PEPPHER Composition Tool
Performance-Aware Dynamic Composition of Applications for GPU-based Systems

Usman Dastgeer
Lu Li
Christoph Kessler

Linköping University, Sweden

GPU-based systems

Challenges
- Portability
- Programmability
- Performance portability

PEPPHER approach
• Flexible and extensible component model for annotation of performance-critical user code (also parallel / platform-specific)
• Autotunable algorithms
• Runtime system (StarPU)
 - Dynamic implement, selection, resource allocation, scheduling

“PEPPHERing” an Application (1 step):

PEPPHER Component Model
• External annotation of code in XML descriptors
 - Interface descriptor
 - Implementation descriptor (one per implementation variant)
• Interface metadata
 - Function parameter types and access mode
 - Context descriptors, training data generators for off-line tuning
• Implementation variant metadata
 - Various C/C++ based programming models supported
 - sequential, OpenMP, CUDA, OpenCL, ...
 - Compilation / deployment information
 - Provided and required interfaces
 - Platform model and resource requirements
 - Tunable parameters
• Binding points: Component invocations (on CPU only)
 - For component operands: C/C++ native data types or smart containers: Vector, Matrix, ...

PEPPHER Composition Tool
• Parsing+representation of component descriptors
• Internal optimizations and adaptive offline tuning
• Generation of off-line measuring and tuning code
• Generation of stubs for implementation selection interfacing to PEPPHER runtime system
• Overall coordination of the build process

Adaptive Off-line Tuning
• Learn selection (dispatch) function
 - At component deployment time
 - Customized adaptive decision tree
 - Reduce measurement and dispatch overhead

Selected publications

Further information: www.peppher.eu