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Abstract. To our knowledge there is only one Integer Linear Program-
ming (ILP) formulation in the literature that fully integrates all steps
of code generation, i.e. instruction selection, register allocation and in-
struction scheduling, on the basic block level. We give in this paper an
improved version of this ILP formulation that also covers VLIW proces-
sors. Moreover, our ILP formulation does no longer require preprocessing
the basic block’s data flow graph to support instruction selection.

In earlier work, we proposed and implemented a dynamic programming
(DP) based method for optimal integrated code generation, called OP-
TIMIST. In this paper we give first results to evaluate and compare our
ILP formulation with our DP method on a VLIW processor.

We identify different code situations and shapes of data dependence
graphs for which either ILP or DP is most suitable.

1 Introduction

We consider the problem of optimal integrated code generation for instruction-
level parallel processor architectures such as VLIW processors. Integrated code
generation solves simultaneously, in a single optimization pass, the tasks of in-
struction selection, instruction scheduling including resource allocation and code
compaction, and register allocation.

In previous work [6], we developed a dynamic programming approach and
implemented it in our retargetable framework called OPTIMIST [7]. However,
there may be further general problem solving strategies that could likewise be
applied to the integrated code generation problem. In this paper, we consider
the most promising of these, integer linear programming (ILP).

While our original intention was just to obtain a quantitative comparison of
our DP implementation to an equivalent ILP formulation, we see from the results
reported in this paper that the two approaches actually appear to complement
each other very well.

Integer linear programming (ILP) is a general-purpose optimization method
that gained much popularity in the past 15 years due to the arrival of effi-
cient commercial solvers and effective modeling tools. In the domain of compiler



back ends, it has been used successfully for various tasks in code generation,
most notably for instruction scheduling. Wilken et al. [9] use ILP for instruction
scheduling of basic blocks which allows, after preprocessing the basic block’s
data flow graph, to derive optimal solutions for basic blocks with up to 1000
instructions within reasonable time. Zhang [12], Chang et al. [1] and Késtner [5]
provide order-based and/or time-based ILP formulations for the combination of
instruction scheduling with register allocation. Leupers and Marwedel [8] pro-
vide a time-based ILP formulation for code compaction of a given instruction
sequence with alternative instruction encodings.

We know of only one ILP formulation in the literature that addressed all three
tasks simultaneously, which was proposed by Wilson et al. [11, 10]. However, their
formulation is for single-issue architectures only. Furthermore, their proposed
model assumes that the alternatives for pattern matching in instruction selection
be exposed explicitly for each node and edge of the basic block’s data flow graph
(DFG), which would require a preprocessing of the DFG before the ILP problem
instance can be generated.

In this paper we provide an ILP formulation that fully integrates all three
phases of code generation and extends the machine model used by Wilson et
al. by including VLIW architectures. Moreover, our formulation does no longer
need preprocessing of the DFG.

The remainder of this paper is organized as follows: Section 2 provides the
ILP formulation for fully integrated code generation for VLIW processors. For
a description of the DP approach of OPTIMIST, we refer to a recent article [6].
Section 3 evaluates the DP approach against the ILP approach, provides first
results and draws some conclusions. Section 4 discusses further directions of ILP
approach and Section 5 concludes the article.

2 The ILP formulation

In this section we first introduce various variables and parameters and then
provide the ILP formulation for fully integrated code generation. However, first
we introduce some notation that we use in the formulation.

2.1 Notation

In the remainder of this article, we use uppercase letters to denote parameters
and constants provided to the ILP formulation (model). Lowercase letters de-
note solution variables and indexes. For example, F' represents an index set of
functional unit types, which is given as parameter to the ILP model.

Indexes i and j denote nodes of the DFG. We reserve indexes k and [ for
instances of nodes composing a given pattern. ¢ is used for time index. We use
the common notation |X| to denote the cardinality of a set (or pattern) X.

As usual, instruction selection is modeled as a general pattern matching prob-
lem, covering the DFG with instances of patterns that correspond to instructions
of the target processor. The set of patterns B is subdivided into patterns that



consist of a single node, called singletons (B'""), and patterns consisting of more
than one node, with or without edges (B’). That is, B = B’ U B" such that
Vp € B',|p| >0 and Vp € B",|p| = 1.

In the ILP formulation that follows, we provide several instances of each
non-singleton pattern. For example, if there are two locations in the DFG where
a multiply-accumulate pattern (MAC) is matched, these will be associated with
two different instances of the MAC pattern, one for each possible location. We
require that each pattern instance be matched at most once in the final solution.
As a consequence, the model requires to specify a sufficient number of pattern
instances to cover the DFG G. For singleton patterns, we only need a single in-
stance. This will become clearer once we have introduced the coverage equations
where the edges of a pattern must correspond to some DFG edges.

2.2 Solution variables

The ILP formulation uses the following solution variables:

— Cip,k,t @ binary variable that is equal to 1, if a DAG node 7 is covered by
instance node k of pattern p at time ¢. Otherwise the variable is 0.

— w; j,pk, & binary variable that is equal to 1 if DFG edge (3, j) is covered by
a pattern edge (k,[) of pattern p € B'.

— Sp: & binary variable that is set to 1 if a pattern p € B’ is selected and the
corresponding instruction issued at time ¢, and to 0 otherwise.

— 1;¢ a binary variable that is set to 1 if DFG node ¢ must reside in some
register at time ¢, and O otherwise.

— 7 an integer variable that represents the execution time of the final schedule.

We search for a schedule that minimizes the total execution time of a basic
block. That is, we minimize 7.
In the equations that follow, we use the abbreviation c; p, 1, for the expression

ZVteo..Tmaz Ci,p,k,t, and s, for ZVteo..me Sp,t-

2.3 Parameters to the ILP model

The model that we provide is sufficiently generic to be used for various instruction-
level parallel processor architectures. At present, the ILP model requires the
following parameters:

Data flow graph:
— G index set of DFG nodes
— E¢ index set of DFG edges
— OPQG; operation identifier of node i. Each DFG node is associated with an
integer value that represents a given operation.
— OUT; indicates the out-degree of DFG node 3.

Patterns and instruction set:
— B’ index set of instances of non-singleton patterns



— B index set of singletons (instances)

— E, set of edges for pattern p € B’

— OP, , operator for an instance node k of pattern instance p. This relates to
the operation identifier of the DFG nodes.

— ODP,}, is the out-degree of a node k of pattern instance p.

— L, is an integer value representing the latency for a given pattern p. In our
notation, each pattern is mapped to a unique target instruction, resulting in
unique latency value for that pattern.

Resources:

— F is an index set of functional unit types.

— My represents the amount of functional units of type f, where f € F.

— Up,s is a binary value representing the connection between the target in-
struction corresponding to a pattern (instance) p and a functional unit f
that this instruction uses. It is 1 if p requires f, otherwise 0.

— W is a positive integer value representing the issue width of the target pro-
Cessor, i.e., the maximum number of instructions that can be issued per clock
cycle.

— R denotes the number of available registers.

— Tnaz is a parameter that represents the maximum execution time budget
for a basic block. The value of T}, is only required for limiting the search
space, and has no impact on the final result. Observe that T},,, must be
greater (or equal) than the time required for an optimal solution, otherwise
the ILP problem instance has no solution.

The rest of the section provides the ILP model for fully integrated code gen-
eration for VLIW architectures. First, we give equations for covering the DFG G
with a set of patterns, i.e. the instruction selection. Secondly, we specify the set of
equations for register allocation. Currently, we address regular architectures with
general purpose registers, and thus only check that the register need does not
exceed the amount of physical registers at any time. Next, we address scheduling
issues. Since we are working on the basic block level, only flow (true) data de-
pendences are considered. Finally, we assure that, at any time, the schedule does
not exceed available resources, and that the instructions issued simultaneously
fit into a long instruction word, i.e., do not exceed the issue width.

2.4 Instruction selection

Our instruction selection model is suitable for tree-based and directed acyclic
graph (DAG) data flow graphs. Also, it handles patterns in the form of tree,
forest, and DAG patterns.

The goal of instruction selection is to cover all nodes of DFG G with a set
of patterns. For each DFG node 7 there must be exactly one matching node k
in a pattern instance p. Equation (1) forces this full-coverage property. Solution
variable c; , 1+ records for each node 7 which pattern instance node covers it,
and at what time. Beside full coverage, Equation (1) also assures a requirement



for scheduling, namely that for eace DFG node 4, the instruction corresponding
to the pattern instance p covering it is scheduled (issued) at some time slot ¢.

VieG, Y Y cipr=1 (1)

peEB kep

Equation (2) records the set of pattern instances being selected for DFG
coverage. If a pattern instance p is selected, all its nodes should be mapped to
distinct nodes of G. Additionally, the solution variable s, ; carries the informa-
tion at what time ¢ a selected pattern instance p is issued.

Vp € B',Vt € 0. Traz, Z Z Ci,p,kit = |P|Sp,t (2)
i€G kEp

If a pattern instance p is selected, each pattern instance node k& maps to
exactly one DFG node i. Equation (3) considers this unique mapping only for
selected patterns, as recorded by the solution variables s.

Vp € B',Vk € p, Zc"vpvk =sp (3)
i€G

Equation (4) implies that all edges composing a pattern must coincide with
exactly the same amount of edges in G. Thus, if a pattern instance p is selected,
it should cover exactly |E,| edges of G. Unselected pattern instances do not
cover any edge of G. Remark that in our model each pattern instance is distinct,
and that we further assume that there are enough pattern instances available to
fully cover a particular DFG.

Vp € B, Z Z Wijpkt = |Eplsp (4)

(ivj)EEG (kvl)eEP

Equation (5) assures that a pair of nodes constituting a DFG edge covered
by a pattern instance p corresponds to a pair of pattern instance nodes. If we
have a match (w; jpx,; = 1) then we must map DFG node i to pattern instance
node k and node j to pattern instance node [ of pattern instance p.

V(i,5) € Eg,Vp € B',Y(k,1) € Ep, 2wijp ki < Cippk + Cipyl (5)

Equation (6) imposes that instructions corresponding to a non-singleton pat-
tern (instance) p are issued at most once at some time ¢ (namely, if p was se-
lected), or not at all (if p was not selected).

Vpe B', s, <1 (6)

Equation (7) checks that the IR operators of DFG (OF;) corresponds to the
operator OP, ;, of node k in the matched pattern instance p.

Vi € G,Vp € B,Vk € p,Vt € 0--Tmamaci,p,k,t(0Pz’ — OPp,k) =0 (7)
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Fig. 1. Pattern coverage restrictions: (i) Pattern p cannot cover the set of nodes since
there is an outgoing edge from b, (ii) pattern p covers the set of nodes {a,b, c}.

Our model forbids, as is the case for almost all architectures, to access a
partial result that flows along a covered edge and thus appears inside a pattern.
Only a value flowing out of a node matched by a root node of the matching
pattern is accessible (and will be allocated some register). This situation is illus-
trated in Figure 1. A possible candidate pattern p that covers nodes a, b, and
c cannot be selected in case (i) because the value of b is used by another node
(outgoing edge from b). On the other hand, the pattern might be selected in
case (ii) since the value represented by b is only internal to pattern p.

For that, Equation (8) simply checks if the out-degree OUT) ;. of node k of
a pattern instance p equals the out-degree OUT; of the covered DFG node i.
As nodes in singleton patterns are always pattern root nodes, we only need to
consider non-singleton patterns, i.e. the set B'.

Vp € BI,V(i,j) € Eg,V(k,l) € p, wi7j,p,k,l(OUTi - OUTpJg) =0 (8)

2.5 Register allocation

Currently we address (regular) architectures with general-purpose register set.
We leave modeling of clustered architectures for future work. Thus, a value
carried by an edge not entirely covered by a pattern (active edge), requires a
register to store that value. Equation (9) forces a node 7 to be in a register if at
least one of its outgoing edge(s) is active.

t
Vt € 0. Tmaz, Vi € G, Z Z Z Zci,p,k,tt - ch,p,l,tt < Nrig (9)

t:=0 (i,j)€Eg pEB \kEp lep

If all outgoing edges from a node ¢ are covered by a pattern instance p, there
is no need to store the value represented by i in a register. Equation (10) requires
solution variable 7;; to be set to 0 if all outgoing edges from i are inactive at
time £.

t
Vt € 0.T ez, Vi € G, Z Z Z Zci,p,k,tt - ch,p,l,tt >ri¢ (10)

t:=0 (i,j)€Eg pEB \kEp lep



Finally, Equation (11) checks that register pressure does not exceed the num-
ber R of available registers at any time.

Vt € 0.Tmas, D Tit <R (11)
i€G

2.6 Instruction scheduling

The scheduling is complete when each node has been allocated to a time slot
in the schedule such that there is no violation of precedence constraints and
resources are not oversubscribed. Since we are working on the basic block level,
we only need to model the true data dependences, represented by DFG edges.
Data dependences can only be verified once pattern instances have been selected,
covering the whole DFG. The knowledge of the covered nodes with their respec-
tive covering pattern (i.e., the corresponding target instruction) provides the
necessary latency information for scheduling.

Besides assuring full coverage, Equation (1) constraints each node to be
scheduled at some time ¢ in the final solution. We need additionally to check
that all precedence constraints (data flow dependences) are satisfied. There are
two cases: First, if an edge is entirely covered by a pattern p (inactive edge), the
latency of that edge must be 0, which means that for all inactive edges (3, j),
DFG nodes ¢ and j are “issued” at the same time. Secondly, edges (i, j) between
DFG nodes matched by different pattern instances (active edges) should carry
the latency L, of the instruction whose pattern instance p covers i. Equations
(12) and (13) guarantee the flow data dependences of the final schedule. We
distinguish between edges leaving nodes matched by a multi-node pattern, see
Equation (12), and the case of edges outgoing from singletons, see Equation (13).

Vp € B', V(i,j) € Eg, Yt € 0. Tpae — Lp + 1,

t+L,—1
§ :ci,p,k,t + § : Z ch,q,k,tt <1 (12)
kEp geP t:=0 kegq

a#p

Active edges leaving a node covered by a singleton pattern p carry always
the latency L, of p. Equation (13) assures that the schedule meets the latency
constraint also for these cases.

Vp e B", V(i,j) € Eg, YVt € 0..Tpnaz — Lp + 1,

t+Lp—1
S ipktt D, DD Gkt <1 (13)
kep geEB =0 kegq

2.7 Resource allocation

A schedule is valid if it respects data dependences and its resource usage does
not exceed the available resources (functional units, registers) at any time. Equa-
tion (14) verifies that there are no more resources required by the final solution



than available on the target architecture. In this paper we assume fully pipelined
functional units with an occupation time of one for each unit, i.e. a new instruc-
tion can be issued to a unit every new clock cycle. The first summation counts
the number of resources of type f required by instructions corresponding to se-
lected multi-node pattern instances p at time ¢. The second part records resource
instances of type f required for singletons (scheduled at time ¢).

Vt € 0. Tomaz, VFEF, D spit+ D D> cipre <My (14)

peB’ peB' i€G kep
Up,s=1 Up,s=1

Finally Equation (15) assures that the issue width W is not exceeded. For
each issue time slot ¢, the first summation of the equation counts for multi-
node pattern instances the number of instructions composing the long instruc-
tion word issued at ¢, and the second summation for the singletons. The total
amount of instructions should not exceed the issue width W, i.e., the number
of available slots in a VLIW instruction word.

Vt € 0.Thmaz, Z Spt + Z Z Zci,p,k,t <w (15)

pEB’ pEB" i€G kep

2.8 Optimization goal

In this paper we are looking for a time-optimal schedule for a given basic block.
The formulation however allows us not only to optimize for time but can be
easily adapted for other objective functions. For instance, we might look for the
minimum register usage or code length.

In the case of time optimization goal, the total execution time of a valid
schedule can be derived from the solution variables ¢ as illustrated in Equation
(16).

Vie G, Vpe P, Yk € p, Vt € 0..Thaz, Ciprt*(E+Ly) <7 (16)

The total execution time is less or equal to the solution variable 7. Looking
for a time optimal schedule, our objective function is

min T (17)

3 Experimental results

First, we provide a theoretical VLIW architecture for which we generate target
code. Secondly we describe the experimental setup that we used to evaluate our
ILP formulation against our previous DP approach. Finally we summarize first
results.
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Fig. 2. Theoretical load/store VLIW target architecture used for the evaluation.

3.1 Target architecture

In order to compare OPTIMIST’s DP technique to the ILP formulation of Sec-
tion 2, we use a theoretical VLIW target platform (see Figure 2) with the fol-
lowing characteristics. The issue width is a maximum of three instructions per
clock cycle. The architecture has two arithmetic and logical units (ALU1 and
ALU2). Most ALU operations require a single clock cycle to compute (occupa-
tion time and latency are one). Multiplication and division operations have a
latency of two clock cycles. Besides the two ALUs, the architecture has two
multiply-and-accumulate units (MAC1 and MAC2) that take two clock cycles to
perform a multiply-and-accumulate operation. There are eight general purpose
registers accessible from any unit. We assume a single memory bank with unlim-
ited size. To store and load data there are two load/store units (LS1 and LS2).
The latency for a load or store operation is four clock cycles.

OPTIMIST is a retargetable framework, i.e. it can produce code for different
target processors. A hardware description language (xADML), based on XML,
parametrizes the code generator. An xADML document is divided into two parts:
One part consists in declaring resources such as registers, memories modules and
functional units. The other (and largest) part provides the instruction set for the
specified target processor. The instruction set specification is (optionally) sub-
divided into two parts: (i) pattern definitions, and (ii) associations (mappings)
between a pattern and a target processor instruction. An xADML specification
contains thus a structural and behavioral description of a target processor.

We implemented the ILP data generation module within the OPTIMIST
framework. Currently our ILP model addresses VLIW architectures with regular
pipeline, i.e. functional units are pipelined, but no pipeline stall occurs. We
adapted hardware specifications in xADML such that they fit current limitations
of the ILP model. In fact, the OPTIMIST framework accepts more complex
resource usage patterns and pipeline descriptions expressible in xADML, which
uses the general mechanism of reservation tables [2]. As assumed in Section 2,
we use for the ILP formulation the simpler model with unit occupation time and
latency for each instruction. An extension of the ILP formulation to use general
reservation tables is left to future work.



LCC-IR .asm

.C
SRC — > LCC-FE OPTIMIST ~ —=

.dat

Y

.mod ILP solution
ILP model —>| CPLEX ——>

Fig. 3. Experimental setup.

3.2 Experimental setup

Figure 3 shows our experimental platform. We provide a plain C code sequence
as input to OPTIMIST. We use LCC [3] (within OPTIMIST) as C front-end.
Besides the source code we provide the description of the target architecture
in xADML language (HW Spec). For each basic block, OPTIMIST outputs the
assembly code as result. If specified, the framework also outputs the data file
for the ILP model of Section 2. The data file contains hardware specifications,
such as the issue width of the processor, the set of functional units, patterns,
etc. that are extracted from the hardware description document. It generates all
parameters introduced in Section 2.3. Finally we use the CPLEX solver [4] to
solve the set of equations.

Observe that we need to provide the upper bound for the maximum execution
time in the ILP formulation (7,4 ). For that, we first run a heuristic variant of
OPTIMIST (that still considers full integration of code generation phases) and
provide its execution time as T},4, to the ILP data.

3.3 First results

We generated code for a set of various basic blocks of different sizes. Most of
them perform simple arithmetic computations taken from various digital signal
processing filter algorithms. We run the evaluation of the dynamic programming
approach on a Linux machine with an Athlon processor of 1.5GHz, with 1.5GB
of RAM and 1.5GB of swap. The ILP evaluation was performed using CPLEX
6.5.1! on a 300 MHz UltraSparc 9 with 640MB of RAM and 1GB of swap space.

Table 1 reports our first results. For each case, the second column reports the
number of nodes in the DFG for that basic block. The third and fourth column
give the height of the DAG and the number of edges, respectively. Observe that

! By the time of writing, our first priority has been to test and evaluate the new ILP
formulation. Since we do not (yet) have a CPLEX license at our department, the
mathematical department kindly let us run our evaluation on their SPARC machines,
running an old CPLEX version. We should expect better results with more modern
versions of CPLEX and hardware.



Table 1. First results that compares ILP against DP approach to fully integrated code
generation. An X in the table is set when the computation time exceeded 6 hours of
equivalent computation time on machine running CPLEX solver.

ILP DP
Case |G| Height |Eg| | Time (h:mm’ss) cc | Time (h:mm’ss) TimeX5 cc
(a) 8 3 6 533 8 01 05 8
(b) 13 4 12 3444 10 20 1’40 10
() 14 6 14 1:0458 13 08 40 13
@d 15 4 6 28743 10 124 700 10
) 18 3 16 515 10 X X X
(fy 18 5 18 X X 38’52  3:14’20 11
(g) 19 4 18 3:27°08 11 X X X
(h) 22 6 27 | — out of memory — 1:16’17  6:21°25 17

the height corresponds to the longest path of the DFG in terms of number of
DFG nodes, and not to its critical path length, whose calculation is unfeasible
since the instruction selection is not yet known. The fifth column reports the
computation time for finding an ILP solution, and in the sixth column we dis-
play the amount of clock cycles required for the basic block. We report the results
for OPTIMIST in columns seven to nine. Since the Athlon processor is approxi-
mately five times faster than the Sparc processor available to us for running the
ILP solver, we report in the TimeX5 column the theoretical computation time if
OPTIMIST were run on the Ultra Sparc 9 machine. In the case when the equiv-
alent computation time of the machine running the CPLEX solver exceeded 6
hours, the computation was abandoned and is represented with an X.

We should mention a factor that contributes in favor of the ILP formulation.
In the OPTIMIST framework we enhanced the intermediate representation with
extended basic blocks (which is not standard in LCC). As consequence, we in-
troduced data dependence edges for resolving memory write/read precedence
constraints. These are implicitly preserved in LCC since it splits basic blocks
at writes and processes each basic block in sequence. In the current ILP for-
mulation we consider only data flow dependences edges. Thus, we instrumented
OPTIMIST to remove edges introduced by building extended basic blocks. As
a result, the DAGs have a larger base, i.e. with larger number of leaves, and in
general a lower height. We are aware that the DP approach suffers from DFGs
with a large number of leaves, as OPTIMIST early generates a large number of
partial solutions.?

First, for all cases where it was possible to check, we found optimal solutions
with the same number of clock cycles, which was of course expected. We can see
that for DFGs that are of rather vertical shape, DP performs much faster than

% For the test cases where we removed memory dependence edges, the resulting DFG
may no longer be equivalent to the original C source code. It is however still valid
to compare the ILP and DP techniques, since both formulations operate on exactly
the same intermediate representation.



ILP, see cases (c), (f) and (h). A surprising result comes from case (e), where
ILP produced a solution within several minutes while DP did not find a solution
within 6 hours of equivalent CPU time of the CPLEX machine. The shape of the
DFG in case (e) is a “flat” DAG where more than 50% of the total number of
DFG nodes are leaf nodes. We can observe a similar shape for the case (g), where
seven out of 19 nodes are leaf nodes. In case (h) we reach the limit of CPLEX
(more precisely, of the AMPL preprocessor generating the ILP system). We are
aware that the version of CPLEX that we currently have access to is rather old,
and thus the computation time should be slightly better with a newer version.

It was unexpected to see the ILP formulation perform quite well for cases
where the DP approach had problems. Hence, for flat-shaped DAGs we would
prefer to use ILP, whereas for DFGs with larger height, we should opt for DP.
For uncertain cases, we may consider to spawn simultaneously both variants and
wait for the first answer.

4 Future work

The current ILP formulation lacks several features available in OPTIMIST frame-
work. In this paper we considered and provided a target architecture that suits
the ILP model. We will consider extending the formulation to handle cluster
architectures, such as Veloci-TI DSP variants. For that, we will need to model
operand residences (7.e., in which cluster or register set a value is located). This
will certainly increase the amount of generated variables and equations and affect
ILP performance.

We also mentioned that the current ILP formulation is based on a simpler
resource usage model that is limited to unit occupation times per functional
unit and a variable latency per target instruction. It would be of interest to
have a more general model using reservation tables for specifying arbitrary re-
source usage patterns and complex pipelines, which is already implemented in
OPTIMIST’s DP framework.

5 Conclusions

In this paper we provided an integer linear programming formulation for fully in-
tegrated code generation for VLIW architectures that includes instruction selec-
tion, instruction scheduling and register allocation. We extended the formulation
by Wilson et al. [11] for VLIW architectures. In contrast to their formulation,
we do no longer need to preprocess the DFG to expose instruction selection al-
ternatives. Moreover, we have a working implementation where ILP instances
are generated automatically from the OPTIMIST intermediate representation
and a formal architecture description in xADML. We are not aware of any other
ILP formulation in the literature that integrates all code generation phases into
a single ILP model.

We compared the ILP formulation with our research framework for integrated
code generation, OPTIMIST, which uses dynamic programming. We evaluated



both methods on a theoretical architecture that fitted the ILP model restrictions.
Our first results show that both methods performs well in distinct cases: The
dynamic programming approach of OPTIMIST is more suitable for DFGs with
vertical shape and narrow bases (a small number of leaves). In contrast, ILP
seems to perform better in the case of “flat” DFGs, with low height and large
bases.

Currently, our ILP formulation lacks support for memory dependences and
for irregular architecture characteristics, such as clustered register files, complex
pipelines, etc. We intend to complete the formulation as part of future work.
Further, we should evaluate the formulation on a more recent version of CPLEX
than we did in this paper.
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