
Integer Linear Programming

versus Dynamic Programming

for Optimal Integrated VLIW Code Generation

Andrzej Bednarski� and Christoph Kessler�

PELAB� Department of Computer and Information Science�
Link�opings universitet� S������ Link�oping� Sweden

andbe�ida�liu�se� chrke�ida�liu�se

Abstract� To our knowledge there is only one Integer Linear Program�
ming �ILP� formulation in the literature that fully integrates all steps
of code generation� i�e	 instruction selection� register allocation and in�
struction scheduling� on the basic block level	 We give in this paper an
improved version of this ILP formulation that also covers VLIW proces�
sors	 Moreover� our ILP formulation does no longer require preprocessing
the basic block
s data �ow graph to support instruction selection	
In earlier work� we proposed and implemented a dynamic programming
�DP� based method for optimal integrated code generation� called OP�
TIMIST	 In this paper we give �rst results to evaluate and compare our
ILP formulation with our DP method on a VLIW processor	
We identify dierent code situations and shapes of data dependence
graphs for which either ILP or DP is most suitable	

� Introduction

We consider the problem of optimal integrated code generation for instruction�
level parallel processor architectures such as VLIW processors� Integrated code
generation solves simultaneously� in a single optimization pass� the tasks of in�
struction selection� instruction scheduling including resource allocation and code
compaction� and register allocation�

In previous work ���� we developed a dynamic programming approach and
implemented it in our retargetable framework called OPTIMIST ���� However�
there may be further general problem solving strategies that could likewise be
applied to the integrated code generation problem� In this paper� we consider
the most promising of these� integer linear programming �ILP��

While our original intention was just to obtain a quantitative comparison of
our DP implementation to an equivalent ILP formulation� we see from the results
reported in this paper that the two approaches actually appear to complement
each other very well�

Integer linear programming �ILP� is a general�purpose optimization method
that gained much popularity in the past 	
 years due to the arrival of e��
cient commercial solvers and e�ective modeling tools� In the domain of compiler



back ends� it has been used successfully for various tasks in code generation�
most notably for instruction scheduling� Wilken et al� �� use ILP for instruction
scheduling of basic blocks which allows� after preprocessing the basic block�s
data �ow graph� to derive optimal solutions for basic blocks with up to 	���
instructions within reasonable time� Zhang �	��� Chang et al� �	� and K�astner �
�
provide order�based and�or time�based ILP formulations for the combination of
instruction scheduling with register allocation� Leupers and Marwedel ��� pro�
vide a time�based ILP formulation for code compaction of a given instruction
sequence with alternative instruction encodings�

We know of only one ILP formulation in the literature that addressed all three
tasks simultaneously� which was proposed byWilson et al� �		� 	��� However� their
formulation is for single�issue architectures only� Furthermore� their proposed
model assumes that the alternatives for pattern matching in instruction selection
be exposed explicitly for each node and edge of the basic block�s data �ow graph
�DFG�� which would require a preprocessing of the DFG before the ILP problem
instance can be generated�

In this paper we provide an ILP formulation that fully integrates all three
phases of code generation and extends the machine model used by Wilson et

al� by including VLIW architectures� Moreover� our formulation does no longer
need preprocessing of the DFG�

The remainder of this paper is organized as follows� Section � provides the
ILP formulation for fully integrated code generation for VLIW processors� For
a description of the DP approach of OPTIMIST� we refer to a recent article ����
Section � evaluates the DP approach against the ILP approach� provides �rst
results and draws some conclusions� Section � discusses further directions of ILP
approach and Section 
 concludes the article�

� The ILP formulation

In this section we �rst introduce various variables and parameters and then
provide the ILP formulation for fully integrated code generation� However� �rst
we introduce some notation that we use in the formulation�

��� Notation

In the remainder of this article� we use uppercase letters to denote parameters
and constants provided to the ILP formulation �model�� Lowercase letters de�
note solution variables and indexes� For example� F represents an index set of
functional unit types� which is given as parameter to the ILP model�

Indexes i and j denote nodes of the DFG� We reserve indexes k and l for
instances of nodes composing a given pattern� t is used for time index� We use
the common notation jX j to denote the cardinality of a set �or pattern� X �

As usual� instruction selection is modeled as a general pattern matching prob�
lem� covering the DFG with instances of patterns that correspond to instructions
of the target processor� The set of patterns B is subdivided into patterns that



consist of a single node� called singletons �B���� and patterns consisting of more
than one node� with or without edges �B��� That is� B � B� � B�� such that
�p � B�� jpj � � and �p � B��� jpj � 	�

In the ILP formulation that follows� we provide several instances of each
non�singleton pattern� For example� if there are two locations in the DFG where
a multiply�accumulate pattern �MAC� is matched� these will be associated with
two di�erent instances of the MAC pattern� one for each possible location� We
require that each pattern instance be matched at most once in the �nal solution�
As a consequence� the model requires to specify a su�cient number of pattern
instances to cover the DFG G� For singleton patterns� we only need a single in�
stance� This will become clearer once we have introduced the coverage equations
where the edges of a pattern must correspond to some DFG edges�

��� Solution variables

The ILP formulation uses the following solution variables�

� ci�p�k�t a binary variable that is equal to 	� if a DAG node i is covered by
instance node k of pattern p at time t� Otherwise the variable is ��

� wi�j�p�k�l a binary variable that is equal to 	 if DFG edge �i� j� is covered by
a pattern edge �k� l� of pattern p � B��

� sp�t a binary variable that is set to 	 if a pattern p � B� is selected and the
corresponding instruction issued at time t� and to � otherwise�

� ri�t a binary variable that is set to 	 if DFG node i must reside in some
register at time t� and � otherwise�

� � an integer variable that represents the execution time of the �nal schedule�

We search for a schedule that minimizes the total execution time of a basic
block� That is� we minimize � �

In the equations that follow� we use the abbreviation ci�p�k for the expressionP
�t����Tmax

ci�p�k�t� and sp for
P

�t����Tmax
sp�t�

��� Parameters to the ILP model

The model that we provide is su�ciently generic to be used for various instruction�
level parallel processor architectures� At present� the ILP model requires the
following parameters�

Data �ow graph�

� G index set of DFG nodes
� EG index set of DFG edges
� OPGi operation identi�er of node i� Each DFG node is associated with an
integer value that represents a given operation�

� OUTi indicates the out�degree of DFG node i�

Patterns and instruction set�

� B� index set of instances of non�singleton patterns



� B�� index set of singletons �instances�
� Ep set of edges for pattern p � B�

� OPp�k operator for an instance node k of pattern instance p� This relates to
the operation identi�er of the DFG nodes�

� ODPp�k is the out�degree of a node k of pattern instance p�
� Lp is an integer value representing the latency for a given pattern p� In our
notation� each pattern is mapped to a unique target instruction� resulting in
unique latency value for that pattern�

Resources�

� F is an index set of functional unit types�
� Mf represents the amount of functional units of type f � where f � F �
� Up�f is a binary value representing the connection between the target in�
struction corresponding to a pattern �instance� p and a functional unit f
that this instruction uses� It is 	 if p requires f � otherwise ��

� W is a positive integer value representing the issue width of the target pro�
cessor� i�e�� the maximum number of instructions that can be issued per clock
cycle�

� R denotes the number of available registers�
� Tmax is a parameter that represents the maximum execution time budget
for a basic block� The value of Tmax is only required for limiting the search
space� and has no impact on the �nal result� Observe that Tmax must be
greater �or equal� than the time required for an optimal solution� otherwise
the ILP problem instance has no solution�

The rest of the section provides the ILP model for fully integrated code gen�
eration for VLIW architectures� First� we give equations for covering the DFG G

with a set of patterns� i�e� the instruction selection� Secondly� we specify the set of
equations for register allocation� Currently� we address regular architectures with
general purpose registers� and thus only check that the register need does not
exceed the amount of physical registers at any time� Next� we address scheduling
issues� Since we are working on the basic block level� only �ow �true� data de�
pendences are considered� Finally� we assure that� at any time� the schedule does
not exceed available resources� and that the instructions issued simultaneously
�t into a long instruction word� i�e�� do not exceed the issue width�

��� Instruction selection

Our instruction selection model is suitable for tree�based and directed acyclic
graph �DAG� data �ow graphs� Also� it handles patterns in the form of tree�
forest� and DAG patterns�

The goal of instruction selection is to cover all nodes of DFG G with a set
of patterns� For each DFG node i there must be exactly one matching node k
in a pattern instance p� Equation �	� forces this full�coverage property� Solution
variable ci�p�k�t records for each node i which pattern instance node covers it�
and at what time� Beside full coverage� Equation �	� also assures a requirement



for scheduling� namely that for eace DFG node i� the instruction corresponding
to the pattern instance p covering it is scheduled �issued� at some time slot t�

�i � G�
X
p�B

X
k�p

ci�p�k � 	 �	�

Equation ��� records the set of pattern instances being selected for DFG
coverage� If a pattern instance p is selected� all its nodes should be mapped to
distinct nodes of G� Additionally� the solution variable sp�t carries the informa�
tion at what time t a selected pattern instance p is issued�

�p � B���t � ���Tmax�
X
i�G

X
k�p

ci�p�k�t � jpjsp�t ���

If a pattern instance p is selected� each pattern instance node k maps to
exactly one DFG node i� Equation ��� considers this unique mapping only for
selected patterns� as recorded by the solution variables s�

�p � B���k � p�
X
i�G

ci�p�k � sp ���

Equation ��� implies that all edges composing a pattern must coincide with
exactly the same amount of edges in G� Thus� if a pattern instance p is selected�
it should cover exactly jEpj edges of G� Unselected pattern instances do not
cover any edge of G� Remark that in our model each pattern instance is distinct�
and that we further assume that there are enough pattern instances available to
fully cover a particular DFG�

�p � B��
X

�i�j��EG

X
�k�l��Ep

wi�j�p�k�l � jEpjsp ���

Equation �
� assures that a pair of nodes constituting a DFG edge covered
by a pattern instance p corresponds to a pair of pattern instance nodes� If we
have a match �wi�j�p�k�l � 	� then we must map DFG node i to pattern instance
node k and node j to pattern instance node l of pattern instance p�

��i� j� � EG��p � B����k� l� � Ep� �wi�j�p�k�l � ci�p�k � cj�p�l �
�

Equation ��� imposes that instructions corresponding to a non�singleton pat�
tern �instance� p are issued at most once at some time t �namely� if p was se�
lected�� or not at all �if p was not selected��

�p � B�� sp � 	 ���

Equation ��� checks that the IR operators of DFG �OPi� corresponds to the
operator OPp�k of node k in the matched pattern instance p�

�i � G��p � B��k � p��t � ���Tmax� ci�p�k�t�OPi �OPp�k� � � ���



(ii)(i)

c

b a b

c

a

p

Fig� �� Pattern coverage restrictions� �i� Pattern p cannot cover the set of nodes since
there is an outgoing edge from b� �ii� pattern p covers the set of nodes fa� b� cg	

Our model forbids� as is the case for almost all architectures� to access a
partial result that �ows along a covered edge and thus appears inside a pattern�
Only a value �owing out of a node matched by a root node of the matching
pattern is accessible �and will be allocated some register�� This situation is illus�
trated in Figure 	� A possible candidate pattern p that covers nodes a� b� and
c cannot be selected in case �i� because the value of b is used by another node
�outgoing edge from b�� On the other hand� the pattern might be selected in
case �ii� since the value represented by b is only internal to pattern p�

For that� Equation ��� simply checks if the out�degree OUTp�k of node k of
a pattern instance p equals the out�degree OUTi of the covered DFG node i�
As nodes in singleton patterns are always pattern root nodes� we only need to
consider non�singleton patterns� i�e� the set B��

�p � B����i� j� � EG���k� l� � p� wi�j�p�k�l�OUTi �OUTp�k� � � ���

��� Register allocation

Currently we address �regular� architectures with general�purpose register set�
We leave modeling of clustered architectures for future work� Thus� a value
carried by an edge not entirely covered by a pattern �active edge�� requires a
register to store that value� Equation �� forces a node i to be in a register if at
least one of its outgoing edge�s� is active�

�t � ���Tmax��i � G�

tX
tt��

X
�i�j��EG

X
p�B

�
�X

k�p

ci�p�k�tt �
X
l�p

cj�p�l�tt

�
A � Nri�t ��

If all outgoing edges from a node i are covered by a pattern instance p� there
is no need to store the value represented by i in a register� Equation �	�� requires
solution variable ri�t to be set to � if all outgoing edges from i are inactive at
time t�

�t � ���Tmax��i � G�

tX
tt��

X
�i�j��EG

X
p�B

�
�X

k�p

ci�p�k�tt �
X
l�p

cj�p�l�tt

�
A � ri�t �	��



Finally� Equation �		� checks that register pressure does not exceed the num�
ber R of available registers at any time�

�t � ���Tmax�
X
i�G

ri�t � R �		�

��� Instruction scheduling

The scheduling is complete when each node has been allocated to a time slot
in the schedule such that there is no violation of precedence constraints and
resources are not oversubscribed� Since we are working on the basic block level�
we only need to model the true data dependences� represented by DFG edges�
Data dependences can only be veri�ed once pattern instances have been selected�
covering the whole DFG� The knowledge of the covered nodes with their respec�
tive covering pattern �i�e�� the corresponding target instruction� provides the
necessary latency information for scheduling�

Besides assuring full coverage� Equation �	� constraints each node to be
scheduled at some time t in the �nal solution� We need additionally to check
that all precedence constraints �data �ow dependences� are satis�ed� There are
two cases� First� if an edge is entirely covered by a pattern p �inactive edge�� the
latency of that edge must be �� which means that for all inactive edges �i� j��
DFG nodes i and j are �issued� at the same time� Secondly� edges �i� j� between
DFG nodes matched by di�erent pattern instances �active edges� should carry
the latency Lp of the instruction whose pattern instance p covers i� Equations
�	�� and �	�� guarantee the �ow data dependences of the �nal schedule� We
distinguish between edges leaving nodes matched by a multi�node pattern� see
Equation �	��� and the case of edges outgoing from singletons� see Equation �	���

�p � B�� ��i� j� � EG� �t � ���Tmax � Lp � 	�

X
k�p

ci�p�k�t �
X
q�P
q ��p

t�Lp��X
tt��

X
k�q

cj�q�k�tt � 	 �	��

Active edges leaving a node covered by a singleton pattern p carry always
the latency Lp of p� Equation �	�� assures that the schedule meets the latency
constraint also for these cases�

�p � B��� ��i� j� � EG� �t � ���Tmax � Lp � 	�

X
k�p

ci�p�k�t �
X
q�B

t�Lp��X
tt��

X
k�q

cj�q�k�tt � 	 �	��

��� Resource allocation

A schedule is valid if it respects data dependences and its resource usage does
not exceed the available resources �functional units� registers� at any time� Equa�
tion �	�� veri�es that there are no more resources required by the �nal solution



than available on the target architecture� In this paper we assume fully pipelined
functional units with an occupation time of one for each unit� i�e� a new instruc�
tion can be issued to a unit every new clock cycle� The �rst summation counts
the number of resources of type f required by instructions corresponding to se�
lected multi�node pattern instances p at time t� The second part records resource
instances of type f required for singletons �scheduled at time t��

�t � ���Tmax� �f � F�
X
p�B�

Up�f��

sp�t �
X
p�B��

Up�f��

X
i�G

X
k�p

ci�p�k�t �Mf �	��

Finally Equation �	
� assures that the issue width W is not exceeded� For
each issue time slot t� the �rst summation of the equation counts for multi�
node pattern instances the number of instructions composing the long instruc�
tion word issued at t� and the second summation for the singletons� The total
amount of instructions should not exceed the issue width W � i�e�� the number
of available slots in a VLIW instruction word�

�t � ���Tmax�
X
p�B�

sp�t �
X
p�B��

X
i�G

X
k�p

ci�p�k�t �W �	
�

��	 Optimization goal

In this paper we are looking for a time�optimal schedule for a given basic block�
The formulation however allows us not only to optimize for time but can be
easily adapted for other objective functions� For instance� we might look for the
minimum register usage or code length�

In the case of time optimization goal� the total execution time of a valid
schedule can be derived from the solution variables c as illustrated in Equation
�	���

�i � G� �p � P� �k � p� �t � ���Tmax� ci�p�k�t � �t� Lp� � � �	��

The total execution time is less or equal to the solution variable � � Looking
for a time optimal schedule� our objective function is

min � �	��

� Experimental results

First� we provide a theoretical VLIW architecture for which we generate target
code� Secondly we describe the experimental setup that we used to evaluate our
ILP formulation against our previous DP approach� Finally we summarize �rst
results�



ALU2 MAC2 ALU1MAC1

REG (r0−r7)

MEMORY

LS2 LS1

Fig� �� Theoretical load�store VLIW target architecture used for the evaluation	

��� Target architecture

In order to compare OPTIMIST�s DP technique to the ILP formulation of Sec�
tion �� we use a theoretical VLIW target platform �see Figure �� with the fol�
lowing characteristics� The issue width is a maximum of three instructions per
clock cycle� The architecture has two arithmetic and logical units �ALU� and
ALU��� Most ALU operations require a single clock cycle to compute �occupa�
tion time and latency are one�� Multiplication and division operations have a
latency of two clock cycles� Besides the two ALUs� the architecture has two
multiply�and�accumulate units �MAC� and MAC�� that take two clock cycles to
perform a multiply�and�accumulate operation� There are eight general purpose
registers accessible from any unit� We assume a single memory bank with unlim�
ited size� To store and load data there are two load�store units �LS� and LS���
The latency for a load or store operation is four clock cycles�

OPTIMIST is a retargetable framework� i�e� it can produce code for di�erent
target processors� A hardware description language �xADML�� based on XML�
parametrizes the code generator� An xADML document is divided into two parts�
One part consists in declaring resources such as registers� memories modules and
functional units� The other �and largest� part provides the instruction set for the
speci�ed target processor� The instruction set speci�cation is �optionally� sub�
divided into two parts� �i� pattern de�nitions� and �ii� associations �mappings�
between a pattern and a target processor instruction� An xADML speci�cation
contains thus a structural and behavioral description of a target processor�

We implemented the ILP data generation module within the OPTIMIST
framework� Currently our ILP model addresses VLIW architectures with regular
pipeline� i�e� functional units are pipelined� but no pipeline stall occurs� We
adapted hardware speci�cations in xADML such that they �t current limitations
of the ILP model� In fact� the OPTIMIST framework accepts more complex
resource usage patterns and pipeline descriptions expressible in xADML� which
uses the general mechanism of reservation tables ���� As assumed in Section ��
we use for the ILP formulation the simpler model with unit occupation time and
latency for each instruction� An extension of the ILP formulation to use general
reservation tables is left to future work�



OPTIMISTLCC−FE

CPLEX

.c .asmLCC−IR

ILP model

.dat

.xml

ILP solution

HW spec.

SRC

.mod

Fig� �� Experimental setup	

��� Experimental setup

Figure � shows our experimental platform� We provide a plain C code sequence
as input to OPTIMIST� We use LCC ��� �within OPTIMIST� as C front�end�
Besides the source code we provide the description of the target architecture
in xADML language �HW Spec�� For each basic block� OPTIMIST outputs the
assembly code as result� If speci�ed� the framework also outputs the data �le
for the ILP model of Section �� The data �le contains hardware speci�cations�
such as the issue width of the processor� the set of functional units� patterns�
etc� that are extracted from the hardware description document� It generates all
parameters introduced in Section ���� Finally we use the CPLEX solver ��� to
solve the set of equations�

Observe that we need to provide the upper bound for the maximum execution
time in the ILP formulation �Tmax�� For that� we �rst run a heuristic variant of
OPTIMIST �that still considers full integration of code generation phases� and
provide its execution time as Tmax to the ILP data�

��� First results

We generated code for a set of various basic blocks of di�erent sizes� Most of
them perform simple arithmetic computations taken from various digital signal
processing �lter algorithms� We run the evaluation of the dynamic programming
approach on a Linux machine with an Athlon processor of 	�
GHz� with 	�
GB
of RAM and 	�
GB of swap� The ILP evaluation was performed using CPLEX
��
�	� on a ��� MHz UltraSparc  with ���MB of RAM and 	GB of swap space�

Table 	 reports our �rst results� For each case� the second column reports the
number of nodes in the DFG for that basic block� The third and fourth column
give the height of the DAG and the number of edges� respectively� Observe that

� By the time of writing� our �rst priority has been to test and evaluate the new ILP
formulation	 Since we do not �yet� have a CPLEX license at our department� the
mathematical department kindly let us run our evaluation on their SPARCmachines�
running an old CPLEX version	 We should expect better results with more modern
versions of CPLEX and hardware	



Table �� First results that compares ILP against DP approach to fully integrated code
generation	 An X in the table is set when the computation time exceeded � hours of
equivalent computation time on machine running CPLEX solver	

ILP DP
Case jGj Height jEGj Time �h�mm
ss� cc Time �h�mm
ss� TimeX� cc

�a� � � � �
�� � 
�� 
�� �
�b� �� � �� ��
�� �� 
�� �
�� ��
�c� �� � �� ����
�� �� 
�� �� ��
�d� �� � � ��
�� �� �
�� �
�� ��
�e� �� � �� �
�� �� X X X
�f� �� � �� X X ��
�� ����
�� ��
�g� �� � �� ����
�� �� X X X
�h� �� � �� � out of memory � ����
�� ����
�� ��

the height corresponds to the longest path of the DFG in terms of number of
DFG nodes� and not to its critical path length� whose calculation is unfeasible
since the instruction selection is not yet known� The �fth column reports the
computation time for �nding an ILP solution� and in the sixth column we dis�
play the amount of clock cycles required for the basic block� We report the results
for OPTIMIST in columns seven to nine� Since the Athlon processor is approxi�
mately �ve times faster than the Sparc processor available to us for running the
ILP solver� we report in the TimeX
 column the theoretical computation time if
OPTIMIST were run on the Ultra Sparc  machine� In the case when the equiv�
alent computation time of the machine running the CPLEX solver exceeded �
hours� the computation was abandoned and is represented with an X�

We should mention a factor that contributes in favor of the ILP formulation�
In the OPTIMIST framework we enhanced the intermediate representation with
extended basic blocks �which is not standard in LCC�� As consequence� we in�
troduced data dependence edges for resolving memory write�read precedence
constraints� These are implicitly preserved in LCC since it splits basic blocks
at writes and processes each basic block in sequence� In the current ILP for�
mulation we consider only data �ow dependences edges� Thus� we instrumented
OPTIMIST to remove edges introduced by building extended basic blocks� As
a result� the DAGs have a larger base� i�e� with larger number of leaves� and in
general a lower height� We are aware that the DP approach su�ers from DFGs
with a large number of leaves� as OPTIMIST early generates a large number of
partial solutions��

First� for all cases where it was possible to check� we found optimal solutions
with the same number of clock cycles� which was of course expected� We can see
that for DFGs that are of rather vertical shape� DP performs much faster than

� For the test cases where we removed memory dependence edges� the resulting DFG
may no longer be equivalent to the original C source code	 It is however still valid
to compare the ILP and DP techniques� since both formulations operate on exactly
the same intermediate representation	



ILP� see cases �c�� �f� and �h�� A surprising result comes from case �e�� where
ILP produced a solution within several minutes while DP did not �nd a solution
within � hours of equivalent CPU time of the CPLEX machine� The shape of the
DFG in case �e� is a ��at� DAG where more than 
�� of the total number of
DFG nodes are leaf nodes� We can observe a similar shape for the case �g�� where
seven out of 	 nodes are leaf nodes� In case �h� we reach the limit of CPLEX
�more precisely� of the AMPL preprocessor generating the ILP system�� We are
aware that the version of CPLEX that we currently have access to is rather old�
and thus the computation time should be slightly better with a newer version�

It was unexpected to see the ILP formulation perform quite well for cases
where the DP approach had problems� Hence� for �at�shaped DAGs we would
prefer to use ILP� whereas for DFGs with larger height� we should opt for DP�
For uncertain cases� we may consider to spawn simultaneously both variants and
wait for the �rst answer�

� Future work

The current ILP formulation lacks several features available in OPTIMIST frame�
work� In this paper we considered and provided a target architecture that suits
the ILP model� We will consider extending the formulation to handle cluster
architectures� such as Veloci�TI DSP variants� For that� we will need to model
operand residences �i�e�� in which cluster or register set a value is located�� This
will certainly increase the amount of generated variables and equations and a�ect
ILP performance�

We also mentioned that the current ILP formulation is based on a simpler
resource usage model that is limited to unit occupation times per functional
unit and a variable latency per target instruction� It would be of interest to
have a more general model using reservation tables for specifying arbitrary re�
source usage patterns and complex pipelines� which is already implemented in
OPTIMIST�s DP framework�

� Conclusions

In this paper we provided an integer linear programming formulation for fully in�
tegrated code generation for VLIW architectures that includes instruction selec�
tion� instruction scheduling and register allocation�We extended the formulation
by Wilson et al� �		� for VLIW architectures� In contrast to their formulation�
we do no longer need to preprocess the DFG to expose instruction selection al�
ternatives� Moreover� we have a working implementation where ILP instances
are generated automatically from the OPTIMIST intermediate representation
and a formal architecture description in xADML� We are not aware of any other
ILP formulation in the literature that integrates all code generation phases into
a single ILP model�

We compared the ILP formulation with our research framework for integrated
code generation� OPTIMIST� which uses dynamic programming� We evaluated



both methods on a theoretical architecture that �tted the ILP model restrictions�
Our �rst results show that both methods performs well in distinct cases� The
dynamic programming approach of OPTIMIST is more suitable for DFGs with
vertical shape and narrow bases �a small number of leaves�� In contrast� ILP
seems to perform better in the case of ��at� DFGs� with low height and large
bases�

Currently� our ILP formulation lacks support for memory dependences and
for irregular architecture characteristics� such as clustered register �les� complex
pipelines� etc� We intend to complete the formulation as part of future work�
Further� we should evaluate the formulation on a more recent version of CPLEX
than we did in this paper�

Acknowledgments We thank the mathematical department of Link�opings univer�

sitet for letting us use their CPLEX installation	 This research was partially funded by

the Ceniit programme of Link�opings universitet and by SSF RISE	

References

�	 C	�M	 Chang� C	�M	 Chen� and C	�T	 King	 Using integer linear programming for
instruction scheduling and register allocation in multi�issue processors	 Computers
Mathematics and Applications� ����������� ����	

�	 E	 S	 Davidson� L	 E	 Shar� A	 T	 Thomas� and J	 H	 Patel	 Eective control
for pipelined computers	 In Proc� Spring COMPCON�� Digest of Papers� pages
�������	 IEEE Computer Society Press� Feb	 ����	

�	 C	 W	 Fraser and D	 R	 Hanson	 A Retargetable C Compiler� Design and Imple�
mentation	 Addison Wesley� ����	

�	 I	 Inc	 CPLEX homepage	 http���www	ilog	com�products�cplex�� ����	
�	 D	 K�astner	 Retargetable Postpass Optimisations by Integer Linear Programming	

PhD thesis� Universit�at des Saarlandes� Saarbr�ucken� Germany� ����	
�	 C	 Kessler and A	 Bednarski	 Optimal integrated code generation for VLIW ar�

chitectures	 Accepted for publication in Concurrency and Computation� Practice
and Experience� ����	

�	 C	 Kessler and A	 Bednarski	 OPTIMIST	 www	ida	liu	se��chrke�optimist� ����	
�	 R	 Leupers and P	 Marwedel	 Time�constrained code compaction for DSPs	 IEEE

Transactions on VLSI Systems� ������������� ����	
�	 K	 Wilken� J	 Liu� and M	 Heernan	 Optimal instruction scheduling using integer

programming	 In Proc� ACM SIGPLAN Conf� Programming Language Design and
Implementation� pages �������� ����	

��	 T	 Wilson� G	 Grewal� B	 Halley� and D	 Banerji	 An integrated approach to
retargetable code generation	 In Proc� �th international symposium on High�level
synthesis �ISSS���	� pages �����	 IEEE Computer Society Press� ����	

��	 T	 C	 Wilson� N	 Mukherjee� M	 Garg� and D	 K	 Banerji	 An integrated and
accelerated ILP solution for scheduling� module allocation� and binding in datapath
synthesis	 In The Sixth Int� Conference on VLSI Design� pages �������� Jan	 ����	

��	 L	 Zhang	 SILP� Scheduling and Allocating with Integer Linear Programming	
PhD thesis� Technische Fakult�at der Universit�at des Saarlandes� Saarbr�ucken �Ger�
many�� ����	


