mesh on-chip network attached to four memory controllers
(see Figure 1).

Algorithm implementations usually make a more or less
heavy use of main memory to load data and to store inter-
mediate or final results. Accesses to main memory represent
a bottleneck in some algorithms’ performance [2], despite the
use of caches to reduce the penalty due to limited bandwidth
to main memory. Caches are high-speed memories, close to
processing units but are rather small and their effect is less
visible when a program manipulates a larger amount of data.
This leads to the design of other optimizations such as on-chip
pipelining for multicore processors [2].

This work investigates the actual memory access bandwidth
limits of SCC from the perspective of applications that run
on the Linux operating system and use the SCC as it is
provided to them. As thus, the focus is not what the bare
hardware is capable of, but what the system, i.e. the ensemble
of hardware, operating system and programming system (com-
piler, communication library, etc) achieves. Our approachis
to use microbenchmarking to create different sets of patterns
to access the memory controllers. Our experience indicates
that the memory controllers can support all cores reading data
from their private memory, but that the cores experience a

significant performance drop when writing to main memory.
For both read and write accesses, the available bandwidth is
strongly dependent on the memory access pattern.

Section II introduces the SCC, then Section III describes
the method used for stressing the main memory interface and
discusses the results obtained. Finally Section IV concludes.

II. T HE SINGLE CHIP CLOUD COMPUTER

The SCC provides 48 independent x86 cores, organized in
24 tiles. Figure 1 provides a global schematic view of the
chip. Tiles are linked together through a 6×4 mesh on-chip
network. Each tile embeds two cores with their cache and a
message passing buffer (MPB) of 16KiB (8KiB for each core);
the MPB supports direct core-to-core communication.

The cores are IA-32 x86 (P54C) cores which are provided
with individual L1 and L2 caches of size 32KiB and 256KiB,
respectively, but no SIMD instructions. Each link of the mesh
network is 16 bytes wide and exhibits a 4 cycles crossing
latency, including the routing activity.

The overall system admits a maximum of 64GiB of main
memory accessible through 4 DDR3 memory controllers
evenly distributed around the mesh. Each core is attributed
a private domain in this main memory whose size depends on
the total memory available (682 MiB in the system used here).
Six tiles (12 cores) share one of the four memory controllers
to access their private memory. Furthermore, a part of the
main memory is shared between all cores; its size can vary
up to several hundred megabytes. Note that private memory is
cached on cores’ L2 cache but caching for shared memory is
disabled by default in Intel’s framework RCCE. When caching
is activated, the SCC offers no coherency among cores’ caches
to the programmer. This coherency must be implemented
through software methods, by flushing caches for instance.

The SCC can be programmed in two ways: a baremetal ver-
sion for OS development, and using Linux. In the latter setting,
the cores run an individual Linux kernel on top of which any
Linux program can be loaded. Also, Intel provides the RCCE
library which contains MPI-like routines to synchronize cores
and allow them to communicate data to each other. RCCE also
allows the management of voltage and frequency scaling.

0
0

10
1

2
3

4
5

6
7

SCC die

D
IM

M

R

tiletile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

Figure 1. A schematic view of the SCC die. Each box labeled DIMM
represents 2 DIMMs.

III. E XPERIMENTAL EVALUATION

The goal of our experiments consists in the measurement of
the bandwidth available to an application that runs on top of
the Linux operating system in standard operating conditions
(cores at 533 MHz, on-chip network at 800 MHz, memory
controllers at 800 MHz). Furthermore, we are interested in
how this bandwidth varies with the number of cores per-
forming memory operations and the nature of the operations
themselves, read or write. This is achieved by consecutively
reading respectively writing the elements of a large array of
integers, aligned by 32 bytes which is the size of a cache
line. Thus, consecutive access to all integers (1-int-stride, 4-
byte-stride) yields perfect spatial locality whereas 8-int-strided
access (4 out of 32 bytes) to the data always results in a cache
miss. Each participating core runs a process that executes a
program as depicted in Fig. 2, where each array is located in
the respective core’s private memory and through which the
cores iterate exactly once.

While the 1-int-strided and 8-int-strided memory accesses
stresses the bandwidth difference due to cache hits and cache
misses, therandom access pattern stresses the memory con-
trollers’ throughput using a random access, making helpless its
hardware optimizations that parallelize or cache read or write
accesses, such as using a plurality of open rows in the attached
SDRAMs. To simulate random access, the array is accessed
through a functionpi(j) that is bijective in{0, . . . ,SIZE−1},
where j is same index (strided 1 int or 8 ints) used to access
the array in the strided access described above. In practice,
we usepi(j) = (a · j) modSIZE for a large, odd constanta
whereSIZE is a power of two and the size of the array to be
read. The random access pattern also applies the 1-int-strided,
8-int-strided and mixed patterns described above to the index
j.

Finally strided, mixed and random access make all the cores
read or write at the same time, along the different access
patterns they define. All these patterns also combine read
and write operations, one half of processors performing reads,
and the second half performing writes. This is denoted as the
combined access pattern.

In this experiment, a varying number of cores synchronize,
then iterate through the array to read or write as described
above. Since every memory operation leads to a cache miss
in the 8-int-strided access and random access reduces the

/* SIZE is a power of two
* strictly bigger than L2 cache
*/
int array[SIZE];

void memaccess (int stride)
{
int i, j, tmp;

for (j = 0; j < SIZE; j += stride)
tmp = array[j];

}

Figure 2. Pseudo-code of the microbenchmark for reading access. For
writing, the order of the variables in the assignments is exchanged.

memory controllers’ performance, such memory operations
generate traffic and the time necessary to read the targeted
amount of data allows the calculation of the actual bandwidth
that was globally available to all cores. The amount of data
to be read or written by each core is fixed to 200MiB. 3
to 12 cores are used, as up to twelve cores share the same
memory controller. Cores run at 533 MHz and 800 MHz in two
different experiments, while the mesh network and memory
controllers remain both at 800MHz. The global bandwidth and
the bandwidth per core are measured: the global bandwidth
represents the bandwidth a memory controller provides to
all the cores. The bandwidth per core is the bandwidth a
core gets when it shares the global bandwidth with all other
running cores. Figures 3, 4 and 5 show the global and per core
bandwidth measured in our experiments.

Figure 3 indicates that both read and write bandwidth are
linearly growing with the number of cores. Since the SCC
provides no hardware mechanism to manage and share the
memory bandwidth served to cores, this shows that all cores
together still fail to saturate the read memory bandwidth
available. The random access pattern offers a much lower
read throughput around 250MiB/sec with 12 cores running
at both 533 and 800 MHz. The write throughput for random
stride 1 shows the same performance as write stride 1 (up to
105 and 120MHz respectively at 533 and 800MHz) and other
write patterns do not exceed 20MiB/sec nor about 7MiB/sec
for random stride 8 access pattern. This shows that memory
controllers struggle to serve irregular main memory request
patterns. The absolute numbers of read bandwidth per core
in the 1-int-stride experiment are stable around 205 MiB/s
and around 125 MiB/s with the 8-int-stride access pattern
with cores running at 533 MHz and respectively 305 and
235 MiB/sec at 800 MHz, as shown in Fig. 4(a). However,
the bandwidth per core with the write accesses (Fig. 4(b))
drops with the number of cores from 10 MiB/sec with 3 cores
to 9 MiB/sec using 12 cores at 533 MHz and from 11 MiB/sec
to 10 MiB/sec at 800MHz. The P54C’s L1 cache no-allocate-
on-write-miss behavior may explain this performance drop:
as write cache misses do not lead to a cache line allocation,
every consecutive write results in a write request addressed
to the memory controller. In both cases, the low difference

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Global main memory read bandwidth at 533 and 800MHz

 Read stride 1 int (533)
 Read stride 8 int (533)

 Read mixed (533)
 Read random 1 int (533)
 Read random 8 int (533)

 Read stride 1 int (800)
 Read stride 8 int (800)

 Read mixed (800)
 Read random 1 int (800)
 Read random 8 int (800)

(a) Global main memory read bandwidth at 533 and 800 MHz.

20

40

60

80

100

120

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Global main memory read bandwidth at 533 and 800MHz

 Write stride 1 int (533)
 Write stride 8 int (533)

 Write mixed (533)
 Write random 1 int (533)
 Write random 8 int (533)

 Write stride 1 int (800)
 Write stride 8 int (800)

 Write mixed (800)
 Write random 1 int (800)
 Write random 8 int (800)

(b) Global main memory write bandwidth at 533 and 800 MHz.

Figure 3. Measured global memory read and write bandwidth as a function
of the number of cores involved, at 533 and 800 MHz.

in performance of 1-int-stride and 8-int-stride access patterns
shows that the high performance memory controllers are able
to compensate efficiently the performance losses due to cache
misses. However the mixed access pattern, with one half of the
cores reading memory with a 1-int-stride and the second half
with 8-int-stride, exhibits lower performance, which shows
again the limited capabilities of memory controllers to serve
irregular access patterns.

The bandwidth measured per core for the random access
pattern reveals better performance with faster cores.

IV. CONCLUSION

The memory wall represents an important performance lim-
iting issue still present in multicore processors, and implemen-
tations of parallel algorithms are still heavily penalizedwhen
accessing main memory frequently [2]. This work enlightens
the available memory bandwidth on Intel’s Single Chip Cloud
Computer when several processors perform concurrent read
and write operations. The measurements obtained here and
the difficulty we experience to actually saturate the read
memory bandwidth show that the cores embedded in the
SCC cannot saturate all together the read memory bandwidth
available: for read access patterns behave regularly, the cores
cannot saturate. However, the measurements obtained from
the write access patterns demonstrate a much smaller write
bandwidth available. Also, we can note that the available
bandwidth for both read and write strongly depends on the
memory access pattern, as the low bandwidth on random

0

50

100

150

200

250

300

350

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Per core main memory read bandwidth at 533 and 800MHz

 Read stride 1 int (533)
 Read stride 8 int (533)

 Read mixed (533)
 Read stride 1 int (800)
 Read stride 8 int (800)

 Read mixed (800)

(a) Read memory bandwidth per core at 533 and 800 MHz.

0

2

4

6

8

10

12

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Per core main memory write bandwidth at 533 and 800MHz

 Write stride 1 int (533)
 Write stride 8 int (533)

 Write mixed (533)
 Write stride 1 int (800)
 Write stride 8 int (800)

 Write mixed (800)

(b) Write memory bandwidth per core at 533 and 800 MHz.

Figure 4. Measured per-core memory bandwidth as a function of the number
of cores involved, for strided access patterns, at 533 and 800 MHz.

1

2

3

4

5

6

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Bandwidth per core with random access

 5 int gap read
 13 int gap read
 21 int gap read
 5 int gap write

 13 int gap write
 21 int gap write

 5 int gap combined
 13 int gap combined
 21 int gap combined

(a) Memory bandwidth per core with random access pattern at 533 MHz.

2

4

6

8

10

12

14

16

2 4 6 8 10 12

B
a
n

d
w

id
th

 i
n

 M
iB

/s
e
c

Number of cores

Bandwidth per core with random access

 5 int gap read
 13 int gap read
 21 int gap read
 5 int gap write

 13 int gap write
 21 int gap write

 5 int gap combined
 13 int gap combined
 21 int gap combined

(b) Memory bandwidth per core with random pattern at 800 MHz.

Figure 5. Measured per-core memory access bandwidth as a function of the
number of cores, for random access patterns, at 533 and 800 MHz.

access patterns indicates. Thus, there is no point in reducing
the degree of parallelism in order to increase the available
bandwidth for tasks requiring a high main memory bandwidth.
The measurements shown in the paper show a behavior
possibly adapted to program restructuring techniques suchas
on-chip pipelining and our previous implementation of on-
chip pipelined mergesort [2]. In this implementation, many
tasks mapped to several cores fetch input data in parallel from
main memory, and a unique task running on a unique core
writes the final result back to main memory, therefore limiting
expensive main memory accesses. However, the gap between
the memory bandwidth available and the limited capabilities of
cores to saturate it shows that there is room to add more cores,
run them at higher frequency or add SIMD ISA extensions.
Without such improvements in the cores’ processing speed
and accordingly higher demands on memory bandwidth, our
ongoing research on program restructuring techniques such
as on-chip pipelining is, for SCC, limited to implementation
studies leading to predictions of their theoretical speed-up
potential, rather than demonstrating concrete speed-up on
the current SCC platform. Such techniques could speed up
memory-access intensive computations such as sorting [2],
[3] on SCC-like future many-core architectures that are more
memory bandwidth constrained.

ACKNOWLEDGMENTS

The authors are thankful to Intel for providing the oppor-
tunity to experiment with the “concept-vehicle” many-core
processor “Single-Chip Cloud Computer”. We also thank the
anonymous reviewers for their helpful comments on an earlier
version of this paper.

This research is partly funded by the Swedish Re-
search Council (Vetenskapsrådet), projectIntegrated Software
Pipelining.

REFERENCES

[1] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-Core IA-32 message-
passing processor in 45nm CMOS using on-die message passing and
DVFS for performance and power scaling,”IEEE J. of Solid-State
Circuits, vol. 46, no. 1, pp. 173–183, Jan. 2011.

[2] R. Hultén, J. Keller, and C. Kessler, “Optimized on-chip-pipelined merge-
sort on the Cell/B.E.” inProceedings of Euro-Par 2010, vol. 6272, 2010,
pp. 187–198.

[3] K. Avdic, N. Melot, J. Keller, and C. Kessler, “Parallel sorting on
Intel Single-Chip Cloud Computer,” inProc. A4MMC workshop on
applications for multi- and many-core processors at ISCA-2011, 2011.

