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Linköping University
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Abstract—We investigate the problem of generating energy-
optimal code for a collection of streaming tasks that include
parallelizable or malleable tasks on a generic manycore pro-
cessor with dynamic discrete frequency scaling. Streaming task
collections differ from classical task sets in that all tasks are
running concurrently, so that cores typically run several tasks
that are scheduled round-robin at user level in a data driven
way. A stream of data flows through the tasks and intermediate
results are forwarded to other tasks like in a pipelined task
graph. In this paper we present crown scheduling, a novel
technique for the combined optimization of resource allocation,
mapping and discrete voltage/frequency scaling for malleable
streaming task sets in order to optimize energy efficiency given a
throughput constraint. We present optimal off-line algorithms for
separate and integrated crown scheduling based on integer linear
programming (ILP). We also propose extensions for dynamic
rescaling to automatically adapt a given crown schedule in
situations where not all tasks are data ready. Our energy model
considers both static idle power and dynamic power consumption
of the processor cores. Our experimental evaluation of the ILP
models for a generic manycore architecture shows that at least for
small and medium sized task sets even the integrated variant of
crown scheduling can be solved to optimality by a state-of-the-art
ILP solver within a few seconds.

I. INTRODUCTION

We consider the steady state of a streaming task application
where all streaming tasks are active simultaneously. Each
task repeatedly consumes some amount of input, does some
computation, and produces output that is forwarded to another
task (or to memory if it is a final result). Streaming task
applications are widespread in embedded systems, in particular
as applications for multiprocessor systems on a chip (MPSoC).
Examples include image processing and video encoding/deco-
ding pipelines, and other applications operating on large data
volumes, e.g. streamed mergesort or mapreduce task graphs.

A streaming task application can be modeled by a static
streaming task graph, where the nodes represent the tasks, but
are not annotated with runtimes but with average computa-
tional rates. An edge between tasks u and v does not indicate a
precedence constraint but denotes a communication of outputs
from producer task u to become inputs of consumer task v,
and is annotated with an average bandwidth requirement. As
the communication is typically done in the form of fixed-size

packets, one can assume that the communication rate indicates
how often a packet is transferred, and the computation rate
indicates how much computation is done to turn an input
packet into an output packet.

As the workloads of different tasks may vary around the
given averages and as there are normally more tasks than
cores on the underlying machine, several tasks might run
concurrently on the same core. In this case, a scheduling point
is assumed to occur after the production of a packet, and a
round-robin non-preemptive user-level scheduler normally is
sufficient to ensure that each task gets its share of processor
time, provided the core has enough processing power, i.e. is
run at a frequency high enough to handle the total load from
all tasks mapped to this core.

Here we consider streaming task collections, i.e., we model
the tasks’ computational loads only. Our results might thus
be applied to streaming task graphs only as long as the
latencies of producer-consumer task communications can be
mostly hidden by pipelining with multi-buffering and if on-
chip network link bandwidths are not oversubscribed.

We assume that our underlying machine consists of p iden-
tical processors, which can be frequency-scaled independently.
We consider discrete frequency levels. We do not consider
voltage scaling explicitly, but as most processors auto-scale
the voltage to the minimum possible for a given frequency,
this is covered as well.

We allow for malleable (multithreaded, aka. parallelizable)
tasks that can internally use a parallel algorithm involving
multiple processors (possibly using communication and syn-
chronization via shared memory or message passing) in order
to achieve parallel speedup. We make no assumptions about
the parallel efficiency functions of malleable tasks; these are
parameters of our model. Malleable, partly malleable and
sequential tasks might be mixed.

We are interested in (1) allocating processing resources
to tasks and (2) mapping the tasks to processors in such a
way that, after (3) suitable task-wise frequency scaling, overall
power consumption during one full round of the round-robin
scheduler is minimized. We refer to this combined optimization
problem (1–3) shortly as energy-efficient scheduling.

In this respect, we make the following contributions:



• We introduce the crown structure as a constraint on
resource allocation, which reduces the complexity of
allocation, mapping and discrete frequency scaling
considerably, namely from p to O(log p) possible task
sizes for allocation and from 2p to O(p) possible
processor subsets for mapping. We show that this con-
straint makes the exact solution of the considered NP-
hard optimization problem feasible even for medium
problem sizes.

• We present crown scheduling, a novel method for
combining resource allocation and mapping of mal-
leable streaming tasks to parallel cores with dynamic
scheduling. This allows to mix malleable and se-
quential streaming tasks in a round-robin data-driven
schedule such that starvation of malleable tasks using
many cores simultaneously is avoided.

• We show how to apply discrete frequency scaling of
the tasks in a given crown schedule to optimize its
energy efficiency for a given throughput constraint.

• We show how the optimization of the crown sched-
ule can be combined with optimization of discrete
frequency scaling to obtain an integrated optimal
solution.

• We show that crown schedules are especially flexi-
ble for dynamic rescaling to adapt to fluctuations in
streaming task load at runtime, in order to save further
energy e.g. in situations where a task may not be data-
ready in a schedule round and has to be skipped.

• We give implementations as ILP models and evaluate
them for a generic manycore architecture. We show
that the schedule quality improves by integration of the
subproblems, and that even the integrated formulation
can be solved to optimality for small and most medium
sized task sets within a few seconds.

The remainder of this paper is organized as follows:
Section II introduces the general concepts and central nota-
tion. Section III considers the separate optimization of crown
resource allocation/mapping and subsequent frequency/voltage
scaling, while Section IV provides the integrated solution of
crown resource allocation, mapping and scaling in the form of
an integer linear programming model that can provide an opti-
mal solution for small and medium sized problems. Section V
addresses dynamic crown rescaling. Section VI presents ex-
perimental results. Section VII generalizes the crown structure
to better adapt its constraints to given architectural structures
and task set properties in a preceding crown configuration
phase. Section VIII discusses crown vs. non-crown scheduling.
Section IX discusses related work, and Section X concludes
the paper and proposes some future work.

II. CROWN SCHEDULING OF MALLEABLE STREAMING TASKS

We consider a generic multicore architecture with p iden-
tical cores. For simplicity of presentation, we assume in the
following that p = 2L is a power of 2.1

1A generalization towards (non-prime) p that are not powers of 2, such
as p = 48 for Intel SCC, derives from a recursive decomposition of p into
its prime factors a corresponding multi-degree tree structure instead of the
binary tree structure described in the following for organizing processors in
hierarchical processor groups.

Fig. 1. Processor groups in a binary crown over 8 processors.

The set of processors P = {P1, ..., Pp} is hierarchically
structured into 2p − 1 processor subgroups by recursive bi-
nary partitioning as follows: The root group P 1 equals P ;
it has the two child subgroups P 2 = {P1, ..., Pp/2} and
P 3 = {Pp/2+1, ..., Pp}, four grandchildren groups P 4 =
{P1, ..., Pp/4} to P 7 = {P3p/4+1, ..., Pp} and so on over
all L + 1 tree levels, up to the leaf groups P p = {P1},...,
P 2p−1 = {Pp}, see also Figure 1. Unless otherwise con-
strained, such grouping should also reflect the sharing of
hardware resources across processors, such as on-chip memory
shared by processor subgroups. Let Gi denote the set of all
groups P q that contain processor Pi. For instance, G1 =
{P 1, P 2, P 4, P 8, ..., P p}. Let pi = |P i| denote the number
of processors in processor group P i. Where it is clear from
the context, we also write i for P i for brevity.

We consider a set T = {t1, ..., tn} of n malleable, partly
malleable or sequential streaming tasks, where each task tj
performs work τj and has a maximum width Wj ≥ 1 and
an efficiency function ej(q) > 0 for 1 ≤ q ≤ p that
predicts the parallel efficiency (i.e., parallel speedup over q)
with q processors. For malleable tasks, Wj will be ∞, i.e.,
unbounded; for partly malleable tasks, Wj can be any fixed
value > 1, and for sequential tasks Wj = 1. For all tasks tj
we assume that ej(1) = 1, i.e., no parallelism overhead when
running on a single processor.2 Where clear from the context,
we also write j as shorthand for tj .

Resource allocation assigns each task tj a width wj with
1 ≤ wj ≤ min(Wj , p), for 1 ≤ j ≤ n. As additional constraint
we require that wi be a power of 2, and thus could be mapped
completely to one of the 2p−1 processor subgroups introduced
above.

A crown mapping is a mapping of each task tj with
assigned width wj to one of the processor subgroups in
{P 1, ..., P 2p−1} of a size matching wj . For each processor
group P i, 1 ≤ i ≤ 2p−1, let T i denote the set of tasks tj ∈ T
that are mapped to P i. For each processor Pi, 1 ≤ i ≤ p, let
Ti denote the set of tasks tj ∈ T mapped to Pi, i.e., to any
P i ∈ Gi. Conversely, let Rj denote the group to which task
tj is mapped.

For each processor Pi, we now order the tasks in each Ti in
decreasing order of width, e.g., by concatenating the elements
of all T k ∈ Gi in increasing order of group index k. The
relative order of the tasks within each processor group must

2In principle, partial malleability might be also expressed by manipulating
the ej functions, but in this paper we use the upper limits Wj for this
purpose. — We may assume that the efficiency functions ej are monotonically
decreasing (where adding resources would increase time, they are ignored),
although this assumption is not strictly necessary for the techniques of this
paper.



Fig. 2. A crown schedule across 8 processors.

be kept the same across all its processors, e.g., in increasing
task index order. We call such a sequence 〈ts1 , ..., tsls

〉 a crown
schedule.

A crown scheduler is a user-level round-robin scheduler
running on each processor Pi, 1 ≤ i ≤ p, that uses a crown
schedule for the (instances of) tasks in Ti to determine their
order of execution. A crown scheduler works in rounds. Each
round starts with a global barrier synchronization across all
p processors. Thereafter the tasks are executed round-robin
as specified in the chosen crown schedule of the tasks in Ti.
Tasks that are not data ready are skipped. Then the next round
follows. The stable state of a round in a crown-based streaming
computation across all processors, which we also call ”the
crown”, will involve (almost) all tasks in T as they all have
data to process. See Figure 2 for an illustration.

The use of global barrier synchronization and the pro-
cessing of tasks in decreasing order of width is required
to make sure that all processors participating in the same
malleable task (instance) start and stop approximately at the
same time, allowing for efficient interprocessor communication
and avoiding idle times, except for the round-separating barrier.
Barriers between tasks (even of different widths) within a
crown are not required because the processors of the subgroup
assigned to executing the subsequent task will automatically
start quasi-simultaneously after finishing the previous common
task where they also participated; a malleable task is either
data-ready or not, which means it will be skipped either by all
or none of the processors in the assigned processor group.

If no task with width p occurs, the global barrier (i.e., at
root group level 1) can be relaxed into separate subgroup-wide
barriers (i.e., at higher levels in the hierarchy). The largest
occuring width determines the (minimum) barrier size needed
to start up a new crown.

The constraint to use powers of 2 as task widths makes the
mapping and scaling problems considerably simpler; we can
capture it as a bin packing problem (see below). If arbitrary
task widths were allowed, we would obtain a strip packing
problem [1] instead.

III. PHASE-SEPARATED ENERGY-EFFICIENT CROWN
SCHEDULING

In this section we discuss separate optimization algorithms
for each of the subproblems crown resource allocation, crown
mapping and crown scaling. An integrated and more expensive
approach will be discussed in Section IV. An overview of these
approaches is given in Figure 3.

Fig. 3. Overview of step-wise vs. integrated crown scheduling. The methods
shown by solid boxes are detailed in this paper.

A. Heuristic Resource Allocation Algorithms

The group structure constraint also allows to partly de-
couple the problems of resource allocation and mapping. In
a phase-decoupled solution, the resource allocation must be
determined before mapping.

For now, we could apply simple heuristic resource al-
location policies such as: (R1) assign each task j width
wj = 1; (R2) assign each task j its maximum width,
wj = min(Wj , p); (R3) assign each task j a proportional
width wj = min(Wj , pddτj/

∑
k τkee); etc., where τj denotes

the work of task j and ddyee denotes the nearest power of 2
larger than or equal to y.

B. Heuristic Crown Mapping Algorithms

In the subsequent mapping step, we first sort by decreasing
width. The tasks of a certain width can be mapped to the
processor groups of that width by a suitable greedy heuristic,
e.g. Earliest Finishing Time first (EFT) which sorts the tasks
by decreasing work, and then assigns them one by one in an
attempt to balance the workload across all processors.

C. Optimal Crown Resource Allocation

Let Qz , where z = 0, ..., log2 p, be the set of indices of all
the tasks which will be assigned width wj = 2z . Then task
tj (j ∈ Qz) has runtime τ̂j = τj/(ej(wj)wj). The runtime of
these tasks on p processors is

Rz =
∑

j∈Qz

τ̂j

p/2z
(1)

as there are p/2z processor groups of size 2z each. Note that
we assume as a simplification that all tasks with the same width
can be distributed over the processor groups in a balanced
fashion.

Optimal resource allocation chooses the Qz in a way to
minimize

log p∑
z=0

Rz

i.e., we minimize the total runtime assuming that the proces-
sors run at a fixed frequency and the tasks of one width can
be distributed optimally. To do this by linear optimization, we
introduce binary variables yj,z with yj,z = 1 iff task j gets
width wj = 2z . Then Eqn. 1 transforms to

Rz =
∑

j

τ̂jyj,z

p/2z

and we need the constraint

∀j :
∑

z

yj,z = 1 .



D. Optimal Crown Mapping Algorithm

For an optimal crown mapping, we treat all widths sepa-
rately, i.e., we solve log2 p smaller optimization problems. For
the tasks tj of a given width wj = 2z , we try to distribute
them over the p/wj processor groups available such that the
maximum load over any group is minimized.

In order to formulate the mapping of the tasks of a given
width 2z as an integer linear program, we minimize a variable
maxloadz (note that the target function here is simple) under
some constraints. To express the constraints, we use binary
variables yj,q where j runs (in consecutive numbering) over
all tasks with width 2z and q runs over all considered p/2z

processor groups P p/wj , . . . , P 2p/wj−1. Hence, yj,q = 1 iff
task j is mapped to processor group q.

The constraints are as follows. Task j is mapped to exactly
one processor group among those that have the right width wj :

∀j with width wj = 2z :
2p/wj−1∑
q=p/wj

yj,q = 1

and the maximum load is determined as follows:

∀q = p/wj , . . . , 2p/wj − 1 :
∑

j

τ̂j · yj,q ≤ maxloadz

E. Voltage/Frequency Scaling of Crowns

Any given fixed rate of producing output packets can now
be translated into ”crowns per second” for the steady state of
the pipeline. Its inverse M is the upper bound for the makespan
of one round of the crown schedule across all processors. We
assume that when running all cores at maximum speed f1 all
the time, the resulting makespan will be M̂ ≤ M . The gap
M − M̂ and any processor-specific idle times at the ”upper
end” of the crown can then be leveraged for voltage/frequency
scaling to obtain better energy efficiency. We call this ”scaling
the crown”.

We assume that voltage/frequency scaling for individual
cores and tasks is supported by the target architecture, and that
the (average) dynamic power consumption of a processor run-
ning at frequency f is proportional to fα for some technology-
dependent constant α ≈ 3. Static power consumption is
assumed to be linearly proportional to the execution time.
For a concrete machine, there is no real need to derive an
analytical power model. It is sufficient to use results from
power measurements of the target machine at the available
frequencies [2].

For a given crown, energy efficiency can be optimized by
each processor running each of its tasks tj requiring work τj

at a frequency Fj chosen from a given set {f1, ..., fs} of s
discrete (voltage and) frequency levels k = 1, ..., s, such that
it still meets the throughput constraint

∀i = 1, . . . , p : timei :=
∑
j∈Ti

τj

Fjwjej(wj)
≤ M

and the overall energy usage
n∑

j=1

Fα−1
j τj

ej(wj)
+ ζ

p∑
i=1

(M − timei)

is minimized, subject to the additional constraint that a group
of processors must use the same voltage/frequency level for
a common task. The parameter ζ models the importance of
static power consumption during idle time in relation to the
dynamic power; here we assume that the processors switch to
the lowest possible voltage/frequency fs wherever (expected)
idle time M − timei exceeds a processor-specific threshold
time.3

IV. INTEGRATED ENERGY-EFFICIENT CROWN
SCHEDULING

Mapping a crown from a given resource allocation and
a-posteriori scaling of the resulting crown may lead to subop-
timal results compared to co-optimizing resource allocation,
mapping and discrete scaling from the beginning.

The integration of resource allocation, crown mapping and
crown scaling is modeled as a bin packing problem: The
2p − 1 processor groups with their s discrete scaling levels
are represented by s sets of 2p − 1 bins, the bins in each set
Sk having a (time) capacity equivalent to the frequency fk at
level k = 1, . . . , s. The cost fα−1

k (τj/pi)/ej(pi) of a bin i in
set Sk is equivalent to the power consumption of a processor
at frequency fk.

From the bin packing model we construct a linear program
that uses (2p−1) ·s ·n binary variables xi,k,j where xi,k,j = 1
denotes that task j has been assigned to bin i of set Sk, i.e.
to processor group P i running at frequency level k.

We require that each task be allocated and mapped to
exactly one bin:

∀j = 1, . . . , n :
2p−1∑

i=max(p/Wj ,1)

s∑
k=1

xi,k,j = 1 .

and forbid mapping a task with limited width Wj to a bin i
corresponding to an oversized group:

∀j = 1, . . . , n :
max(p/Wj ,1)−1∑

i=1

s∑
k=1

xi,k,j = 0 .

Another constraint asserts that no processor is overloaded
and the throughput constraint M is kept:

∀i′ = 1, ..., p : timei′ :=
∑

i∈Gi′

s∑
k=1

n∑
j=1

xi,k,j ·
τj

piej(pi)fk
≤ M

Then we minimize the target energy function

2p−1∑
i=1

s∑
k=1

fα−1
k ·

n∑
j=1

xi,k,j ·
τj

ej(pi)
+ ζ

p∑
i=1

(M − timei)

where again ζ weighs static energy consumed during residual
idle times against dynamic energy (first term).

3Note that idle time due to load imbalance cannot generally be optimized
away by discrete scaling. As an example, consider a twin group, say {P1, P2},
where one of the processors (say P1) gets assigned a sequential task but not
the other one. As long as continuous scaling is not possible, one of the two
processors might incur some idle time.



Note that the coefficients fα−1
k , τj , pi, ej(pi), ζ are

constants in the linear program. Note also that the time and
energy penalty for frequency switching is not modelled.

One sees that (2p−1) ·s ·n variables and p+n constraints
are needed to allocate, map and scale n tasks onto p cores with
s frequency levels. For problem sizes where it is not possible
any more to employ an ILP solver such as gurobi or CPLEX,
there exist heuristics for the bin packing problem with fixed
costs [3], [4].

V. DYNAMIC CROWN RESCALING

The above methods for crown resource allocation, mapping
and scaling optimize for the steady state of the pipeline and
there in particular for the (”worst”) case that all tasks are data
ready and will execute in each round. In practice, however,
there might be cases where individual tasks are not yet data
ready at the issue time and thus are to be skipped for the
current round by the crown scheduler.

If the skipped task j executes at root group level (using all
processors), it does not lead to additional imbalance and all
processors simply continue with their next task in the crown
schedule.

If however the skipped task j was mapped to a subgroup (or
even a singleton group) P i with |P i| < p, skipping j reduces
timel by τj/(Fjwje(wj)) which may create considerable load
imbalance in the current round4, which could be remedied by
rescaling some ”down-crown” tasks of the processors in P i

that follow j in the crown schedule. Note that such rescaling
must be consistent across all processors sharing a malleable
task, and hence the concurrent search for candidates to rescale
must be deterministic. The crown structure can be leveraged
for this purpose.

Dynamic rescaling of the current round is an on-line
optimization problem that should be solved quickly such
that its expected overhead remains small in relation to the
saved amount of time. Hence, simple heuristics should be
appropriate here. We developed several iterative, linear-time
crown rescaling heuristics but skip their presentation here due
to lack of space and leave this issue to future work.

VI. EVALUATION

We have implemented the three steps of the step-wise
approach, namely (locally) optimal crown resource allocation,
mapping and frequency scaling, each as an ILP model, and
compare it with the integrated approach of Section IV, which
is likewise implemented as an ILP model. Hence, in total there
are 4 ILP-based optimizers:

• Crown allocation: optimizes the resource allocation
for each task (see Section III-C). It is statically cal-
culated to the minimum between the total amount of
cores available and the task width. A constraint forces
allocations to be powers of b (default: b = 2) cores;
by disabling it we can get a non-crown allocation.

• Crown mapping: optimizes the mapping given an
allocation. By disabling the power-of-b constraint we
can get a non-crown mapping.

4We conservatively assume that processors in P \ P i will not skip any
task, and we consider the mapping as fixed, i.e., do not try to migrate tasks
dynamically to deal with such imbalances.

• Crown scaling: computes the most energy saving
frequency setting each task must run at (meaning
all involved cores running it) given an allocation, a
mapping and target makespan.

• Integrated Crown Scheduling: optimizes energy con-
sumption by setting both resource allocation, mapping
and frequency given a target makespan.

For evaluation we first use generated synthetic workloads
with malleable tasks whose behavior corresponds to the model
parameters τj , ej , M etc.

We use randomly generated task sets with n = 10, 20,
40, 80 tasks, where the work parameters τj follow either a
tridiagonal or a uniform random distribution; the upper limit
for τj values is 40. The work parameter τj of these tasks
is chosen randomly within a range given by minimum and
maximum value and with two different probability distribu-
tions (uniform and tridiagonal). For the maximum width Wj ,
five different settings are considered: serial (Wj = 1 ∀j), low
(Wj ∈ {1, ..., p/2} with uniform random distribution), average
(Wj ∈ {p/4, ..., 3p/4} with uniform random distribution),
high (Wj ∈ {p/2, ..., p} with uniform random distribution),
and random (Wj ∈ {1, ..., p} with uniform random distribu-
tion). For a generated task set, the makespan constraint M is
determined as the arithmetic mean between the lower bound∑

τj/(p · max frequency) and 2
∑

τj/(p · min frequency).
The scalability behavior of these tasks is controlled by the

maximum width parameter Wi and the efficiency functions ej

defined over {1, ...,Wj}, which are concave and decreasing as
given by

ej(q) = 1−R
g(q)

g(Wj)
for q ≤ Wj ,

for a given constant 0 < R < 1 and a superlinear function
g(q) ∈ ω(q).5 Hence, ej(q) decays concavely from 1 at q = 1
downto 1−R at q = Wj . In the experiments we used R = 0.3
and g(q) = q2.

For each setting (task number, max-width, distributions of
τj and Wj), 10 different task sets are generated and we report
results averaged over these in the following.

For the evaluation we assumed a generic manycore ar-
chitecture with p = 1, 2, 4, 8, 16, 32 cores; clock frequencies
could be chosen at s = 5 levels with fk = k · min frequency.
For an early energy estimation of the computed (crown)
schedule on a generic architecture we use the energy model
introduced above with α = 3 and ζ = 0.1 (i.e., dynamic energy
dominates).

For ILP solving with AMPL 10.1 and Gurobi 5.1 on a
standard Linux PC we set a 5 minute timeout per ILP instance.
In total, about 200 parameter combinations were generated
with 10 task set instances each to be solved with the four
ILP optimizers. Due to its simplicity, the crown allocation ILP
model could be resolved completely by the AMPL frontend.

Figures 4 and 5 show the predicted quality (energy usage)
of the generated crown schedules of the step-wise and the
integrated ILP-based optimization methods by the number of
cores and tasks, respectively, for all task sets of type average.
Almost all ILP instances could be solved to optimality within

5For all q > Wj , we assume ej(q) = ε where 0 < ε � 1.



Fig. 4. Average energy quality of crown schedules by number of cores (with
n = 80 tasks of type average), generated with the stepwise and integrated
ILP based methods.

Fig. 5. Average energy quality of crown schedules by number of tasks (with
p = 32 cores), generated with the stepwise and integrated ILP based methods.

Fig. 6. Averaged optimization times by the stepwise and integrated ILP based
methods for generating crown schedules of n = 80 tasks of type average, by
number of cores.

Fig. 7. Averages of optimization times by the stepwise and integrated ILP
based methods, by degree of parallelism in tasks.

the given 5-minutes timeout and typically within a few seconds
per instance (see Figures 6 and 7).

We can make the following observations:

• Schedule quality (energy predicted by the formula
used for optimization) is generally better for the inte-
grated compared to the step-wise ILP-based methods.
Even if the integrated approach sometimes hit the
5 minutes timeout and consequently did not return
a provably optimal solution, the resulting schedule
quality is still better than solutions computed with the
stepwise approach.

• The main features that drive solving time appear to be
the number of tasks in a task graph and the number
of processor groups (which is, thanks to the crown
structure constraint, linear in p), see also Figure 6.

• The integrated formulation uses more ILP variables
and takes usually longer time than the step-based
approach where the average parallelism degree of the
malleable tasks is medium to high, but outperforms the
stepwise method for sequential and low-parallelism
tasks even in optimization time, see Figure 7.

We also observed that the stepwise method benefits (in
schedule quality) from additionally taking up load balance into
the objective function, which however adds considerably to the
solving time especially of the mapping step, and makes it 1–2
orders of magnitude slower than the integrated method which
still produces higher quality crown schedules.

Finally, we considered task collections for some concrete
computations: parallel FFT, parallel mergesort and parallel
reduction. We observed that the integrated method clearly
outperformed the stepwise method in schedule quality for FFT
and reduction, which is due to the stepwise method choosing
too high widths and thus more constraining mapping and
frequency scaling. For mergesort, which has sequential (merge)
tasks only, the difference is marginal.

VII. CROWN CONFIGURATION

Investigating the possible performance penalty of the re-
striction of processor group sizes to powers of 2, we consider
the following worst-case example for crown mapping.

Given T = {t1, t2} as follows:

• Task t1 is sequential and performs work τ1 = 1.

• Task t2 is fully parallel (e(q) = 1 ∀q ∈ {1, ..., p})
and performs work τ2 = p− 1, where p is the overall
number of processors. We assume as before that p is
a power of 2.

There are only 2 possibilities (modulo symmetries in
time and processor space) for crown resource allocation and
mapping:

• Mapping 1: Task t1 is mapped to one processor,
w.l.o.g. to P1. Task t2 is parallelized with width p
and mapped to P 1 using all processors. Then, the
makespan of the crown is 2−1/p, and the idle time on
P2, ..., Pp cannot be remedied by subsequent scaling.
(If there is a gap towards M , all scaling should be
spent on t2.)



• Mapping 2: Task t1 is mapped to one processor,
w.l.o.g. to P1, task t2 to group P 3 = {Pp/2+1...Pp}.
Then, the makespan is 2 − 2/p; P2, ..., Pp/2 have
nothing to do at all, and P1 has some idle time that
could be remedied by scaling.

In both cases almost 50% of the resources are wasted,
mostly because of the crown group structure (and the extreme
task set—only 2 tasks, very unequal load), and scaling does
not really help with that.

This is a worst-case scenario because adding more se-
quential or more parallel tasks to T would not make the
relative amount of non-scalable idle time larger in an optimal
crown mapping. Hence, under the assumption that the task set
were not known statically, the default balanced binary crown
configuration described in this paper would still be (2− 1/p)-
competitive with respect to resource utilization.

There are two workarounds to handle such extreme sit-
uations. First, in some cases the task set is the result of a
(design-time) calculation, e.g., adaptive unfolding of a recur-
sive template for task graphs [5]. In such cases, the large task(s)
could be unfolded further to give more flexibility to the crown
mapper.

A more general solution is to allow asymmetric crowns.
The decision to split a processor group into two equal-
sized subgroups was arbitrary, mostly motivated by symmetric
organization of on-chip resources and easy indexing. But
conceptually one could of course allow “odd” subgroup sizes,
given that we know that the task set is likewise “odd”. In other
words, we could configure the crown structure appropriately
based on an analysis of the task set (preprocessing phase),
before doing crown resource allocation, mapping and scaling.
Developing such analysis is a topic for future work. In the
above example scenario, we could have split the root group
into a single-processor lane for sequential tasks whereas the
remaining p− 1 processors form a large subgroup suitable for
very wide parallel tasks, leading to perfect load balance.

VIII. CROWN VS. NON-CROWN SCHEDULING

In this section we consider a worst-case example that
compares Crown scheduling to non-Crown scheduling.

Consider a system with p processors (where p is a power
of 2), maximum makespan M = p, and n = 2p − 1 tasks
j = 1, ..., n defined as follows:

τj :=
{

for odd j : (j + 1)/2
for even j : p− j/2

ej(q) :=


for odd j :

{
1 for all q ≤ (j + 1)/2,
ε for all q > (j + 1)/2

for even j :
{

1 for all q ≤ p− j/2,
ε for all q > p− j/2.

where ε, 0 < ε � 1 is a tiny positive value.

Energy-efficient resource allocations will thus not assign
more processors (PE) than can be used with efficiency 1 for
any task. A non-crown-constrained greedy allocation step will
allocate exactly to the cut-off limit because this minimizes
energy usage of each task and the makespan constraint still
can be achieved with p processors:

A greedy non-crown allocation and subsequent mapping
will, following the task numbering, always pair an odd and
the next even task together to fill a unit-time slot of all p
available processors:

Time 0: Task 1 (on 1 PE) || Task 2 (p-1 PE);
Time 1: Task 3 (on 2 PE) || Task 4 (p-2 PE);
... ... ...
Time p-2: Task 2p-3 (p-1 PE) || Task 2p-2 (1 PE);
Time p-1: Task 2p-1 (p PE).

resulting in makespan p.
This will require a barrier synchronization after every time

step because PEs coming from different tasks {j, j + 1} with
j odd, are joining into a subsequent parallel task from {j +
2, j + 3}. Hence we would need p − 1 = Θ(n) subsequent
barriers. The accumulated barrier time overhead also adds to
makespan and will require additional frequency scaling to meet
the makespan constraint, increasing energy cost beyond the
energy overhead of the barriers.

Crown scheduling can do with a single barrier at time 0,
now starting with Task n = 2p − 1. If resource allocation
assigns the maximum possible width to to all tasks (heuristic
R2), then for each possible width wz = 2z < p there are
2wz tasks tj with that width assigned, and with runtimes τj =
wz +k, where k = 0, . . . , wz−1 (two tasks with each runtime,
one with odd and one with even task index j). The total load
of tasks with width wz < p is Lz = 2

∑wz−1
k=0 (wz + k) =

2w2
z +wz(wz−1) = 3w2

z −wz . Additionally, there is one task
with width p.

For
√

p ≤ wz < p, the number of tasks with width wz

is at least twice as large as the number p/wz of processor
groups of that width, and a snakewise assignment of the tasks
(considered in decreasing order of runtime) over the processor
groups leads to a balanced load.

If we now consider the tasks with width less than
√

p (there
are at most 0.5 log2(p) of those widths), then their combined
load is

∑d0.5 log2(p)e−1
z=0 Lz < 3p, i. e., rather small compared

to the total load p2 of this worst-case example. Also, if the
mapper would assign one task per processor group, and would
map the task of width wz with maximum parallel runtime
2 − 1/wz to a group comprising processor 0, then the total
runtime of the schedule would be less than p−3+log2(p): the
majority p2−3p of the workload is balanced, for the remaining
0.5 log2(p) widths there is at most one task per group with
parallel runtime at most 2.

As a consequence, even for this worst-case scenario, al-
ready the non-integrated crown scheduler (and thus also the
integrated crown scheduler) finds a makespan that is close to
the optimum makespan p and thus there is not much need for
frequency scaling to achieve makespan p and associated energy
overhead.

IX. RELATED WORK

Energy-aware allocation, mapping and scheduling prob-
lems are being researched intensively in scheduling theory. For
instance, Pruhs et al. have investigated on-line and offline algo-
rithms for energy-efficient resource allocation and scheduling
[6] and dynamic frequency scaling [7] of malleable tasks with
arbitrary parallel efficiency functions on multiprocessors with
dynamic frequency scaling.



Energy efficient static scheduling of task collections with
parallelizable tasks onto multiprocessors with frequency scal-
ing has been considered by Li [8]. However, the number of
processors allocated to each task is fixed and given as part of
the problem scenario, and continuous (not discrete) frequency
scaling is used.

Sanders and Speck [9] consider the related problem of
energy-optimal allocation and mapping of n independent con-
tinuously malleable tasks with monotonic and concave speedup
functions to m processors with continuous frequency scaling,
given a deadline M and a continuous convex energy usage
function Ej for each task j. Continuous malleability means
that also a fractional number of processors (e.g., using an
extra processor only during part of the execution time of a
task) can be allocated for a task; this is not allowed in our
task model where allocations, speedup and energy functions
are discrete. They propose an almost-linear work algorithm for
an optimal solution in the case of unlimited frequency scaling
and an approximation algorithm for the case where frequencies
must be chosen between a given minimum and maximum
frequency. It is interesting to observe that the assumptions
of continous malleability and continuous frequency selection
make the integrated problem much easier to solve.

Related approaches for throughput or energy efficient (or
multi-objective) mapping of complex pipelines have been
developed mainly by the MPSoC community for HW/SW
synthesis, e.g. by using genetic optimization heuristics [10].

Hultén et al. [11] and Avdic et al. [12] have considered
mapping of streaming task applications onto processors with
fixed frequency with the goal of maximizing the throughput.
First investigations of energy-efficient frequency scaling in
such applications have been done by Cichowski et al. [13].

X. CONCLUSIONS AND OUTLOOK

We have presented crown scheduling, a new technique for
static resource allocation, mapping and discrete frequency scal-
ing that supports data-driven scheduling of a set of malleable,
partly malleable and sequential streaming tasks onto manycore
processors in order to support energy-efficient execution of on-
chip pipelined task graphs.

We have presented heuristics and integer linear program-
ming models for the various subproblems and also for an in-
tegrated approach that considers all subproblems together, and
evaluated these with synthetic benchmarks. Our experimental
results show that the complexity reduction imposed by the
crown structure constraint, reducing the number of allocatable
processor group sizes from p to O(log p) and of mappable
processor groups from 2p to O(p), allows for the solution
of even medium-sized instances of the integrated optimization
problem within a few seconds, using a state-of-the-art integer
linear programming solver. The crown structure also minimizes
the number of barrier synchronizations necessary.

We have shortly described the increased flexibility for
dynamic rescaling due to the crown structure constraint, which
allows to easily adapt to fluctuations in streaming task load at
runtime.

We have also sketched ways to relax the restrictions of the
crown shape, and showed that, in the worst case, an optimal
crown schedule is off from an optimal general schedule by a
factor of 2− 1/p in overall resource utilization.

Future work will broaden the experimental evaluation,
include measurements of the resulting code on a concrete
many-core system such as Intel SCC or Kalray MPPA, and in
particular add a quantitative comparison to non-crown sched-
ulers, thereby quantifying the average loss (or maybe gain)
imposed by the crown structure constraint. Dynamic rescaling
of crown schedules will be implemented and evaluated, too.

We will also complement the optimal methods in our
implementation by various heuristics to be able to address very
large task sets, and investigate optimal crown configuration
based on static analysis of the task set. Also, additional
constraints on scaling might be considered, such as power
domains comprising whole processor subsets as in the case of
Intel SCC where frequencies can only be set for groups of 8
processors. Finally, the energy cost of communication between
tasks needs to be taken up in the mapping problem.
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