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Abstract: We study strategies for local load balancing of irregular parallel divide-and-
conquer algorithms such as Quicksort and Quickhull in SPMD-parallel environments
such as MPI and Fork that allow to exploit nested parallelism by dynamic group split-
ting. We propose two new local strategies, repivoting and serialisation, and develop a
hybrid local load balancing strategy, which is calibrated by parameters that are derived
off-line from a dynamic programming optimisation. While the approach is generic,
we have implemented and evaluated our method for two very different parallel plat-
forms. We found that our local strategy is superior to global dynamic load balancing
on a Linux cluster, while the latter performs better on a tightly synchronised shared-
memory platform with nonblocking, cheap task queue access.

1 Introduction

Technical limits on processor clock rates and likewise limited exploitable instruction-level
parallelism in applications force high-performance computer architectures to increasingly
rely on exploiting massive, explicit thread-level parallelism, such as in the form of si-
multaneous multithreading, multi-core processor structures, and clusters of commodity
processors. One possibility to solicit more explicit parallelism in applications consists in
exploiting nested parallelism, where each task in a parallel computation may, statically or
dynamically, spawn more parallel tasks. A somewhat extreme case is recursively nested
parallelism as provided by parallel divide-and-conquer algorithms.

Divide-and-conquer (DC) is an important algorithmic problem solving strategy. A prob-
lem is split into one or more independent subproblems of smaller size (divide phase); each
subproblem is solved recursively (or directly if it is trivial) (conquer phase), and finally the
subsolutions are combined to a solution of the original problem instance (combine phase).
Examples for DC computations with fixed subproblem sizes (oblivious DC algorithms)
are mergesort, FFT, or Strassen matrix multiplication; examples for DC computations
with runtime-data dependent subproblem sizes (irregular DC algorithms) are Quicksort
or Quickhull. A classification of DC algorithms is given by Herrmann and Lengauer [7].
In parallel computing, the parallel DC strategy allows for a simultaneous solution of all
subproblems, as these are independent of each other. However, a significant speedup can



generally be obtained only if also the work-intensive parts of the divide and the combine
phase can be parallelised.

In parallel programming environments that support the so-called SPMD style of execu-
tion, such as MPI [5], Tlib [12], Fork [9], or NestStep [10], a fixed number of processors
or threads execute the program as a group. Groups can be split dynamically into dis-
joint subgroups. In parallel DC computations, a parallel solution of subproblems can be
achieved by splitting the group of processors assigned to solving a problem instance into
several parallel subgroups and recursively solving one subproblem on each subgroup. The
implementation switches to the corresponding sequential DC algorithm if the subgroup
size reaches one.

Obviously the overall execution time is minimised if the processors of the group can be
subdivided in a way that perfectly matches the work distribution for the solution of the
corresponding subproblems (load balancing problem). While this is easy for oblivious
parallel DC algorithms where local load balancing decisions in the divide phase are suffi-
cient, load balancing is a challenge for irregular parallel DC algorithms. In particular, we
have to choose between local strategies and global dynamic load balancing mechanisms
such as central task queues.

In the parallel divide-phase of a divide-and-conquer algorithm the task is split into sub-
tasks, and the number of processors to assign to each subtask is decided. However assign-
ing processors to tasks leads to imbalance because the number of processors assigned to
each group must be an integer larger than zero. For instance, for a group with P � � pro-
cessors and a problem that is split into two subproblems where the ratio of expected work
is ��� � ���, the ideal assignment for the smaller subtask would of course be ��� but this is
impossible in our group-SPMD environment. Our choices are either one or two processors
on the smaller problem; both choices will lead to imbalance between the groups.

The load balancing problem for parallel irregular divide-and-conquer algorithms has been
studied before and several solutions to improve performance have been proposed [6, 11].
Most of these solutions let the processor loads become imbalanced and then perform some
active load balancing in the serial phase of the parallel divide-and-conquer program. One
example is to use a task-queue in the serial phase. When the group-size is one and the
processor is about to make a recursive call on two non trivial subtasks one of them is put
in a shared task-queue. When a processor is finished executing a task and has no more
work to do locally it fetches a new task from the queue. The good thing about a task queue
is that as long as there are tasks in the queue no processor will be idle. The drawback
is that managing a parallel task queue can be costly. A variant of task queue suitable for
distributed memory machines is the manager load balancing [6] in which one processor
is dedicated to load balancing. The other processors may request help from the manager
when they have much work to do in the sequential phase. Overpartitioning [11] is another
strategy that reduces imbalance. It works by creating more partitions than there are pro-
cessors, and when all partitions are made they are assigned to processors. This gives good
load balance with high probability. For quicksort there also exists a simplified variant [13]
for parallel execution where the data is initially sorted locally on each processor; this pre-
sorting makes it possible to select a pivot very close to the median of the data set. Thus the
processor group can be split almost exactly in half and each processor will only have to



communicate with one other processor. This preconditioning strategy is, however, limited
to a specific algorithm.

In this paper, we investigate two new local strategies, repivoting and serialisation, and
develop a hybrid local load balancing strategy for irregular parallel divide-and-conquer
algorithms that is applicable to SPMD environments. The strategy is calibrated by param-
eters that are derived off-line by an analysis based on dynamic programming. We have
implemented and evaluated our method for two parallel platforms at opposite corners of
the spectrum of parallel architectures: the SB-PRAM with tightly synchronised processors
and uniform, unit-latency memory access time, using the PRAM programming language
Fork [9], and a large Beowulf cluster of Intel Xeon processors, using MPI and the Tlib
library for nested parallelism support [12]; our method could be applied to other parallel
architectures as well. When comparing the local strategies with global dynamic load bal-
ancing, we found that on the SB-PRAM where synchronisation of a shared task queue is
cheap and nonblocking, global dynamic load balancing is always the better choice, while
on the MPI cluster, our local strategy outperformed global dynamic load balancing.

2 Group splitting, repivoting and serialisation

Using the options group splitting, repivoting, and serialisation, our goal is to choose the
strategy that minimises expected execution time.

Group splitting The group splitting strategy uses no active load balancing but simply
splits the processor group regardless of imbalance. When deciding how many proces-
sors to assign to each subtask we should try to come close to the ideal assignment: let
W��W�� � � � �Wd be the expected work loads of the d subtasks and let P be the number of
processors in the group. Then we define the ideal assignment for subtask k as

ik �
WkPd

j��Wj

P

The group splitting strategy assigns jk � maxf�� round�ik�g processors to subtask k

where round�ik� rounds to an integer adjacent to ik such that
Pd

k�� jk � P .

In the following we will, for simplicity, focus on the most common case, d � 	.

Repivoting In the parallel divide phase two subtasks are created by a group. When this
is done, the sizes of the subtasks are known and it is possible to estimate the workload of
each task and thus know what the (local) imbalance will be if the group is split into two
independent groups. It is possible to put a threshold on this imbalance. If the imbalance
is larger than this threshold, we discard the subproblems and once again go through the
process of creating subtasks. This is possible, for example, in quicksort where the created
partitions have random size but not in quickhull where the pivot element is determined by
the data set.



The tradeoff is obvious: With a low threshold on the imbalance, the load will be well
balanced among the processors, but the cost of creating subtasks in the parallel phase will
be higher. With a more liberal threshold the imbalance can grow larger but less work will
be done in the parallel divide phase.

Serialisation The serialisation strategy will ignore task parallelism between subtasks
whenever it would lead to a bad load balance, and instead simply execute the subtasks one
after another with the full group. The imbalance can be thresholded as above; when it is
larger than the threshold the two subtasks are solved by the full group one after the other,
i.e., the group is not split if the split would be bad for load balance. On the other hand, if
the imbalance is below the threshold the group splits and the imbalance between processor
groups is low.

In this imbalance avoidance strategy the price of serialising is that more of the total work
in the task will be executed in the parallel phase. This is bad mainly for two reasons; first,
efficiency is lower in the parallel phase because of the synchronisation and communica-
tion that is needed. Moreover, for a one-processor machine there often exist sequential
algorithms that are better than the parallel ones; e.g., in sequential quicksort, partitioning
can be done very efficiently in-place with the median-of-three pivot selection strategy.

Optimal strategy Group splitting, serialisation and repivoting are our three possibilities
for local load balancing in the parallel divide phase. We would like to know which of these
strategies is the best one on average. To find the optimal strategy, we derive a recurrence
relation that describes the running time for an algorithm without any form of active load
balancing. Assume that p is the number of processors that executes the algorithm, n is the
size of the problem (for example the number of elements to sort in quicksort), T �n� is a
stochastic function that describes the running time for the algorithm on one processor, and
Dp�n� describes the time needed for p processors to create new subtasks, communicate
data and split the processor group in the parallel phase, then

Tp�n� �

�
T �n�� if p � �
Dp�n� 
 maxfTp��n��� Tp�p��n��g � if p � �

(1)

where p�, the number of processors assigned to the first subtask, is some function p� �
p��n�� n�� with � � p� � p, and n� � N and n� � N are stochastic variables whose
values describe the sizes of the subtasks.

Now to get to the expected running time, E�Tp�n��, all possible values of n� and n� have to
be considered. Define Prob�n� � n�� to be the probability that a task is split into subtasks
of sizes n� and n�, with 
 � n�� n� � n,

E�Tp�n�� �

�����
����

E�T �n��� if p � �

E�Dp�n�� 


n��X
n���

n��X
n���

Prob�n� � n���

� E�maxfTp��n��� Tp�p��n��g�

� if p � �
(2)



A simple solution to this equation does not seem to exist [4]. Therefore we solve it numeri-
cally, using a discretization of the probability distributions and dynamic programming [2].
The latter allows to calculate optimal strategies for parallel quicksort bottom-up for larger
and larger problem sizes and processor groups and store them in a table such that common
subinstances are computed only once.

The model of execution for quicksort Let us now look at how dynamic programming
can be applied to our case. We are interested in minimising E�Tp�n�� (see Equation 2).
First we note that this expression has two variables, thus we need to store optimal strategies
and execution times in a p�n matrix. This matrix can be created by first filling in the row
where p � �, then the row where p � 	, and so on.

In order to arrive at the correct optimal decision, we can not simply store the expected
value of the execution times, Tp�n�, in the matrix because E�maxfTq�k�� Tr�l�g� is not in
general equal to maxfE�Tq�k���E�Tr�l��g. Hence, we need to store information about the
probability distribution of Tp�n�. To save computer memory and shorten execution time,
this representation of probability distribution can not be allowed to grow huge; therefore
we approximate a probability distribution with K pairs hr� ti where r is a probability value
and t is a value of execution time. In our implementation we used K � �
.

The decisions to be optimised are the processor assignment, i.e. how many processors to
assign to each subgroup, and if we should use any of the serialisation or repivoting load
balancing strategies.

In order to do the necessary calculations we need a model of execution for the intended
platform. In Fork we use a simple, empirically supported, model where the expected ex-
ecution time for one processor is E�T �n�� � C��	n lnn 
 n� and the time required for
doing partitioning in parallel is E�Dp�n�� � C���

n
p
�, where � is the efficiency of partition-

ing in parallel. On our distributed memory machine we found E�T �n�� � C��	n lnn
n�
and E�Dp�n�� � C�

n
p

 C�n
 C�p. See [4] for details about the models.

Once the subtask sizes (n� and n�) are known, the expected execution time without load
balancing can be calculated as

E�Tp�n�� � E�Dp�n�� 
 E�maxfTp��n��� Tp�p��n��g�� (3)

while when serialising the execution the expected execution time will be

E�Tp�n�� � E�Dp�n�� 
 E�Tp�n��� 
 E�Tp�n���� (4)

In both Equations (3) and (4), E�Tp�n�� can be calculated in the dynamic programming
program because we only have to look up values that have already been calculated. How-
ever, with repivoting it gets more complicated, as the expected execution time when repiv-
oting depends on values which have not yet been calculated. A solution to this problem is
to fill in a full row for a fixed value of p in the matrix, considering only the serialising load
balancing strategy, and then check if repivoting had been a better strategy by taking aver-
age execution time for all entries in this row. As we will see soon, serialising always has
lower expected cost than repivoting, so no values in the row will ever have to be changed.
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Figure 1: Plotted in (a) is the expected cost (in ms) to sort 1000 keys with 2 processors on the
SB-PRAM, and in (b) the expected cost to sort 1 million elements with 2 processors on the cluster.

Results of dynamic programming Let us now look at the results of the dynamic pro-
gramming approach. We consider quicksort implemented in both MPI for a distributed
memory machine (a Xeon cluster) and in the PRAM programming language Fork and ex-
ecuted on the SB-PRAM simulator [9]. In Figure 1 we can see what the expected cost is
when splitting, serialising and repivoting for various sizes of subtask 1 for a fixed problem
size n with two processors. We see that the best case is when n� � n�	, i.e. the prob-
lem is split in two equally large subproblems. We can also see that, when n� is smaller
than some value R or larger than some value n � R, serialising the execution is the best
strategy to use. Important to note is that repivoting is never the best strategy. Actually
we have observed in all our examples that repivoting always has expected running time
approximately equal or larger than the serialising strategy (see e.g. Figures 1 and 2). We
therefore omit repivoting from further consideration.
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Figure 2: Expected cost (in ms) for 7 processors to sort 1 million elements (a) on the SB-PRAM,
and (b) on the distributed memory machine.

Figure 2, where p � �, unveils that the best possible n� is not at the n�	 mark. Instead the
n� which gives the lowest expected cost is one where the optimal processor assignment is
� � �. The second dip corresponds to the optimal subtask sizes for splitting the processor
group 	 � �, and so on. On the edges farthest to the right and farthest to the left, the value
is high because one of the processors must be split off and deal with a relatively small



Fork
p � � � � � � � � �	 �� �� �� �� �� ��

n

�	� .180 .160 .110 .050 0 0 0 0 0 0 0 0 0 0 0
�	� .233 .199 .140 .090 .053 .021 0 0 0 0 0 0 0 0 0
�	� .265 .221 .158 .111 .078 .052 .031 .012 0 0 0 0 0 0 0
�	� .288 .234 .169 .124 .092 .068 .049 .034 .020 .003 0 0 0 0 0
�	� .305 .243 .176 .133 .102 .079 .060 .046 .034 .024 .012 0 0 0 0
�	� .318 .249 .182 .139 .109 .086 .068 .054 .043 .033 .024 .014 .008 0 0
�	� .329 .254 .187 .144 .113 .091 .074 .060 .049 .040 .032 .024 .015 .015 0
�	� .338 .258 .191 .147 .117 .095 .078 .064 .053 .045 .037 .030 .024 .015 .016

MPI
p � � � � � � � � �	 �� �� �� �� �� ��

n

�	� .156 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�	� .328 .216 .136 .076 .022 0 0 0 0 0 0 0 0 0 0
�	� .382 .265 .191 .143 .109 .083 .062 .042 .026 .011 0 0 0 0 0
�	� .401 .281 .206 .159 .126 .102 .083 .067 .054 .043 .033 .025 .015 .008 0
�	� .407 .284 .210 .163 .131 .107 .088 .073 .061 .051 .042 .034 .027 .021 .016

Table 1: Threshold values extracted from dynamic programming data, for implementations using
Fork on the SB-PRAM and using MPI on the Xeon cluster. The numbers indicate that if a subtask is
smaller than this number multiplied by problem size, serialisation is the optimal strategy.

subtask that will quickly be solved and this single processor will not be utilised any more
for the rest of the task, i.e. processing power is wasted while the larger processor group is
overloaded. The first top in the graph corresponds to the subtask sizes where, if processors
are assigned � � �, the single processor will be overloaded and if processors are assigned
	 � � the larger group will be overloaded, i.e. both alternatives are bad ones. We can look at
the tops in the graph as corresponding to when pivots are selected such that the processor
assignment decision is hardest to make.

All the studied average-cost graphs are symmetric around the line n� � n�	, as the
branching factor in our examples is two and the subtask sizes are related by the equation
n� 
 n� � n (this is true in quicksort but not in quickhull). Consequently the case with
fixed p and n where subtask sizes are n� and n� is equivalent to the case where subtask
sizes are n� and n�.

Combined strategy for local load balancing The results from dynamic programming
have shown us that serialising the execution is generally worthwhile when one of the sub-
tasks is very small. Now we need to find threshold values on n and p.

In Table 1 we have extracted such threshold values, for a few chosen n and p from dynamic
programming data. The table should be read as this: the values represent a ratio, r, such
that if one subtask has a size ni with ni

n
� r then the optimal strategy is to serialise the

execution. And otherwise, i.e. if the subtasks are better balanced, the optimal strategy is
to split the processor group. For example if p � �, n � �



 and n� � �


 we have
a situation where n�

n
� 
�� � 
���� and thus serialising is the best option, while if n�

had been 	


 then the ratio would have been n�
n

� 
�	 � 
���� and the optimal strategy
would be to split the processor group.



3 Comparison of quicksort implementations

We have implemented quicksort in both Fork and MPI with an approximation of the opti-
mal serialisation and repivoting strategies and compared speedups with speedups of quick-
sort implemented with task queue load balancing.

Figure 3(a) shows speedups when sorting 40000 integers on the SB-PRAM when the pivot
is selected as a random element in the parallel phase. We see that repivoting and seri-
alisation are very similar in performance and slightly better than the unbalanced imple-
mentation. However the task queue solution is clearly better than both serialisation and
repivoting. Figure 3(b) shows speedups of our implementations again, but this time with
the better median-of-three pivot selection in the parallel phase. We see again that seriali-
sation is slightly better than using no load balancing at all but the effects of load balancing
are lower. Task queue is the best strategy again. Figure 4 shows results of executions on
the distributed memory machine. Clearly serialisation is better than using no load bal-
ancing. We see that global load balancing using a manager is not very beneficial in our
example (we predict that the manager solution would show better results if the number of
processors was larger) and that the simplified quicksort version is the best one. It must
however be noted that this preconditioning is only possible in quicksort. Thus in other ir-
regular parallel divide-and-conquer algorithms it may be serialisation that is the best load
balancing strategy. From the results we draw the following conclusions:
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Figure 3: Average speedup for quicksort on ����� elements in Fork with different strategies. In (a) a
random element is used as pivot in the parallel divide phase and in (b) the pivot is selected as median
of 3 random elements.

� For small problem sizes and large number of processors load balancing does not
improve the execution time, this is of course because the overhead is higher than
what is gained by better balance. In our Fork implementation, 10000 elements on
16 processors is a small problem not worth to load balance.

� Using repivoting and serialisation has similar effects on execution time.

� Load balancing with serialisation is less effective when median-of-3 pivot selection
is used, but still has a positive effect.



� On the SB-PRAM the task queue load balancing strategy is superior to the seriali-
sation and repivoting strategies. This is because serialisation only improves balance
among processors but imbalance will occur, while with the task queue load imbal-
ance is almost totally eliminated at the cost of maintaining a parallel FIFO queue.
The task queue can be implemented extremely efficiently on the SB-PRAM, us-
ing the hardware-supported atomic multiprefix operations for non-blocking queue
access with almost no overhead. Note that other shared memory platforms may in-
stead require locks or similar mechanisms that sequentialise queue accesses. An
evaluation for other shared-memory platforms is an issue for future research.

� On the distributed memory machine our serialisation strategy outperforms the global
dynamic manager strategy.

� On the distributed memory machine, both serialisation and manager are beaten by
the simplified version of parallel quicksort.

Corresponding results for quickhull can be found in Mattias Eriksson’s Master’s thesis [4].

Figure 4: Average speedup for quicksort
on ��������� elements in MPI with
different load balancing strategies.
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4 Conclusion and future work

We have proposed and studied two new strategies, repivoting and serialisation, for lo-
cal load balancing of irregular parallel divide-and-conquer algorithms for use in SPMD-
parallel environments such as MPI and Fork that allow to exploit nested parallelism by
dynamic group splitting. We analysed the optimal local load balancing problem numeri-
cally with a dynamic programming method, and developed a hybrid local load balancing
strategy. We have implemented our method for two very different parallel platforms, SB-
PRAM with Fork and a Xeon Cluster with MPI/Tlib. We found that our local strategy is
superior to global dynamic load balancing on the MPI cluster, while global dynamic load
balancing performs better on a shared-memory platform with nonblocking, cheap synchro-
nisation. Our technique can likewise be applied to other parallel platforms between these
two extremal points of the architecture spectrum, e.g. to SMT-processors, chip multipro-
cessors and SMP architectures, which is an issue for future work. Moreover, the effects



of repivoting and serialisation should be studied for other irregular parallel DC algorithms
that divide into more than 2 subtasks.
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