
Proc. of the 1999 Int. Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA’99), June 28 - July 1, 1999,
Las Vegas, USA. Vol. II, pp. 613–619. c
1999 CSREA Press (Computer Science Research, Education, and Applications Tech).

NestStep:Nested Parallelism
and Virtual Shared Memory for the BSP model

Christoph W. Keßler
FB IV - Informatik, Universität Trier, 54286 Trier, Germany

Abstract. NestStepis a parallel programming lan-
guage for the BSP (bulk–synchronous–parallel) model
of parallel computation. Extending the classical BSP
model, NestStepsupports dynamically nested paral-
lelism by nesting of supersteps and a hierarchical pro-
cessor group concept. Furthermore,NestStepadds a
virtual shared memory realization in software, where
memory consistency is relaxed to superstep boundaries.
Distribution of shared arrays is also supported.

A prototype for a subset ofNestStephas been imple-
mented based on Java as sequential basis language. The
prototype implementation is targeted to a set of Java Vir-
tual Machines coupled by Java socket communication to
a virtual parallel computer.

Keywords: BSP model, nested parallelism, virtual
shared memory, message combining, distributed arrays

1 Introduction

We describe in this paper a new parallel programming
language calledNestStep. NestStepis designed as a set
of extensions to existing imperative programming lan-
guages like Java or C. It adds language constructs and
run–time support for the explicit control of parallel pro-
gram execution and sharing of program objects.

TheBSP (bulk–synchronous parallel) model, as intro-
duced by Valiant [16] and implemented e.g. by the Ox-
ford BSPlib library [7] for many parallel architectures,
structures a parallel computation ofp processors into a
sequence ofsuperstepsthat are separated by global bar-
rier synchronization points. A superstep consists of (1)
a phase of local computation of each processor, where
only local variables (and locally held copies of remote
variables) can be accessed, and (2) a communication
phase that sends some data to the processors that may
need them in the next superstep(s), and then waits for
incoming messages and processes them. The separating
barrier after a superstep is not necessary if it is implic-
itly covered by (2). For instance, if the communication
pattern in (2) is a complete exchange, a processor can
proceed to the next superstep as soon as it has received a
message from every other processor.

The BSP model, as originally defined, does not sup-

port a shared memory; rather, the processors commu-
nicate via explicit message passing.NestStepprovides
a software emulation of a shared memory: By default,
shared scalar variables and objects are replicated across
the processors. In compliance to the BSP model, sequen-
tial memory consistency is relaxed to and only to super-
step boundaries. Within a superstep only the local copies
of shared variables are modified; the changes are com-
mitted to all remote copies at the end of the superstep.
A tree–based message combining mechanism is applied
for committing the changes, in order to reduce the num-
ber of messages and to avoid hot spots in the network.
As a useful side–effect, this enables on-the-fly compu-
tation of reductions and parallel–prefix computations at
practically no additional expense. For space economy,
NestStepalso provides distribution of arrays in a way
similar to Split-C [5].

In the BSP model there is no support for processor
subset synchronization, i.e. for nesting of supersteps.
Thus, programs can only exploit one–dimensional par-
allelism or must apply aflattening–transformation that
converts nested parallelism to flat parallelism. How-
ever, automatic flattening by the compiler has only been
achieved for SIMD parallelism, as e.g. in NESL [2]. In-
stead,NestStepintroduces static and dynamic nesting of
supersteps, and thus directly supports nested parallelism.
There are good reasons for exploiting nested parallelism:

� “Global barrier synchronization is an inflexible
mechanism for structuring parallel programs” [11].

� For very large numbers of processors, barrier–
synchronizing a subset of processors is faster than
synchronizing all processors.

� For parallel machines organized as a hierarchical
network defining processor clusters, independently
operating processor subsets may be mapped to dif-
ferent clusters.

� Most parallel programs exhibit a decreasing effi-
ciency for a growing number of processors, because
finer granularity means more communication. Thus
it is better for overall performance to run several
concurrently operating parallel program parts with
coarser granularity simultaneously on different pro-
cessor subsets, instead of each of them using the
entire machine in a time–slicing manner.

1

� The communication phase for a subset of pro-
cessors will perform faster as the network is less
loaded. Note that e.g. for global exchange, network
load grows quadratically with the number of pro-
cessors. Moreover, independently operating com-
munication phases of different processor subsets
are likely to only partially overlap each other, thus
better balancing network traffic over time.

� Immediate communication of updated copies of
shared memory variables is only relevant for those
processors that will use them in the following su-
perstep. Processors working on a different branch
of the subset hierarchy tree need not be bothered by
participating in a global update of a value that they
don’t need in the near future and that may be in-
validated and updated again before they will really
need it.

A project homepage forNestStepis mounted at
www.informatik.uni-trier.de/ � kessler/neststep .

2 NestStepLanguage Design

The sequential aspect of computation is inherited from
the basis language.NestStepadds some new language
constructs that provide shared variables and process co-
ordination. In our prototype, we have designedNestStep
as an extension of (a thread–free subset of) Java. The
NestStepextensions could as well be added to (a subset
of) C, C++, or Fortran. In particular, the basis language
needs not be object–oriented: parallelism is not implicit
by distributed objects communicating by remote method
invocation, as in Java RMI, but expressed by separate
language constructs. Admittedly, the object serialization
feature of Java simplifies the implementation of sharing
of arbitrary objects.

NestStep is targeted to a cluster of networked ma-
chines, defined by a hostfile, that are coupled by the
NestSteprun-time system to a virtual parallel computer.
In general, on each machine runs oneNestStepprocess.
This is why we prefer to call these processes justproces-
sorsthroughout this paper.

NestStepprocessors are organized in groups. At the
beginning of program execution, all processors in the
cluster form a single group, the so–calledroot group, and
execute themain method in parallel. Their number will
remain constant throughout program execution (SPMD–
style of parallel program execution). Groups can be dy-
namically subdivided during program execution, follow-
ing the static nesting structure of the supersteps.

2.1 Supersteps and nested supersteps

The step statement denotes a superstep that is ex-
ecuted by entiregroups of processors in a bulk–
synchronous way. Thus, astep statement always ex-

pects all processors of the current group to arrive at this
program point.

step statement

implies a group–wide barrier synchronization at the be-
ginning and the end ofstatement1, such that the follow-
ing invariant holds:All processors of the same group are
guaranteed to work within the samestep statement.
step also controls shared memory consistency within
the current group, as will be explained in Section 2.2.
Nesting supersteps. A step statement with parame-
ter(s) deactivates and splits the current group into dis-
joint subgroups that execute thestep body indepen-
dently of each other. The parent group is reactivated
and resumes when all subgroups finished execution of
thestep body. Asstep s can be nested statically and
dynamically, the group hierarchy forms a tree at any time
of program execution, where the leaf groups are the cur-
rently active ones.

The first parameter of a nestingstep specifies the
number of subgroups that are to be created. Its value
must be equal on all processors of the current group. An
optional second parameter indicates how to determine
the new subgroup for each processor. Splitting into one
subgroup may make sense if only a part of the group’s
processors is admitted for the computation in the sub-
step, e.g. at one–sided conditions.

step < k > statement

splits the current group (let its size bep) intok subgroups
of sizedp=ke or bp=kc each. Thek subgroups are con-
secutively indexed from 0 tok � 1; this subgroup index
can be read instatementas thegroup ID@. Processori,
0 � i � p� 1 of the split group joins subgroupi%k. If
p < k, the lastk � p subgroups are not executed.

In order to avoid such empty subgroups, by

step < k, #>=1 > statement

the programmer can specify that each subgroup should
be executed by at least one processor. In that case, how-
ever, some of the subgroups will be executed serially by
the same processors. Thus the programmer should not
expect all subgroups to work concurrently. Also, the se-
rial execution of some subgroups needs not necessarily
be in increasing order of their group indices@.

In some cases a uniform splitting of the current group
into equally–sized subgroups is not optimal for load bal-
ancing. In that case, the programmer can specify a
weight vector to indicate the expected loads for the sub-
groups (this variant is adapted from PCP [3]):

step < k, weight > statement

Here, the weight vectorweight must be a replicated
shared array (see later) ofk (or more) nonnegative floats.
If the weight vector has less thank entries, the program

1Note that these barriers are only conceptual. In any case, the im-
plementation tries to avoid duplicate barriers resp. combine phases.

2

will abort with an error message. Otherwise, the sub-
group sizes will be chosen as close as possible to the
weight ratios. Subgroups whose weight is 0 are not exe-
cuted. All other subgroups will have at least one proces-
sor, but if there are more (k0) nonzero weights than pro-
cessors (p) in the split group, then thek0 � p subgroups
with least weight will not be executed.

The group splitting mechanisms considered so far rely
only on locally available information and are thus quite
efficient to realize [3]. Now we consider a more power-
ful construct that requires group–wide coordination:

step < k, @= intexpr > statement

createsk new subgroups. Each processor evaluates its
integer-valued expressionintexpr. If this valuee is in
the range[0:::k � 1], the processor joins the subgroup
indexed bye. Since the subgroup to join is a priori un-
known (intexprmay depend on run time data), the proper
initialization of the subgroups (size, ranks) inherently
requires another group–wide combine phase2 that com-
putes multiprefix–sums across the entire split group.

If for a processor the valuee of intexpr is not in the
range[0::k � 1], then this processor skips the execution
of statement.
Supersteps and control flow. The usual control flow
constructs likeif , switch , while , for , do , ?: , &&
and || as well as jumps likecontinue , break , and
return can be arbitrarily used within supersteps.

Nevertheless the programmer must take care that
(nested)step statements are reached by all processors
of the current group, in order to avoid deadlocks. As
long as the conditions affecting control flow arestable,
i.e. are guaranteed to evaluate to the same value on each
processor of the current group, this requirement is met.
Where this is not possible, e.g. where processors take
different branches of anif statement andstep s may
occur within a branch, as in

if (cond) //if stmt1 contains a step:
stmt1(); // danger of deadlock, as

else stmt2();//these processors don’t
// reach the step in stmt1

a step<> statement must be used that explicitly splits
the current group:3

step<2; @=(cond)?1:0>//split group into 2 subgr.
if (@==true)stmt1();//a step in stmt1 is local
else stmt2();// to the first subgroup

Similar constructs hold forswitch statements. For the
loops, astep within the loop body will not be reached

2This combine phase may, though, be integrated by the compiler
into the combine phase of the previousstep , if k andintexpr do not
depend on the shared values combined there.

3It is, in general, not advisable here to have such insertion of group
splitting step s automatically by the compiler, since the innerstep
statements to be protected may be hidden in method calls and thus
not statically recognizable. Also, paranoic insertion of group–splitting
step s at any point of potential control flow divergence would lead to
considerable inefficiency. Finally, we feel that all superstep boundaries
should be explicit to theNestStepprogrammer.

by all processors of the group if some of them stop it-
erating earlier than others. Thus, the current group has
to be narrowed to a subgroup consisting only of those
processors that still iterate. Awhile loop, for instance,

while (cond) // may lead to deadlock
stmt(); // if stmt() contains a step

can be rewritten using a private flag variable as follows:

boolean iterating = (cond);
do

step < 1; @ = iterating?0:-1 >
stmt(); // a step inside stmt is local

// to the iterating subgroup
while (iterating = iterating && (cond));

Note thatcond is evaluated as often and at the same
place as in the previous variant. Once a processor eval-
uatesiterating to 0, it never again executes an iter-
ation. Moreover, now the iterations of the loop are sepa-
rated by implicit barriers for the iterating group.

Processors can jump out of astep by return ,
break , continue . In these cases, the group corre-
sponding to the target of the jump is statically known
and already exists when jumping: it is an ancestor of the
current group in the group hierarchy tree. On their way
back through the group tree from the current group to-
wards this ancestor group, the jumping processors can-
cel their membership in all groups on this path. They
wait at the step containing their jump target for the other
processors of the target group.

Jumps across an entirestep or into astep are for-
bidden, since the group associated with these jump target
step s would not yet be existing when jumping. Even if
there is nogoto in the basis language, processors jump-
ing via return , break andcontinue may skip sub-
sequentstep<> statements executed by the remaining
processors of their group. For these cases, the compiler
either warns or recovers by applying software shadowing
of the jumping processors to prevent the other processors
from hanging at their nextstep statement.

Jumps within a leafstep (i.e. astep that is guaran-
teed to contain no other step) are harmless.
Group inspection. For each group the run time system
holds on each processor belonging to it a classGroup
object. In particular, it contains the group size, the
group ID, and the processor’s rank within the group.
The Group object for the current group is referenced
in NestStepprograms bythisgroup . thisgroup
is initialized automatically when the group is created,
updated as the group processesstep statements, and
restored to the parent group’sGroup object when the
group terminates.

At entry to a step , the processors of the entering
group are ranked consecutively from 0 to the group size
minus one. This group–local processor ID can be ac-
cessed bythisgroup.rank() or, for convenience,
just by the symbol$. Correspondingly, the current
group’s sizethisgroup.size() is abbreviated by

3

the symbol#, and the group IDthisgroup.gid()
by the symbol@. The size and rank fields are up-
dated at the end of eachstep . This renumbering of the
group’s processors incurs only minor run-time overhead,
as it is piggy-backed onto the step’s combine phase.
g.depth() determines the depth of the groupg in
the group hierarchy tree. The parent group of a group
g can be referenced byg.parent() . This allows to
access theGroup object for any ancestor group in the
group hierarchy tree.g.path() produces a string like
0/1/0/2 that represents the path from the root group
to the groupg in the group hierarchy tree by concate-
nating thegid s of the groups on that path. This string
is helpful for debugging. It is also used by theNest-
Steprun-time system for uniquely naming group–local
shared variables and objects. Finally, a counter for steps
executed by a group can be accessed.
Sequential parts.Statements marked sequential by

seq statement

are executed by the group leader only. Thegroup leader
is the processor with rank$==0 . If the leader has al-
ready left that step, thenstatementwill not be executed.
Note that theseq statement does not imply a barrier at
its beginning or end. If such a barrier is desired,seq has
to be wrapped by astep :

step seq statement

Note that, if the initially leading processor leaves the
group before the “regular” end of astep via break ,
continue or return , another processor becomes
leader of the group after the currentstep and thus re-
sponsible for executing futureseq statements.

2.2 Sharing variables, arrays, and objects

By default, basis language variables, arrays, and objects
areprivate, i.e. exist once on each processor executing
their declarations.Sharing is explicitly specified by a
type qualifiersh at declaration and (for objects) at allo-
cation.

Shared base–type variables and heap objects are either
volatile or replicated. Shared arrays may be replicated,
volatile, or distributed. In any case, replication is the de-
fault. Pointers, if existing, are discussed in Section 2.4.

By default, for areplicatedshared variable, array, or
object, one private copy exists on each processor of the
group declaring (and allocating) it.

Shared arrays are stored differently from private ar-
rays and offer additional features. A shared array is
calledreplicatedif each processor of the declaring group
holds a copy of all elements,volatile if exactly one pro-
cessor of the declaring group holds all the elements, and
distributedif the array is partitioned and each processor
owns a partition exclusively. Like their private counter-
parts, shared arrays are not passed by value but by ref-
erence. For each shared array (also for the distributed

ones), each processor keeps its element size, length and
dimensionality at run time in a local array descriptor.
Thus, e.g. bound–checking (if required by the basis lan-
guage) or thelength() method can always be exe-
cuted locally. For non–distributed arrays and for objects
it is important to note that sharing refers to the entire
object, not to partial objects or subarrays that may be ad-
dressed by pointer arithmetics. This also implies that a
shared object cannot contain private fields; it is updated
as an entity4.
Sharing by replication and combining. For replicated
shared variables, arrays, and objects, thestep state-
ment is the basic control mechanism for shared mem-
ory consistency:On entry to astep statement holds
that on all processors of the same active group the pri-
vate copies of a replicated shared variable (or array or
heap–object) have the same value. The local copies are
updated only at the end of thestep . Note that this is a
deterministic hybrid memory consistency scheme: a pro-
cessor can be sure to work on its local copy exclusively
within thestep . In other words, we have group–wide
sequential memory consistency betweenstep s, and no
consistency at all withinstep s. At the end of astep ,
together with the implicit barrier, there is a group–wide
combinephase. The (potentially) modified copies of
replicated shared variables are combined and broadcast
within the current group according to a predefined strat-
egy, such that all processors of a group again share the
same values of the shared variables. Thiscombine strat-
egycan be individually specified for each shared variable
at its declaration, by an extender of thesh keyword:
sh<0> type x; declares a variablex of arbitrary
type type where the copy of the group leader (i.e., the
processor with rank 0) is broadcast at the combine phase.
All other local copies are ignored even if they have been
written to.
sh<?> type x; denotes that an arbitrary updated
copy is chosen and broadcast. If only one processor up-
dates the variable in a step, this is deterministic. By
sh<=> type x; the programmer asserts thatx is al-
ways assigned the same value on all processors of the
declaring group; thus, combining is not necessary forx .
sh<+> arithtype x; , applicable to shared vari-
ables of arithmetic types, means that all local copies ofx
in the group are added, the sum is broadcast to all proces-
sors of the group, and then committed to the local copies.
This is very helpful in all situations where a global sum is
to be computed, e.g. in linear algebra applications. Here
is an example:

sh<+> float sum; // autom. initialized to 0.0
step

sum = some_function($);
// here automatic combining of the sum copies
seq System.out.println("global sum: " + sum);

4With Java as basis language, shared objects must be
Serializable .

4

There are similar reductions for global product and
global bitwise AND and OR computation.sh<foo>
type x; refers to an arbitrary associative user–defined
methodtype foo(type,type) as combine func-
tion. Clearly foo itself should not contain references
to shared variables nor steps.

Since combining is implemented in a tree–like way,
prefix sums can be computed on–the–fly at practically
no additional expense. In order to exploit these powerful
operators, the programmer must specify an already de-
clared private variable of the same type where the result
of the prefix computation can be stored on each proces-
sor:

float k;
sh<+:k> float c;

The default sharity qualifiersh without an explicit com-
bine strategy extender is equivalent tosh<?> .

The declared combine strategy can be overridden for
individual steps by acombine annotation at the end of
the step statement. In fact, programs will become more
readable if important combinings are explicitly speci-
fied. For instance, at the end of the following step

sh int a, b, c; // default combining: <?>
int k;
......
step {

a = 23;
b = f1($);
c = f2(b); // uses modified copy of b

}
combine (a<=>, b<+:k>, c<+>);

the local copybnewi of b on processori is assigned the
sum
Pp

j=1 bj and the private variablek on processori is

assigned the prefix sum
Pi

j=1 bj . Also, the copies ofc
are assigned the sum of all copies ofc. The combining
for a can be omitted for thisstep .
Replicated shared arrays.For a replicated shared array
each processor of the declaring group holds copies of all
elements. The array copies are combined as a whole at
the end of astep statement. The combining strategy
declared for the element type is applied element–wise to
the array copies being combined:

sh<+> int[] a;

declares a replicated shared array of integers where com-
bining is by summing the corresponding element copies.
Volatile shared variables, arrays, objects. A shared
variable declaredvolatile is not replicated. Instead,
it is owned exclusively by one processor of the declaring
group. The owner can be specified by the programmer.
It acts as a data server for this variable. Different owners
may be specified for different shared volatile variables in
order to balance congestion. Other processors that want
to access such a variable will implicitly request its value
from the owner by one–sided communication and block
until the requested value has arrived. Thus, accessing

such variables may be expensive. Explicit prefetching is
enabled by library routines; hence, the communication
delay may be padded with other computation.

Beyond its ordinary group work, the owner of a
volatile shared variable has to serve the requests. Be-
cause all accesses to volatile shared variables are se-
quentialized,sequential consistencyis guaranteed for
them even within a superstep. Moreover, atomic oper-
ations like fetch&addor atomicadd are supported by
this mechanism. The main use of volatile shared vari-
ables will be to serve as global flags or semaphores that
implement some global state of computation. Thus it is
important that they can be read and written to by any pro-
cessor at any time, and that the result of a write access
is made globally visible immediately. Although volatile
shared variables do not match the BSP model directly,
we believe that they are of fundamental importance for
practical work.

A straightforward generalization holds for volatile
shared arrays and volatile shared heap objects.
Distributed shared arrays. Only shared arrays can be
distributed. Typically, large shared arrays are to be dis-
tributed to save space and to exploit locality. Distributed
arrays are volatile by default, i.e. each array element re-
sides on only one processor of the declaring group. Each
access to a non–local element is automatically resolved
by a blocking point–to–point communication with its
owner. Hence, sequential consistency is guaranteed.
However, as bulk access to remote elements will improve
performance considerably, the programmer can take over
control for locality and enforce explicit local buffering of
elements by themirror andupdate methods. In that
case, memory consistency for the buffered elements is
relaxed to the user’s requirements.

The handling of distributed arrays inNestStepis par-
tially adapted from Split-C [5]. Distribution may be in
contiguous blocks
sh int[N]</> a; // block distribution

or cyclic. Multidimensional arrays can be distributed in
up to three “leftmost” dimensions. For instance,
sh int[4][5]<%>[7] c; // cyclic distr.

distributes4 � 5 = 20 pointers to local 7–element arrays
cyclically across the processors of the declaring group.

The distribution becomes part of the array’s type and
must match e.g. at parameter passing. For instance, it is
a type error to pass a block–distributed array to a method
expecting a cyclically distributed array as parameter.
Fortunately Java offers polymorphism in method spec-
ifications, hence the same method name could be used
for several variants expecting differently distributed ar-
ray parameters. In other basis languages like C, dif-
ferent function names are required for different param-
eter array distributions. forall loops for scanning
local iteration spaces in one, two and three distributed
dimensions are available inNestStep. Array redis-

5

tribution is possible within a group bypermute() ,
scatter() and gather() , or at group–splitting
step s by importArray() andexportArray() .
We omit the details for lack of space and refer to the fol-
lowing examples for illustration.

2.3 Examples

Parallel prefix computation. Reductions and prefix
computations are supported already for the replicated
shared variables and thus need no special communica-
tion primitives. A parallel prefix sums computation for a
block–wise distributed arraya will look as follows:

void parprefix(sh int[]</> a)
{

int[] pre; // local prefix array
int myoffset; // prefix offset for this processor
sh int sum; // automatically initialized to 0

step {
a.mirror(pre, a.range($*#, ($+1)*#-1, 1);
for(i=1; i<pre.length(); i++)

pre[i] += pre[i-1];
sum = pre[pre.length()-1];

}
combine(sum<+:myoffset>);

step {
for(i=0; i<pre.length(); i++)

pre[i] += myoffset;
a.update(a.range($*#, ($+1)*#-1, 1), pre);

}
}

Parallel quicksort. The followingNestSteproutine ap-
plies a parallel recursive quicksort algorithm to a dis-
tributed arraya.

void qs(sh int[]<%> a) // a cyclically distributed
{

// a is a distributed array of n shared integers
sh<=> int l, e, u;
sh<?> int pivot;
sh float weight[2]; // replicated shared array
int j;
int n = a.length();

if (n<=THRESHOLD) { seq seqsort(a); return; }
if (#==1) { seqsort(a); return; }

while (true) // look for a good pivot element in a[]:
{

step {
l = e = u = 0;
forall(j, a, 0, #-1, 1) // 1 local iteration

pivot = a[j];
} // randomly selects pivot among first elements

// in parallel determine sizes of subarrays:
step {

forall (j, a) // par. loop over owned elements
if (a[j]<pivot) l++;
else if (a[j]>pivot) u++;

else e++;
} combine (l<+>, e<+>, u<+>); //group-wide sum

if (l * u > 0.17*n*n) break; //good pivot found
}

// do partial presort in place in parallel:
partition(a, pivot, l, e, u);

// compute weight vector:
weight[0] = max((float)(l)/(float)(l+u), 1/(float)#);
weight[1] = max((float)(u)/(float)(l+u), 1/(float)#);

step< 2, weight > {
sh int[]<%> aa;
thisgroup.importArray(aa, (@==0)? a.range(0,l,1)

: a.range(l+e, u,1));
qs(aa);

if (@=0) thisgroup.exportArray(aa, a.range(0,l,1))
else thisgroup.exportArray(aa, a.range(l+e,u,1));

}
}

Thepartition function uses three concurrent paral-
lel prefix computations to compute the new ranks of the
array elements in the partially sorted array. The rank ar-
ray entries are incremented in parallel with the respective
subarray offset, and then used as permutation vector in
permute to produce a distributed temporary array that
is partially sorted. Finally, the temporary array is copied
back toa in parallel.

2.4 Pointers

With Java as basis language, there are no pointers; refer-
ences to objects are properly typed.

With C, pointer variables could be declared as shared
or private. Nevertheless, the sharity declaration of a
“shared pointer” variablep like

sh<+> int *p;

refers to thepointee; the pointer variable itself is always
private. For shared pointers we must require that these
may point to replicated shared variables, (whole) arrays,
or objects only5, and that shared pointer arithmetics is
not allowed. Pointers to volatile shared variables or dis-
tributed shared arrays are not allowed. In short, point-
ers can be used only as aliases for processor–local data.
Hence, dereferencing a pointer never causes communi-
cation.

3 Implementation

For each group, the run-time system holds a combining
tree that is used to avoid hot spots in the interconnec-
tion network and support reductions and parallel prefix
computations at practically no additional cost, by inte-
grating them piggy-back in the messages that have to be
sent anyway when performing write updates and barrier
synchronization.

Our prototype implementation ofNestStepfor Java as
basis language consists of (1) a precompiler that trans-
latesNestStepsource code to ordinary Java source code,
(2) theNestSteprun time system, that encapsulates mes-
sage passing, updating of shared variables, and group
management, and (3) a driver that invokes JVM in-
stances on remote machines listed in the HOSTFILE.

Currently, the run time system, written in Java, is op-
erational for replicated shared variables, objects, and ar-

5More specifically, the shared pointer points to the local copy.

6

rays, and the driver is finished. Hence, simple hand–
translatedNestStepprograms can now be executed.

The NestStepcode and corresponding Java code of
some example programs, together with first performance
results, can be looked up at theNestStepWWW page.

The Java code obtained forparprefix (see Sec-
tion 2.3) performs as follows:

parprefix seq. Javap = 2 p = 4 p = 8 p = 16

N = 1000000 5.4 s 7.8 s 5.6 s 3.7 s 2.2 s

These times are maximized across the processors in-
volved (JVMs running on loaded SUN SPARC 5/10 ma-
chines), averaged over several runs. We used SUN’s
javac compiler andjava interpreter from JDK 1.1.5
(Solaris 2.4). The implementation is optimized to avoid
the overhead of parallelism if only one processor is in-
volved. Note that the efficiency of the parallel prefix al-
gorithm is bounded by 50 % since the parallel algorithm
must perform two sweeps over the array while one sweep
is sufficient for the sequential algorithm.

4 Related work

[15] provides a recent systematic survey of parallel pro-
gramming languages.
Parallel Java extensions.There are several approaches
to introducing HPF–like data parallelism to Java. For in-
stance, HPJava [4] adds distributed arrays corresponding
to a subset of HPF. Naturally there are some similarities
between the constructs for distributed shared arrays in
HPJava and these inNestStep. On the other hand, our
framework for replicated shared variables is more flex-
ible and powerful. Spar [10] is a similar approach for
integrating array–parallel programming into Java. Spar
also offers distributed arrays and a parallel forall loop,
but involves a more abstract and task-parallel program-
ming model.
Nested MIMD parallelism. An explicit hierarchical
group concept as inNestStepis also provided e.g. in the
C extensions Fork95 [8], ForkLight [9], and PCP [3].
BSP implementations. The Oxford BSPlib implemen-
tation [7], a library for Fortran and C/C++, does not sup-
port shared memory. Instead, there is one–sided com-
munication (direct remote memory access) and various
functions for message passing and global barriers. We
are not aware of any high–level BSP language containing
a construct likestep that abstracts from explicit calls
to barriers and message passing, although developers of
BSP algorithms often use a similar notation.

[14] proposes a cost model for nested parallelism in
BSP that could immediately be used withNestStep.
Distributed arrays. Distribution of arrays has been
addressed in various languages, like Split-C [5] or HPF
[13]. Unfortunately, many compiler techniques to gener-
ate and optimize communication are restricted to SIMD
languages like HPF.

Virtual/distributed shared memory. Some virtual
shared memory emulations are based on paging and
caching. Although this allows to exploit the virtual
memory management support by processor hardware
and operating systems, these systems suffer from high
invalidation and update traffic caused by false sharing, as
the hardware is unaware of the program’s variables and
data structures. Also, there is little support for hetero-
geneous parallel systems like networks of workstations.
Other approaches like Shasta [12], Rthreads [6], or this
one, are object–based, i.e. sharing is in terms of data ob-
jects rather than memory pages. The Rthreads system
uses a similar precompiler method of implementation.
Combining of messages. The combining trees have
been inspired by hardware combining networks of some
shared memory architectures like SBPRAM [1].

References
[1] F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, D. Scheerer.

On the physical design of PRAMs. Computer Journal,
36(8):756–762, Dec. 1993.

[2] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, S. Chat-
terjee. Implementation of a portable nested data-parallel lan-
guage.J. of Parallel and Distributed Computing, 21:4–14, 1994.

[3] E. D. Brooks III, B. C. Gorda, K. H. Warren. The Parallel C
Preprocessor.Scientific Programming, 1(1):79–89, 1992.

[4] B. Carpenter, G. Zhang, G. Fox, X. Li, X. Li, Y. Wen. Towards
a Java Environment for SPMD Programming. InProc. 4th Int.
Euro-Par Conf., pp. 659–668. Springer LNCS 1470, 1998.

[5] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, K. Yelick. Parallel Programming in
Split-C. InProc. Supercomputing’93, Nov. 1993.

[6] B. Dreier, M. Zahn, T. Ungerer. The Rthreads Distributed Shared
Memory System. InProc. 3rd Int. Conf. on Massively Parallel
Computing Systems, Apr. 1998.

[7] J. M. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau,
K. Lang, S. B. Rao, T. Suel, T. Tsantilas, R. Bisseling.
BSPlib, the BSP Programming Library. Report, see www.bsp-
worldwide.org, May 1997.

[8] C. W. Keßler, H. Seidl. The Fork95 Parallel Programming Lan-
guage: Design, Implementation, Application.Int. Journal of Par-
allel Programming, 25(1):17–50, Feb. 1997.

[9] C. W. Keßler, H. Seidl.ForkLight: A Control–Synchronous Par-
allel Programming Language. InProc. High-Performance Com-
puting and Networking, Apr. 1999.

[10] F. Kuilman, K. van Reeuwijk, A. J. van Gemund, H. J. Sips.
Code generation techniques for the task-parallel programming
language Spar. In P. Fritzson, editor,Proc. 7th Workshop on
Compilers for Parallel Computers, pp. 1–11, June 1998.

[11] W. F. McColl. Universal computing. InProc. 2nd Int. Euro-Par
Conference, volume 1, pp. 25–36. Springer LNCS 1123, 1996.

[12] D. J. Scales, K. Gharachorloo, C. A. Thekkath. Shasta: A
low overhead, software-only approach for supporting fine-grain
shared memory. InProc. ASPLOS VII, pp. 174–185, Oct. 1996.

[13] R. Schreiber. High Performance Fortran, Version 2.Parallel
Processing Letters, 7(4):437–449, 1997.

[14] D. Skillicorn. miniBSP: a BSP Language and Transformation
System. Technical report, Dept. of Computing and Information
Sciences, Queens’s University, Kingston, Canada, Oct. 22 1996.
http://www.qucis.queensu.ca/home/skill/mini.ps.

[15] D. B. Skillicorn, D. Talia. Models and Languages for Parallel
Computation.ACM Surveys, June 1998.

[16] L. G. Valiant. A Bridging Model for Parallel Computation.Com-
munications of the ACM, 33(8), Aug. 1990.

7

