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Chapter 1

Introduction

1.1 Introduction

The fact that the superscalar processor’s performance increase has slowed down
and probably will slow down even more over the next few years has given birth to
many new multi core processors such as the Intel Core2 dual and quad core and the
AMD x2 series of dual core processors. These are all built of two or more full blown
superscalar processor cores put together on a single chip. This is convenient for the
programmer as they act just like the older symmetrical multi processor systems
that have been around for many years. IBM, Sony and Toshiba have recently
contributed to the multi core market with their Cell Broadband Engine which is
a heterogeneous multi core processor. The Cell consists of one multi threaded
Power PC (the PPE, PowerPc Element) core and eight small vector RISC cores
(the SPE:s, Synergistic Processing Element). The Cell has a peak performance of
204 GFLOPS for the SPE:s only and an on chip communication bus capable of
96 bytes per clock cycle. The architecture allows the programmer very detailed
control over the hardware. For the same reason the architecture also demands
a lot from the programmer. To achieve good performance the programmer has
to take a lot of details in consideration. A modern X86 processor will often get
decent performance of mediocre or even bad code. The Cell will not perform well
unless the programmer puts due attention to the details.

A large part of what makes it difficult and time consuming to program the Cell
is memory management. The SPE:s does not have a cache like most processors.
Instead of a cache all SPE:s have their own explicitly managed piece of on chip
memory called local store. As the SPE local store is very small very few data
sets will fit into it. Because of this almost all data sets has to be stored in the
main memory and then moved between main memory and local store constantly.
Memory transfers are done through DMA. On top of that, memory transfers have
to be double buffered to keep the SPE busy with useful work while the memory
flow controller (MFC) is shifting data around.

The NestStep programing environment helps with some of the memory man-
agement but the main hassle is still left to the programmer to handle. In this
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master thesis we examine a skeleton approach on making it easier to program for
the Cell processor.

1.2 Project Goals

This master thesis project aims to make it easier to write efficient programs for
the Cell BE within the NestStep environment. The approach is to try to do this
through a library of parallel building blocks realized as parallel skeletons. The aim
is to cover memory management and parallelization as much as possible and help
with SIMD optimization to some extent. This should also make the developed
program less Cell specific and easier to port to other NestStep implementations
on different types of hardware. The aim is to achieve this while maintaining good
performance.

1.3 Project Approach

To learn more about the Cell processor the first step of the project was to design
and implement a library covering a small part of BLAS. The library would be
called from ordinary PPE code and the library would handle everything concern-
ing parallelization and memory management. During the implementation of this
library IBM released a complete PPE-based BLAS library as part of their Cell
SDK 3.0. This made it unnecessary to finish the BLAS part of the project as
IBM’s library was far more complete than our version was supposed to become.

The next step of the project was to familiarize ourselves with the NestStep
environment and the NestStep Cell runtime system. By doing so we could under-
stand the obstacles for NestStep programming on Cell. The skeletons were then
created to take care of these obstacles while optimizing performance at the same
time.

The skeleton library that was created was then evaluated by small synthetic
benchmarks and, by porting a computational PC application to NestStep and the
Cell using the library. One of the synthetic benchmarks implements a dot product
and was compared to the performance of the dot product in the IBM BLAS library
for the Cell processor.

1.4 Implementation Approach

The implementation had two main goals. The first is usability: it is difficult and
cumbersome to write fast code for the Cell. The second is performance: good
usability is useless unless the result is fast enough. If performance was not an
issue one would write an ordinary sequential PC program instead.

The basic skeletons took longer to finish than anticipated because of the amount
of details that needed attention to achieve good performance. As the library
was optimized it became clear that the NestStep synchronization system was too
slow. The skeleton execution time was too short and put too much pressure
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on the NestStep runtime system. To solve this a new streamlined inter SPE
synchronization a combining system was developed.

1.5 Thesis Outline

The thesis is outlined as follows:

e Cell BE Processor Overview: An Overview of the Cell BE processor. Covers
the architecture and performance of the processor. This chapter also covers
how to write fast code in detail.

e NestStep Overview: An Introduction to the NestStep Language and runtime
systems.

e Skeleton Programming: A short introduction to skeleton programming.

e BlockLib: This chapter covers the functionality and the implementation of
the library that is the result of the findings of this project.

e Evaluation: This chapter covers the evaluation of BlockLib. The evaluation
consists of both synthetic performance benchmarks and a usefulness test in
which a real application is ported to NestStep and the Cell using BlockLib.

e Conclusion and Future Work: Here are the overall results of the project
discussed. The chapter also covers what could be done in future work on the
subjects, such as expansions and improvements.

e Glossary: Domain specific words and abbreviations are explained here.

e BlockLib API Reference: A short API listing and reference from the BlockLib
source distribution.

e Code for Test Programs: The code used in the evaluation chapter are found
here. This chapter includes the core routines from the real application port.

The most important contributions of this thesis are also described in a confer-
ence paper [1].
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Chapter 2

Cell BE Processor Overview

The Cell Broadband Engine is a processor developed by IBM, Sony and Toshiba.
Most modern high performance multi core processors are homogeneous. These
homogeneous multi core processors are built of two or more identical full blown
superscalar processors and act like a normal multi processor SMP machine. The
Cell BE on the other hand is a heterogeneous processor built of a normal PowerPC
core (PPE) and eight small vector RISC processors (SPE:s) coupled together with
a very powerful bus. The processor is designed to enable inter chip cooperation
as opposite to most other multi core processors which are designed to act more
as independent processors. The Cell does not share the abstraction layers of the
normal x86 or PowerPC processors, it is striped of most advanced prediction and
control logic to make room for more computational power. The result is extreme
floating point performance and programmer control. See Figure 2.1 for the overall
architecture.

SPE SPE SPE SPE
LS LS LS LS
MFC MFC MFC MFC

Memory Interface
PPE o . EB :j Controller
i i t i ‘( 1/0 Controller

MFC MFC MFC MFC
LS LS LS LS
SPE SPE SPE SPE

Figure 2.1. Cell BE architecture
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2.1 Literature on Cell BE

“Cell Broadband Engine Architecture” [5] is an extensive document on the Cell
BE architecture. “Cell BE Programming Tutorial” [8] largely covers the same
subjects but is more focused on programming. Both documents are big, more than
300 pages each. “Introduction to the Cell multiprocessor” is a compact overview
focused on the actual architecture in just 16 pages and is suitable as a primer.

2.2 EIB

The Element Interconnect Bus (EIB) connects the PPE, the SPE:s, the memory
controller and IO controller. The bus is built of four rings and is capable of 8
bytes per bus unit per clock cycle. The twelve bus units (the memory controller
has two bus connections) brings the EIB total capacity up to 96 bytes per clock
cycle. Each SPE has an EIB bandwidth of 25.6 GB/s but the actual throughput
is dependent on which SPE that communicate with which [5].

2.3 SPE

The SPE:s are vector processors. That means that they can perform calculations
on vectors of operands. The vectors on the SPE:s are 16 bytes which translate
to four single precision floats or two double precision floats. The SPE can issue a
single precision vector operation each clock cycle and this is the key to the high
performance. The whole infrastructure of the SPE is built for 16 byte vectors.
The SPE always loads and stores 16 bytes at a time, even if it only needs a scalar.

Each SPE has 256 kiB of fast memory called local store. The local store is
the SPE’s working RAM and all data and code has to fit into it. The system
main memory is not directly accessible. Data is transferred between system main
memory and the local stores using DMA.

2.4 Programs

The SPE:s and the PPE have their own instruction sets. SPE programs are com-
piled with a different compiler than the PPE programs. All normal programs,
such as the operating system and most user programs, such as the shell, run on
the PPE. The PPE runs normal PowerPC code in 64 or 32 bit mode. SPE pro-
grams are managed by the PPE program as a special type of threads. A usual
approach is to use the PPE program for initialization and administration and the
SPE:s to do the heavy calculations with the PPE program as a coordinator.

2.5 Performance

The Cell BE has a peak single precision performance of over 25.6 GFLOPS for
each SPE. This sums up to 204 GFLOPS excluding the PPE. The double precision
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performance is 1.83 GFLOPS per SPE or 14.63 GFLOPS in total [18].

2.6 PlayStation 3

The Sony PlayStation 3 is by far the cheapest Cell hardware. It can be bought for
$400 (as of December 2007, Wal Mart Internet store). The PlayStation is a gaming
console but Sony has prepared it to run other operating system in a hypervisor. It
is relatively easy to install Linux and it runs several distributions such as Fedora
Core, Ubuntu, Gentoo and Yellow Dog Linux.

2.6.1 Limitations

The supervisor restricts the access to some of the hardware, such as the graphic
card and hard drive. The PS3 is very limited on some major points. It has
only just above 210 MiB of RAM available inside the hypervisor. The hypervisor
also occupies one SPE. One other SPE is disabled altogether. All this limits the
applications running in Linux inside the hypervisor to under 200 MiB of RAM and
six SPE:s. The total performance for all SPE:s is 153 GFLOPS in single precision
and 11 GFLOPS in double precision.

2.7 IBM QS21

IBM QS series is IBM professional Cell hardware for computation clusters. The
blades fit in the BladeCenter H chassis. Each 9 unit cabinet holds up to 14 blades.
The current blade is the QS21. This blade has two 3.2 GHz Cell BE and 2 GiB of
ram. This sums up to over 6 TFLOPS single precision performance and 28 GiB
of ram in 9 units of rack space [10].

2.8 Writing Fast Code for Cell BE

While it is possible to achieve close to peak performance for some real applications,
there are a lot of major and minor issues to deal with. An ordinary generic C-
implementation of a given algorithm will perform poorly. Most tips in this chapter
are also covered by Brokenshire in a paper on cell performance [2]. The tips are
based on or verified by experiments and benchmarking done in this project.

2.8.1 Floats, Doubles and Integers

The SPE can issue one float vector operation per cycle or one double vector opera-
tion every seventh cycle. As the float vector is four elements and the double vector
only two elements the SPE:s are fourteen times faster when calculating single pre-
cision operations than on double precision operations. This means that doubles
should be avoided wherever the extra precision is not absolutely necessary.

The SPE does not have a full 32 bit integer multiplier but just a 16 bit multi-
plier. This means that 16 bit integers (shorts) should be used if possible.
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2.8.2 Memory Transfers
Alignment with DMA

For DMA transfers, in most cases data have to be 16 byte aligned. If a DMA-
transfer is bigger than eight bytes it has to be a multiple of 16 bytes in size and
both source and target address have to be 16 byte aligned. On less than 8 byte
transfers both source and target have to have the same alignment relative to a 16
byte aligned address. To achieve maximal memory bandwidth both source and
target address have to be 128 byte aligned. If target or source address is not
128 byte aligned the transfer will be limited to about half the achievable memory
bandwidth. This is crucial as memory bandwidth often is a bottleneck. With
GCC the __attribute__((aligned(128))) compiler directive does not work with
memory allocated on the stack. The alignment is silently limited to 16 bytes. By
allocating a 128 bytes bigger array than needed a 128 byte aligned start point can
be found.

Multi Buffering

All transfers between main memory and local store are done through explicit asyn-
chronous DMA transfers. This means that it is possible to issue DMA transfers
to one buffer while performing calculations on another. This double buffering can
hide memory transfers completely if computation of a block takes longer than
transferring it to or from main memory. If the data chunk is to be written back
to main memory, double buffering should be used for those transfers as well.

Multiple SPE:s in Transfer

A single SPE can not fully utilize the available main memory bandwidth. A set
of synthetic memory benchmarks by Sdndor Héman et al. [4] show that a single
SPE can achieve about 6 GB/s in a benchmark where six SPE will achieve about
20 GB/s. Even as each SPE’s connection to the EIB is capable of 25 GB/s this
speed is not possible to and from main memory which has higher latency relative
to communication that stays on chip.

Main memory usage should be distributed over three or more SPE:s if possible
to avoid a performance penalty from this limitation.

2.8.3 SIMD

The SPE is a SIMD processor. The whole processor is built around 128 bit vectors
which hold four floats, four 32 bit integers or two doubles.

C Intrinsics

To make it easier to use the SIMD instructions on the SPE:s and PPE there exist
a large set of language extensions for C and C++. These intrinsics map to SIMD
instructions but let the compiler handle the registers, loads and stores. This makes
it much easier to write efficient SIMD code and should be much less error prone.
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It also lets the compiler do optimizations such as instruction scheduling as usual.
All intrinsics are specified and explained in the Cell language extension reference
[7].

SIMD Math Library

The SIMD instructions cover just the very basic arithmetical operations. IBM
ships a math library in recent CELL SDK which is similar to the standard C math.h
library but operates on vectors. This library gives access to a set of standard
arithmetic operations that have been SIMD optimized and fits well with the SIMD
Intrinsics. See the SIMD Math library reference [9] for a complete specification.

Alignment with SIMD

With SIMD instructions the data (organised as vectors) should be 16 byte aligned
to avoid any shifting and extra loads. All loads from and stores to local store is
16 byte aligned quad words. A whole quad word is loaded even if the requested
data is a single byte or a 32 bit integer. If a quad word that is not 16 byte aligned
is requested two quad words have to be loaded. The wanted quad word is then
selected, shifted and combined to fit into a vector register. Scalar arithmetics is
in fact often slightly slower than arithmetics on a vector of four floats. This is
partly because the scalar often is not 16 byte aligned so it has to be moved to the
preferred scalar slot. This also implies that even scalars should be 16 byte aligned
if possible.

2.8.4 Data Dependencies

While the SPE can issue one vector float operation every cycle the result of the
operation is not in its target register until six cycles later. If the instruction after
depends on that result the SPE has to be stalled until it is ready. If the C intrinsics
are used the compiler handles the instruction scheduling to minimize stalled cycles.
The programmer still has to implement his algorithm in such way that there is
enough independent computations to fill the pipeline, if possible.

2.8.5 Striping of Binaries

The small local store makes it easy to run out of SPE memory. Code, variables,
buffers etc. has to fit into the 256 kiB. There is no mechanism to protect the stack
from colliding with something else. The program continues to run, sometimes
almost correctly, often producing very odd bugs. A way to avoid this is to keep an
eye on the SPE binary and make sure that there is a margin between binary size
plus estimated SPE memory usage and 256 kiB. Make sure that the SPE binary
is striped before it is embedded into a PPE object file. Striping will prevent
debugging in GDB but it will also shrink the binary considerably.
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Chapter 3

NestStep Overview

The bulk synchronous parallel (BSP) programming model divides the program
into a series of supersteps. Each superstep consist of a local computation part,
a group communication part and a synchronization barrier. The processors work
individually in the local computation part and then perform necessary commu-
nication. The communication can be to share data with other processors or to
combine a result to a total result. See Figure 3.1 for program flow.

Calculation
Superstep 1
Y A =

Communication
Superstep <

Barrier

Calculation

Communication

Barrier

Figure 3.1. Bulk synchronous parallel execution flow.

NestStep is a language that implements the BSP model. It has a shared mem-
ory abstraction for distributed memory systems. It has support for shared vari-
ables and arrays and uses the BSP superstep in its memory consistency model, all
shared data are synchronized in the BSP combine part of each superstep. This
means that shared data consistency is only guaranteed between each superstep.

11
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3.1 Literature on NestStep

The NestStep language and structure is covered in “NestStep: Nested Parallelism
and Virtual Shared Memory for the BSP Model” [15]. More details on memory
management on distributed memory systems with NestStep is covered in “Man-
aging distributed shared arrays in a bulk-synchronous parallel programming envi-
ronment: Research Articles” [14].

The NestStep implementation for the Cell BE used in this master project is
written by Daniel Johansson in his master’s project where he ported NestStep
runtime system to the Cell processor. Johansson discusses the implementation
details and gives a NestStep overview in his thesis “Porting the NestStep Run-
time System to the CELL Broadband Engine” [11]. Daniel Johansson’s Cell port
is based on an implementation for PC clusters written by Joar Sohl in his master
project [17].

3.2 Variables and Arrays

NestStep has support for shared and private variables and arrays. The private
variables and arrays behave just like ordinary C data types and are accessible only
by the processor that owns them. The shared variables are synchronized after each
superstep.

NestStep also has support for two distributed data types: block distributed
arrays and cyclic distributed arrays. The block distributed array is distributed
across the processors, each processor is assigned a contiguous part of the array.
The distributed cyclic array is partitioned in smaller chunks which are assigned
to the processors in a cyclic manner. The different array partitions provide a
implicit partition of the data set for simple parallelization. If the computations
are heavier in some part of an array the cyclic partition can help to load balance
the chunks better than the block distributed array. See Figure 3.2 for a figure of
array partitioning with NestStep distributed arrays.

3.3 Combine

The shared variables and arrays are combined after each superstep, i.e. they are
synchronized. The combining makes sure that all copies of a variable are consistent
over all processors. The shared data is combined in a deterministic programmable
way. Variables can be combined by a programmable reduction, like global MAX
or a global SUM. The combine can also set all copies of a variable to the value of
a certain node’s copy. A shared array is combined element by element and thus
behaves like an array of individual shared variables when combined.

3.4 NestStep Implementations

The first NestStep implementations were developed for PC clusters on top of MPI
such as Sohls [17]. MPI stands for message passing interface and is an interface for
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Block Distributed Array

Cyclic Distributed Array

Figure 3.2. Array partitioning with NestStep distributed arrays

sending messages and combining and spreading data between processors on shared
memory systems (such as multi processor PCs) and distributed memory systems
(such as PC clusters). NestStep was then ported to the Cell by Daniel Johansson
[11].

3.4.1 Cell BE NestStep Implementation

The NestStep Cell port is extended compared to the MPI based versions to handle
some of the difference between a PC cluster and a Cell BE. All user code runs on
the SPE:s but the runtime system runs on both the PPE and the SPE:s. The
PPE act as the coordinator, manages SPE threads and combines. The SPE part
of the runtime system handles communication with the PPE and main memory
transfers.

Variables and Arrays

All shared data are resident in main memory. This is mainly because there is too
little space in the local store. To handle this the Cell NestStep implementation is
extended with some extra variable and array handling and transferring function-
ality. Small variables are transferred between main memory with explicit get and
store functions. As whole arrays often do not fit in the local store, they can be
transferred in smaller chunks. There are also private variables and arrays in main
memory, which are managed in the same way as the shared variables and arrays,
except that they are not touched by combine. For this project we are especially
interested in the NestStep block distributed arrays.
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Combine

The Cell NestStep combine is handled by the PPE. All changes to shared data
made by SPE:s have to be transferred to main memory prior combining. The
combine with global reduction is limited to a few predefined functions in the Cell

port [11].



Chapter 4

Skeleton Programming

Skeletons are generic structures that implements a computation pattern rather
than a computation itself. The skeleton can also hide the implementation behind
an abstract interface. Skeletons are often derived from higher order functions such
as map from functional languages. Map is a calculation pattern which applies a
function on each of the elements in an array. The user provides the map with
a function and an array and does not have to know nor care about how the cal-
culation is performed. The library or compiler that provides the map skeleton
can implement it in the most efficient way on the current platform. It may even
run a different implementation depending on some runtime parameter such as the
number of elements in the array.

4.1 Literature on Skeletons

“Practical PRAM Programming” [13] is a book covering many aspects of the
PRAM (parallel random access machines) computers, the FORK programming
language and related subjects. Chapter 7 is an overview of parallel programming
with skeletons which is particularly interesting for this project. Murray I. Cole has
written several books and papers on the subject of parallel skeleton programing,
such as “Algorithmic Skeletons: Structured Management of Parallel Computation”

[3]-

4.2 Code Reuse

Skeletons are also an implementation of code reuse which can cut developing time
considerably. A skeleton can be used instead of a whole set of library functions.
For instance, instead of implementing summation of an array, max of an array, min
of an array etc. a reduce skeleton can be provided. The user then provides the
skeleton with the reduction function. A sum is a reduce with ADD as the reduction
function. This way a whole group of functions can be replaced by a single skeleton.
This will also let the user reduce arrays with more uncommon functions, which

15
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probably would not be available without skeletons, such as finding the elements
with the smallest absolute value.

4.3 Parallelization

A skeleton can be realized as a parallel computation even when the interface looks
like it is sequential [13]. The interface can thereby be identical on several different
platforms, single processor, multi processor and even distributed memory systems
such as PC clusters. The implementation can the be optimized for the specific
platform, the number of available processors etc. This will also limit the platform
specific code to the skeleton.



Chapter 5

BlockLib

BlockLib is the result of this master project. The library tries to ease Cell pro-
gramming by taking care of memory management, SIMD optimization and par-
allelization. BlockLib implements a few basic computation patterns as skeletons.
Two of these are map and reduce which are well known. BlockLib also implements
two variants of those. The first is a combined map and reduce as a performance
optimization and the other is a map that enables calculation of one element to
access nearby elements. The parallel skeletons are implemented as a C library.
The library consists of C code and macros and requires no extra tools besides the
C preprocessor and compiler.

The BlockLib skeleton functions are their own NestStep superstep. The map
skeleton can also be run as a part of a bigger superstep.

5.1 Abstraction and Portability

The usage of BlockLib does not tie the user code to the Cell platform. The same
interface could be used by an other BlockLib implementation on an other NestStep
platform in an efficient way, with or without SIMD optimization. BlockLib can
serve as an abstraction of Cell programming to a less platform specific level.

5.2 Block Lib Functionality

5.2.1 Map

The skeleton function map applies a function on every element of one or several
arrays and stores the results in a result array [12]. The result array can be one of
the argument arrays. The skeleton can also be described as Vi € [0, N — 1], r[i] =
f(aolil, ..., agli]). The current implementation is limited to three argument arrays.

17
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5.2.2 Reduce

Reduce reduces an array to a scalar by applying a function on one element of
the argument array and the reduced result of the rest of the array recursively.
A reduce with the function ADD sums the array and a reduce with MAX finds
the biggest element. A reduction with the operation op can be described as r =
al0] op a[1] op ... op a[N —1]. This implementation requires the applied function
to be associative [12]. Some reductions will have a result that varies with the
computation order when applied to large arrays with reduce, even if they are
associative. This is caused by the limited floating point precision of floats and
doubles and is not an error of the skeleton function. For instance, the result of a
summation over a large array will vary with the number of SPE:s used.

5.2.3 Map-Reduce

Map-reduce is a combination of map and reduce. The map function is applied on
every element before it’s reduced. The result is the same as if map is first applied
to an array a, producing the result b on which reduce is then applied. This can
also be described as f(ao[1],...,ax[l]) op f(ao[2],...,ar[2]) op ... op f(ao[N —
1],...,ax[N — 1]). This way the result after map do not have to be transferred
to main memory and then transferred back again for reduction. This reduction
of main memory transfers improves performance as main memory bandwidth is a
bottleneck. The combination will also save main memory by making the array b
redundant.

5.2.4 Overlapped Map

Some calculation patterns are structurally similar to a map but the calculation of
one element uses more elements than the corresponding element from the argument
array. This can be described as Vi € [0, N —1],r[i] = f(a[i—k],ali—k+1]... a[i+
k]). One such common calculation is convolution. Many of those calculations
have a limited access distance. A limited access distance means that all needed
argument elements are within certain number of elements from the calculated
element. A one dimensional discrete filter has an access distance limited by the
filter kernel size (the number of non zero coefficients) for example.

The overlapped map can either be cyclic or zero padded. A read outside the
array bounds in a cyclic overlapped map will return values from the other end
of the array, i.e. for an array a of size N Vi € [-N,—1],a[i] = a[i + N] and
Vi € [N,2N —1],a[i] = a[i — N]. The same read in a zero padded overlapped map
will return zero, i.e. Vi & [0, N — 1],a[i] = 0.

The overlapped map’s macro generated SIMD optimized code takes some per-
formance penalty from not being able to load the operands as whole 16 byte
vectors. The vector has to be loaded one operand at a time as they can have any
alignment.
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5.2.5 Miscellaneous Helpers

BlockLib contains some other functionalities over the skeletons such as memory
management helpers, message passing primitives, and timers. Some of those are
tied to the Cell architecture, other does not conform to the BSP model and should
be used with care. They are discussed in the implementation section together with
the technical problem they are designed to solve.

Pipeline

In some types of parallel computations, such as matrix-matrix or vector-matrix
multiplication, some of the data is needed by all processors. This shared data
can either be read from main memory by all processors individually or replicated
between the processors. The Cell processor has a lot more bandwidth internally
between SPE:s than main memory bandwidth. This can be used to enhance the
total amount of operands being transferred through the SPE:s above the main
memory bandwidth.

A pipe architecture can have an arbitrary layout but in its most basic layout
each data chunk travels through the pipeline one SPE at a time. This way all
SPE:s can get the shared data without occupying the main memory bus more
than necessary. If the shared data was broadcasted to all SPE:s for each chunk
the SPE that loaded the chunk from main memory would be a bottleneck. With
larger data sets the pipe initialization time becomes negligible.

If the data flow layout in Figure 5.1 is used each SPE loads non shared data
from main memory in parallel combined with the pipe and effective bandwidth can
be maximised. If the shared and the non shared data chunks have the same size
then the actual used memory bandwidth B, is B, = N(p + 1)/t. (where p is the
number of SPE:s and ¢, the execution time) as p + 1 arrays of equal size are read
from memory. The effective bandwidth usable by the SPU:s B, is B, = N(p +
p)/te. With six SPU:s B, /B, = 1.714 which would lead to significant performance
improvements in applicable cases were memory bandwidth is a bottleneck. This
setup is realized by the code in Listing 5.1.

The maximum memory bandwidth achieved with the BlockLib helper functions
reading from a distributed array is 21.5 GB/s with 6 SPE:s. The code in Listing
5.1 achieved 20.1 GB/s in actual used memory bandwidth. The total amount of
data transferred through all SPE:s is 34.4 GB/s in total which is considerably
higher.

The pipe approach has several drawbacks. As described in 2.8.2 each SPE can-
not maximise the main memory bandwidth alone. A single simple linear pipeline
will therefore perform badly bandwidth wise. The pipeline usage presented above
works around this problem but this pattern only fits a small number of compu-
tation patterns and data set sizes and formats. The alignment requirements on
DMA transfers limit the usable data set formats even more. The pipeline intro-
duces a synchronisation for each data chunk. Each SPE has to synchronize with
its pipeline neighbours to make sure that they are ready for the next DMA transfer
cycle.
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These drawbacks would make a full blown pipe skeleton like the map and the
reduce useless for all but a very small set of problems. Instead of a such skeleton
the pipe helper functions can be used. They are more generic than a pure skeleton
and should fit a larger set of problems and computation patterns. The pipe helper
functions can be used to set up pipelines of arbitrary layout as long as there is not
more than one pipeline link between two SPU:s in each direction. These functions
will tie the code hard to the Cell architecture. The chunk size has to be less
or equal to 4096 elements with single precision and 2048 elements with double
precision. It also has to be a multiple of 128 bytes, i.e. 32 elements with single
precision and 16 elements in double precision to achieve maximal performance.
The functions will however work with chunk sizes which are a factor of 16 bytes
(four single precision, two double precision) but at a price of a big performance
degradation. A more advanced implementation could be made to handle arbitrary
chunk sizes but this would lead to even worse performance.

Listing 5.1. Pipe test code.

// private array parr is of size N
7/ block distributed array = is of size pxN where p is the number of
// processors (SPE:s) in the group.
NestStep__step ();
{
pipeF_Handler pipe; // pipe handler
BArr_Handler baX; // block dist array handler

// set the pipe up.

if (rank == 0)
init_pipeF__first(&pipe, parr, rank4+1, 4096);
else if(rank != groupSize —1)
init__pipeF_mid(&pipe, rank—1, rank+1, 4096);

else
init_pipeF__last(&pipe, NULL, rank—1, 4096);

// init block dist array handler
init_ BArr_Get(&baX, x, 4096);

while (step_PipeF (&pipe)) // loop trough all chunks

get_sw_BArr(&baX);
// work on chunks here
do_some_work (pipe.current .p, baX.current, pipe.current.size);

}

NestStep_combine (NULL,NULL) ;

NestStep_end_step ();

5.3 User Provided Function

All the skeletons work by applying a user provided function on the elements of
one or more arrays. There are several possible approaches to this and the results
differs very much in performance and ease of use.

5.3.1 Simple Approach

The naive approach in C is to use function pointers for the user provided function
and apply the function on each element in the array one element at a time. This
is convenient for the user as the user provided function becomes very simple. The
drawback is that this approach has an devastating effect on performance. The
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Figure 5.1. Data flow in a pipe construct.

function call via a function pointer is very slow and prevents performance boost
from loop unrolling and auto vectorization. This method is useful if the function
is very computation heavy or if the number of elements is small which makes the
performance penalty impact on over all execution time negligible. See Listing 5.2
for an usage example using this method.

Listing 5.2. Example of skeleton usage, simple approach.

// Definition

float add(float left, float right)
return left4right;

}

// Usage

res = sDistReduce(&add, x, N);

5.3.2 User Provided Inner Loop

One of the main purposes of the general map and reduce constructs is to spare the
programmer from the burden of memory management on the Cell. The inner loop
of the map and reduce constructs operate on smaller chunks of the arrays that
has been transferred into the local store. These inner loops are not necessarily
more complicated on the cell than on any other processor. If the user provides the
construct with a complete inner loop the performance increases by several orders
of magnitude for simple operations like addition. The number of function calls
via function pointer is reduced from one per element to one per chunk and loop
unrolling is possible. Chunks in BlockLib are 16 kiB (4096 floats or 2048 doubles)
which works well with the Cell DMA system and local store size. Smaller chunks
reduce bandwidth utilization and bigger increase SPE local store consumption
without any bandwidth improvement. See Listing 5.3 for a usage example using
this method.
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Listing 5.3. Example of skeleton usage, inner loop approach.

// Definition
float addReduce(float #*x, int n)
{

int i;

float res=0;

for (i=0;i<n;i++)

{

}

return res;

res4=x[i];

}
// Usage
res = sDistReduceLocalFunc(&addReduce, x, N);

5.3.3 SIMD Optimization

To get even remotely close to the Cell peak performance the use of SIMD instruc-
tions is absolutely necessary. It is often faster to calculate four floats with SIMD
instructions than to calculate a single float with non SIMD instructions. This
means that a SIMD version of a function may achieve a speedup of over four. See
Section 2.8.3 for more information on the SIMD issue.

The approach with a user provided inner loop enables the library user to SIMD
optimize the program. The process of hand SIMD optimization of a function is a
bit cumbersome and ties the code hard to the Cell. It also requires the programmer
to have much knowledge of the Cell architecture. The example in Listing 5.4 shows
a usage example that uses a hand optimized SIMD inner loop. This example and
the one in Listing 5.3 compute the same thing. The only difference is the SIMD
optimization. Even with this simple example the code grows a lot. For instance,
the SIMD instructions only works on whole 16 byte vectors which leaves a rest of
one to three floats to be handled separately.

Listing 5.4. Example of skeleton usage, hand SIMD optimized inner loop

// Definition
float addReduceVec(float =*x, int n)
{
int i;
float res=0;
int nVec=0;
align__hint(x,16 ,0);

if (n>8)
nVec = n/4;
vector float vec_res __ attribute_ _ ((aligned (16)));
vec_res = SPE_splats (0.0f);

for (i=0;i<nVec;i++)

vec_res = SPE_add(vec_res, ((vector float)x)[i]);
}
res += SPE__extract(vec_res, 0) + SPE_extract(vec_res, 1)
+ SPE_extract(vec_res, 2) + SPE_extract(vec_res, 3);

s
for (i=nVecx4;i<n;i++)
{

}

return res;

res+=x[i];

}
// Usage
res = sDistReduceLocalFunc(&addReduceVec, x, N);
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5.3.4 SIMD Function Generation With Macros

To provide the user the power of SIMD optimization, without the drawbacks of
doing it by hand, a simple function definition language implemented as C pre-
processor macros was developed. A function defined using these macros expands
to a SIMD optimized parallel function. The macro language covers a selection of
standard basic and higher level math functions. It is also quite easy to expand by
adding definitions to a header file. Many of the functions has a close mapping to
one or a few cell SIMD instructions and some are mapped to functions in the IBM
Simdmath library [9]. See Listing 5.5 for a usage example using this method.

Listing 5.5. Example of skeleton usage, macro generated approach.

// Definition

DEF_REDUCE_FUNC_S(my_sum, t1, BL_NONE,
BL_SADD(t1, opl, op2))

// Usage

res = my_sum(x, N);

5.3.5 Performance Differences on User Provided Function
Approaches

The performance difference with the different approaches for specifying user pro-
vided functions is huge. The summation example with the simple approach in
Listing 5.2 is approximately 40 times slower (inner loop only) than the macro
generated SIMD optimized version (Listing 5.5). A performance comparison can
be seen in Figures 5.2 and 5.3. Figure 5.2 shows the performance of the whole
skeleton function and Figure 5.3 shows the performance for the calculation part
only. The knee in the first figure is due to the main memory bandwidth bottle-
neck, i.e. the SPE:s can perform the calculations faster than the operands can be
transferred from main memory. The hand SIMD optimized (hand vectorized) and
the macro generated functions perform identically.

5.4 Macro Skeleton Language

As described in Chapter 5.3.4 a small language for function definition was devel-
oped to enable the user access to the powerful SIMD optimizations without the
drawbacks of hand SIMD optimization.

Constants are defined with the macro BL_SCONST (name, val) for single pre-
cision or BL_DCONST (name, val) for double precision. The name argument is the
constant’s name and the val argument is constant’s value. Value can either be a
numerical constant (e.g. 3.0) or a global variable. The skeleton cannot change a
constant’s value.

Calculation functions are defined with mMacros such as
BL_SADD(name, argl, arg2) or BL_DADD(name, argl, arg2). Here, name
is the name of the function’s result. No function results can have the same name
inside a single skeleton definition (single-assignment property). Argl and arg?2
are the arguments to the calculation function. Those arguments can be either the
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name of a constant, the name of an other function result or one of the argument
element from the argument arrays. The argument arrays are named op if there
is only one argument array and opl, op2 or op3 respectively if there are two or
three argument arrays. By referring from a calculation macro instance to the
result names of previous calculation macros a flattened expression tree of macro
instances is created. Macro naming conventions state that functions prefixed with
BL_S are single precision and functions prefixed with BL_D are double precision.
See appendix B for a listing of all available calculation functions.

The main part of the macro system is the code generation macro. There is
one macro per combination of skeleton type, number of argument arrays and data
type (i.e. single precision or double precision). The usage of a code generation
macro looks like DEF_MAP_TWO_FUNC_S(fname,res,constl const2 ... constn,
macl mac2 ... macn). The fname argument is the name of the function that is to
be generated. The res argument is the name of the calculation function result that
is the return value for the whole defined function. The const arguments are the
needed constants. They are separated from the calculation functions because of
performance reasons. mac arguments are the calculation functions. See Appendix
B for a listing of all available code generation macros.

See Listing 5.6 for a demonstrative example. The resulting generated code can
be seen in Listing 5.7. The generated code uses the same map function internally
as the user provided inner loop version of the map (See Chapter 5.3.2).

Listing 5.6. Macro language example

// result= (opl + 4) % op2

// definition

DEF_MAP_TWO_FUNC_S(map_ func_name, res,

BL_SCONST (const_4, 4.0f),

BL_SADD(oplp4, opl, const_4)

BL_SMUL(res , oplp4, op2))

// usage

map_ func_name (block_dist_array_1, block_dist_array_2,
block__dist__array_res, N, BL_STEP);
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Listing 5.7. Macro generated code

float

map_ func_name_20p (float

oplS,

float

op2S)

vector
vector
vector
vector
vector

float
float
float
float
float

____attribute____
__attribute_

opl
op2
const_4 _
oplp4d = SPE_add (opl,
res = SPE_mul (oplp4,

((aligned
((aligned
attribute__

(16)
(16)

((aligned

const_4);
op2);

SPE__splats
SPE_splats
SPE__splats

)

(oplS);
(op28);
(4.0f);

return SPE_extract (res, 0);

}

void

{

map_func_name_local (float *x1, float xx2, float *res, int n)

int i;
int nVec = 0;
if (n >= 4)

__attribute__ ((aligned (16)))

vector float
SPE_splats

n / 4;

0;

const__4

(4.0£);

nVec
for

{

(i i4+4)

— i < nVec;
vector float

((vector
vector float

((vector
vector float
vector float
((vector float

opl ___ attribute__
float =*) x1)[i];
op2 ___ attribute____
float =) x2)[i];
oplp4 = SPE_add (opl,
res = SPE_mul (oplp4,
*) res)[i]

((aligned (16))) =
(16))) =

const_4);
op2);

((aligned

= res;

= nVec * 4; i < n; i++)

res[i] = map_func_name_ 2o0p (x1[i], x2[i]);

i

void map_func_name (BlockDistArray * x1, BlockDistArray x
BlockDistArray = int n, enum bl_do_step do_step)

x2,
res ,

sDistMapTwoLocalFunc (&map_func_name_local, x1, x2,

5.5 Block Lib Implementation

5.5.1 Memory Management

A large part of BlockLib is memory management. Argument arrays are mostly
NestStep block distributed arrays. These arrays are based in main memory and
have to be transferred between main memory and the SPE:s local store. All
transfers are double buffered. BlockLib contains some double buffered memory
management primitives. The primitives also optimize buffer alignment making
sure 128 byte alignment is used wherever possible. See Chapter 2.8.3 for details
on the importance of proper alignment.

The memory management primitives are also available trough the Blocklib
API to ease memory management for the library user even outside the skeleton
functions. See Listing 5.8 for a usage example. The example shows a SPE reading
and processing all elements of its part of a block distributed array.
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Listing 5.8. Example of usage of the memory management functions

BArrF_Handler baX;
init_ BArr_Put(&baX, x, 4096); //init handler. X is a block distributed array

NestStep_step ()}
while (get sw_BArr(&baX)) // get chunks. returns 0 when all chunks is read
// baX.current is current working array
// baX.currentSize is size of current working array
calculate (baX.current , baX.currentSize)

}
wait_put_BArr_done(&baRes); // wait for last put

}
NestStep_end_step ();

5.5.2 Synchronization

The synchronization and combine functionality in the NestStep run time environ-
ment is slow as currently implemented. The functions are very generic and all
communication involves the PPE. This became a major bottleneck as BlockLib
was optimized. The skeleton functions does not require the full genericity of the
NestStep functions. A new set of specialized non generic inter SPE synchroniza-
tion and combining functions was developed to solve these performance problems.
BlockLib can be compiled either with the native NestStep synchronization func-
tions or with the BlockLib versions. This is chosen with a C define in one of the
header files. There is no difference between the to versions except the performance
from the library user’s point of view.

The BlockLib synchronization and inter SPE communication functions are
available via the BlockLib API for usage outside of the skeletons but should be
used with caution as these do not conform to the BSP model.

The difference in performance for real usage can be seen the benchmarks in
Chapter 6.3.4.

Signals

BlockLib synchronization is based on Cell Signals. Signals are sent trough special
signal registers in each SPE:s MFC. Each SPE:s control area (which includes the
signal registers) and local store is memory mapped and all SPE:s and the PPE
can transfer data to and from every other SPE with DMA. An SPE sends signals
to other SPE:s by writing to the other SPE:s signal registers. In BlockLib the
signal register is used in OR-mode. This means that everything written to the
register is bitwise OR-ed together instead of overwritten, so multiple SPE:s can
signal one single SPE at the same time. For example, when SPE two signals SPE
five it sets bit two in one of SPE five’s signal register. When SPE five reads its
signal register it can detect that it has received a signal from SPE two. With eight
SPE:s eight bits are needed for each kind of signal. The SPE:s have two signal
registers each and one of them is used by BlockLib for its three kinds of signals
(barrier synchronization, message available and message acknowledge).
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Group Barrier Synchronisation

BlockLib has a group synchronization function that uses signals. The implemen-
tation is naive but fast. One SPE is coordinator of the synchronization barrier.
All SPE:s except the coordinator SPE sends a signal to the coordinator. When
the coordinator has received a signal from all other SPE:s it sends a signal back
to each of them. The synchronization takes less than a us.

Message Passing

BlockLib has a set of message passing primitives. These primitives enables the
user to send arrays (up to 16 kiB) between SPE:s without involving neither the
PPE nor the main memory. If more than one SPE need a certain chunk of main
memory one SPE can get it from main memory and then send it to the other
SPE:s over the on chip interconnect buss using message passing. This will lower
main memory bandwidth usage and the replication of the data does not require a
full NestStep combine.

Group Synchronization with Data Combine

BlockLib has a variant of the group synchronization that also combines a data
entity, such as a double or a small array (up to 2 kiB). The function is called with
a value and after the synchronization all SPE:s have an array of all SPE:s values.
This way all SPE:s can calculate a concurrent state for this variable (such as the
maximum or the sum) with only one synchronization.
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Chapter 6

Evaluation

The evaluation of BlockLib was done through synthetic benchmarks and by porting
a real vector based computational application to the Cell and NestStep using the
library. The synthetic benchmarks evaluate the separate skeletons and the ported
application evaluates both the absolute performance relative to other computer
systems and the usability of the library.

All benchmarks were run in Linux on a Playstation 3. The Syntethic bench-
marks and time distribution were measured by counting processor ticks with the
SPU decrementer register and the real application by measuring the total execu-
tion time with the time command. The processor ticks were converted to seconds
with the timebase found in /proc/cpuinfo.

6.1 Time Distribution Graphs

The time distribution graphs such as in Figure 6.3 show where time is spent in
the skeleton function. Time in calculating is time spent in the inner loop. This
is how much time that is spent doing the actual useful calculations. Dma wait
is time spent idle waiting for DMA transfers to or from the main memory. This
value indicates if the memory bandwidth is a bottleneck. Combine is time spent
either in NestStep combines or in the equivalent message passing based substitute
presented in Chapter 5.5.2. This is functionality such as group synchronization and
spreading of results. Unaccounted is everything else, such as internal copying and
other administrative code. The values presented in the time distribution graphs
are the average of each SPE’s own measurements. For instance, the time presented
as spent in calculating is the average of how much time each SPE spend in this
part of the programs.

6.2 Synthetic Benchmarks

The skeleton functions were tested with synthetic benchmarks. The presented
results are the average of 5 runs. All arrays are 5 x 10242 elements long.
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in GFLOPS.

6.2.1 Performance
Map

The map skeleton was benchmarked with the function MAX(opl, 0p2) * (opl — 0p2)
were opl and op2 are elements from two argument arrays. This function has 4N
float operations (as the MAX is one compare and one select).

The skeleton works well for double precision floats. It scales perfect even at six
SPE:s. The single point version only scales well up to three SPE:s and there is no
additional speedup with more than four. The reason for this can be observed in
Figure 6.3 where dma wait increase for four and more SPE:s. This map skeleton
transfers two arrays from, and one back, to the main memory and the four FLOP:s
are too fast to compute for the main memory bus to keep up with. Single precision
floats are much faster to compute than double precision floats which is why this is
a bigger problem for the single precision map. More calculations for each element
would improve the scaling for single precision floats. See Listing 6.1 for the relevant
test code and Figures 6.1 to 6.4 for graphs.

Listing 6.1. Map function used in benchmark.

// Definition

) result = MAX(opl, op2) % (opl—op2)

DEF_MAP_TWO_FUNC(map_ func, t3,
BL_NONE,
BL_MAX(tl, opl, op2)
BL_SUB(t2, opl, op2)
BL_MUL(t3, t1,t2))

// Usage

map_ func(x, y, z, N, BL_STEP);

Reduce

The reduce skeleton was benchmarked with summation. Summation is N — 1 float
operations. The performance of the reduce is similar to the map performance
above. The double precision version scales perfect and the single precision is
limited by the memory bandwidth. This reduce only has to transfer one array
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ton in GFLOPS.

from main memory but has only one operation to calculate for each element. This
benchmarked example runs out of main memory bandwidth at five SPE:s. See
Listing 6.2 for relevant test code and Figures 6.5 to 6.8 for graphs.

Listing 6.2. Reduce function used in benchmark.

// Definition

DEF_REDUCE_FUNC_S(my_add_red, tl1, BL_NONE,
BL_SADD(t1, opl, op2))

// Usage

res = my_add_red(x, N);

Map-Reduce

The map-reduce skeleton was tested with a dot product calculation. This func-
tion has 2N — 1 float operations. The dot product was implemented both with
the map-reduce skeleton and with separate map and reduce skeletons. The two
implementations are compared in Figures 6.9 to 6.14. The combined map-reduce
skeleton outperforms separate map and reduce by more than a factor two with
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more than two SPE:s. This is due to less transfers to and from main memory
and less loads from and stores to the SPE local store. See Listings 6.3 and 6.4 for
relevant test code.

Listing 6.3. Dot product defined with map-reduce skeleton.

// Definition

DEF_MAP_TWO_AND_REDUCE_FUNC_S(my_dot, mres, rres, BL_NONE,
BL_SMUL(mres, m_opl, m_op2),
BL_SADD(rres, r_opl, r_op2))

// Usage

res = my_dot(x,y,N);

Listing 6.4. Dot product defined with separate map and reduce skeletons.

// Definition

DEF_MAP_TWO_FUNC_S(my_map, t1, BL_NONE,
BL_SMUL(t1, opl, op2))

DEF_REDUCE_FUNC_S(my_red, t1, BL_NONE,
BL_SADD(t1, opl, op2))

// Usage

my_map(x,y,z,N, BL_STEP);

res= my_red(z,N);

Overlapped Map

The overlapped map was tested with a small convolution kernel with five coeffi-
cients. This calculation has nine float operations per element of the vector. A
small kernel was chosen to put stress on the skeleton. The overlapped map is a
bit slower than the normal map due to some internal copying, distribution of edge
areas and alignment problems with loading operands from local store. See Listing
6.5 for test code and Figures 6.15 to 6.18 for graphs.
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Listing 6.5. A discrete filter implemented with the overlapped map.

// Definition

DEF_OVERLAPPED_MAP_ONE_FUNC_S(conv_s, vs5,
BL_SCONST (p0, 0.4f)
BL_SCONST(pl, 0.2f)
BL_SCONST(p2, 0.1f),
BL_SINDEXED (vm2, —2)
BL_SINDEXED (vml, —1)
BL_SINDEXED (v, 0)
BL_SINDEXED (vpl, 1)
BL_SINDEXED (vp2, 2)
BL_SMUL(vsl, vm2, p2)
BL_SMUL_ADD(vs2, vml, pl, vsl)
BL_SMUL_ADD(vs3, v, p0, vs2)
BL_SMUL_ADD(vs4, vpl, pl, vs3)
BL_SMUL_ADD(vs5, vp2, p2, vsd))

8,

// Usage
conv_s(x,y,N,BL_ZERO);

Performance of Inner Loop

The performance shown in the benchmarks above is very far from the Cell’s theo-
retical peak performance. This is mostly because of the few FLOPS per element.
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It is hard to achieve near peak performance even when the data is in the SPE lo-
cal store. Loop overhead, load and store delays, computation pipeline delay cause
data dependencies to stall the SPE. This is illustrated by Figure 6.19. The graph
shows just the calculation loops, excluding main memory bandwidth limitations,
synchronisations delays etc. The lower curve shows the calculation of a simple
sum. This calculation needs only one new operand per calculation. The upper
curve shows a more advanced calculation with three arguments and a total of 24
calculations per three operands. The later also uses the combined mull add op-
eration. The 8 operations per operand and the combined instruction make this
calculation reach 38.8 GFLOPS compared to the 9.2 GFLOPS of the summation.
More operations per operand would increase the performance even more.

24 (IJps per 3 ellements JL—
35 | 1 op per element ---x---

GFLOPS
N
oS

Figure 6.19. Performance of inner loops with different number of operations per ele-
ment.

IBM Cell BLAS

A small benchmark was written for the IBM Cell BLAS library [6] to have some-
thing non generic but similar in ease of use as a reference point. This library
looks like a normal CBLAS library and is called from a PPE program. The code
using this library looks like sequential code and the library manage the SPE:s
with SPE thread creation and parallelization etc. The benchmarked function is
the dot product which is also used to benchmark the map-reduce skeleton above.
The benchmark program was derived from one of IBM’s example program for the
BLAS library. See Figures 6.20 and 6.21 for performance graphs. The benchmark
in Figure 6.20 uses the same sized arrays as all other benchmarks in this chapter.
This graph should be compared with Figures 6.9 and 6.10 which calculates the
same thing using NestStep and BlockLib. The IBM BLAS benchmark calls the
CBLAS function 100 times directly after each other to suppress any library initial-
ization overhead in the result. The IBM BLAS library is slightly faster than the
BlockLib version with one SPE but does not scale well with the number of SPE:s.
The speed with one SPE indicates that the BLAS library may perform and scale
better with more computational heavy BLAS operations such as matrix-matrix
multiplication.
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6.3 Real Program — ODE Solver

To evaluate the over all performance of the BlockLib in a realistic usage scenario,
a real numerical computation program was ported to the Cell and NestStep using
the BlockLib library.

6.3.1 LibSolve

The application of choice is LibSolve which is an Ordinary Differential Equation
(ODE) solver developed by Matthias Korch and Thomas Rauber [16]. The library
solves initial value problems for systems of first order ODE:s. Their library was
chosen because of the extensive benchmarks included in their paper.

LibSolve is a big library which includes many variants of the solvers’ different
parts. There is sequential, shared memory parallel and distributed memory parallel
solvers, a set of Runge Kutta-methods and a few ODE-problems. LibSolve links
these parts together at runtime.

6.3.2 ODE problem

The ODE problems are implemented as functions for initialization of arrays and
functions implementing the right side evaluation function. Here we consider ODE
problems with a spatial access pattern that are created by spatial discretization
of partial equations by the method of lines. The ODE problems have a property
named access distance. The access distance is the maximum distance between
argument vector elements needed in the evaluation of an ODE right hand side
function and the evaluated element itself. If the access distance is large the solver
has to keep a large part of the ODE system accessible at all times. In their paper
[16] Korch and Rauber take advantage of small access distance to pipeline the
solver. In this port we use small access distance to be able to run the evaluation
function within a SPE’s limited local store.
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2D Brusselator

LibSolve implements two problems consisting of two dimensional Brusselator equa-
tions. Both problems are spatial discretized and result in 2N? equations (ODE
size) were N is the grid size. The first variant (BRUSS2D-ROW) is a more con-
ventional discretization but has an access distance of N2. The second variant
(BRUSS2D-MIX) is re-ordered in such a way that the access distance is limited
to 2N.

6.3.3 Porting
Solver Algorithm

LibSolve implements a lot of different solver algorithms. We used the simplest vec-
tor based sequential algorithm for the port. This algorithm is a very conventional
embedded Runge Kutta solver. The core of the algorithm is a solver function of
just a few hundred lines of code. The code consists mainly of loops over vectors of
problem size. Most of the loops have independent iterations and fit well into the
map pattern. The rest of the loops also reduce the result to a maximum or mini-
mum value, which maps directly to the map-reduce pattern. All those loops were
translated into BlockLib skeleton definitions. LibSolve is based on double precision
floats. The BlockLib port is therefore also based on doubles to get comparable
and verifiable results.

Optimized Algorithm

The solver algorithm was later optimized to improve performance and reduce mem-
ory consumption. Several vectors could be skipped altogether by combining several
loops into one. This reduced memory consumption enough to fit the largest test
case into the PS3’s limited main memory.

Right Hand Side Evaluation Function

The evaluation function in the port differs from the one used in LibSolve in two
aspects. The original evaluation function contains a loop over all elements and a
function call for each element. The version in the port does most of the calculations
directly in the loop for most elements. This enables SIMD optimizations. The
original evaluation function contained two things that has a devastating effect on
performance on Cell SPE:s. The first is lots of if statements, the other is function
calls. The SPE:s have no branch prediction making branching expensive.

6.3.4 Performance

The performance is measured with the time command (/usr/bin/time on Fedora
Core). This measures the total execution time and thus includes initialization of
NestStep and allocation and initialization of arrays. This is the time that matters
in real usage. The measurements are from one run for each test case. All runs are
long enough to give consistent results and some are too long to be run multiple
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times. The results in the time distribution graph are the average values from all
used SPE:s.

Test Data Sets

Four data sets were used for performance testing. These are the same that was
used in [16] for the BRUSS2D-MIX problem. The grid sizes of the brusselators
are N = 250, N = 500, N = 750 and N = 1000. A grid size of N gives 2N?
equations. This gives the data sets problem sizes of 125000, 500000, 1125000
and 2000000 equations. The larger data sets require a bigger number of steps to
calculate resulting in a workload that grows faster than the number of equations.

Absolute Performance

To get a comparison of real absolute performance, our results are compared to
execution times for some systems in Korch and Raubers paper [16]. Sequential
execution time for their Pentium 4 workstation is 2198 seconds for the largest
BRUSS2D-MIX data set (see Table 6 [16]). The Pentium 4 has a clock speed of
3.0 GHz which is similar to the PlayStation 3’s clock speed of 3.2 GHz, but has
very different architecture.

The compared versions differs in some aspects. They calculate the same result
with the same overall algorithm but the code is compiled with different compilers
and the evaluation function differs in structure. The differences make the above
comparison inaccurate. To get a more accurate comparison we benchmarked a PC
version of the solver that is as similar to the BlockLib port as possible. Korch and
Raubers Benchmark is still interesting for comparison as that is the performance
of the original software. This way we make sure to compare the BlockLib port
with the fastest of the available PC versions.

Before the porting of LibSolve to BlockLib and NestStep a working minimal
sequential solver for ordinary computers was extracted from LibSolve. This con-
tained only the components that were going to be used for the BlockLib port and
did not have any advanced composition system as LibSolve has. This program was
then ported to BlockLib, NestStep and the Cell. To be able to measure the differ-
ence in performance between NestStep, BlockLib, the Cell and ordinary sequential
C code on an ordinary PC the restructure part of the optimization of the right
side evaluation function was back ported to minimal solver. The minimal solver
was benchmarked with and without this optimization on a few different ordinary
x86 PC machines. The benchmarks were done using the data set with grid size
1000 (2000000 equations).

The tested machines were a dual Pentium 4 Xeon 3.4GHz 64bit cluster node
using GCC and ICC and a Intel Core 2 duo 2.4GHz 64bit workstation using GCC.
Both machines were running Linux. As the benchmark is sequential it makes no
difference that the machines are SMP systems. See Table 6.1 for the execution
times. Original, optimized and SIMD in Table 6.1 refers only to the evaluation
functions. The rest of code in the BlockLib port is automatically SIMD optimized
in all test cases.
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The BlockLib port is 4.57 times faster then the Core 2 and 5.02 times faster
then the P4 Xeon. It is 7.25 times faster than the original software on the P4
workstation. The difference in speed between the BlockLib version with the opti-
mization and the one without is huge. This SIMD optimization of the evaluation
function has just a minor part in this. The optimized version takes 350 seconds
with the exact same evaluation function code as the x86 optimized versions. The
benchmark also illustrates how badly the SPE:s perform on if statements and
function calls.

machine original optimized | SIMD
P4 2198 [16] | - -
Opteron 1979 [16] | - -
P4 Xeon, GCC 2386.47 1626.17 -
P4 Xeon, ICC 2175.52 1520.23 -
Core 2, GCC 1628.20 1386.56 -
Cell, 6 SPE:s, GCC | 816.01 350.66 303.14

Table 6.1. Execution Times for the minimal sequential PC solver and the Cell port
(using six SPE:s).

Synchronization Performance

Figures 6.28 and 6.29 show the same benchmark as Figures 6.22 and 6.23 but
compiled with the native NestStep synchronization and combining functions. The
sequential performance is almost identical but the scaling is ruined, especially for
the smaller data sets.

Scaling

The speedup can be seen in Figure 6.23. The program scales well up to four
SPE:s (speedup 3.9 for the largest data set, speedup 5.25 for six SPE:s). The
main memory bandwidth becomes a bottleneck with five and six SPE:s, reducing
speedup. This can be seen in Figures 6.24 to 6.27.

6.3.5 Usability

The port was done by converting loops into map and reduce definitions. We mostly
did not need to take special care for neither the special characteristics of the Cell
nor the parallelization. The biggest exception is the hand SIMD optimization of
the evaluation function.
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Chapter 7

Conclusions and Future
Work

The goal of this master thesis project was to make it a bit easier to program for
the Cell processor in NestStep. The approach was to make it easy to perform
calculations on large arrays through a set of skeletons. The evaluation chapter of
this report shows that the skeletons are usable and fast enough to work for real
applications.

7.1 Performance

The synthetic benchmark shows that the skeletons scale well, at least up to the
limit of the memory bandwidth. The double precision versions scales almost per-
fect. This difference in scaling is due to that the Cell is up to 14 times slower on
doubles but the doubles only consume twice the memory bandwidth. The bench-
marks also show that almost all time is spent doing useful calculations, i.e. the
overhead of the skeletons is low in most cases and even a hand written solution
would need administrative code for memory management and such.

The automatic SIMD code generation has little or no overhead compared to
hand SIMD optimized code. SIMD optimizations has proved to provide a huge
performance enhancement over normal scalar C code. The generated code also
perform very well when there are many calculations per operand.

The ODE solver benchmarks show that the skeletons work in a real application.
The ODE solver uses double precision and confirms the synthetic tests by scaling
well. Looking at the synthetic benchmarks suggests that the ODE solver would
be between two and three times as fast using single precision floats.

Comparing with the results from the sequential performance on x86 systems
with similar clock frequency confirms that good scaling is not just from bad real
performance. It also confirms that the approach is useful for real applications.
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7.2 Usability

Writing code with BlockLib is mostly like writing sequential code. The user of
the library does neither need to take care of all the details of Cell programming,
nor parallelization and related problems and complexity to achieve decent perfor-
mance.

7.3 Future Work

7.3.1 NestStep Synchronization

The synchronization and combine functions are too slow to work with short super
steps. The skeletons developed in this thesis are typically very short, mostly
under 10ms even for bigger data sets. A few ms in combine in each of those have a
devastating effect on overall performance and scaling. The results of the BlockLib
synchronisation functions show that it is possible to do the synchronisation a
lot faster. As the BlockLib synchronization functions lack the genericity of the
NestStep combine they are not a drop in replacement. A future work on NestStep
and Cell could look into redesigning NestStep synchronization to combine the high
performance of the inter SPE signals and the genericity of NestStep combine.

7.4 Extension of BlockLib

BlockLib could be extended with more skeletons to cover more common compu-
tation patterns and the macro language could be extended to cover more small
functions.

The library could be ported to some other implementation of NestStep, such
as one of the PC-cluster versions.
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Appendix A

Glossary

A.1 Words and Abbreviations

e BLAS: Basic Linear Algebra Subprograms. A standardized interface for
Linear algebra math libraries.

e BSP: Bulk Synchronous Parallel. A model for parallel programming.

e Cell BE: Cell Broadband Engine. A heterogeneous multicore processor with
1 PPE and 8 SPEs created by IBM, SONY and TOSHIBA.

e Cell SDK: Cell Software Development Kit. Development kit from IBM con-
taining compiler, tools, documentation and example code.

e Distributed memory system: A computer system where each processor or
group of processors has their own separate memory, such as a PC cluster.

e DMA: Direct Memory Access. Memory transfers that does not go trough
the main processor.

e EIB: Element Interconnect Bus. The Cell’s high bandwidth internal bus.
Connects PPE, SPE:s, memory controller and I/O controller together.

e FLOPS: FLoating point Operations Per Second. Unit for measuring of float-
ing point math performance.

e GCC: GNU Compiler Collection. The GNU project’s compiler.
e GDB: GNU DeBugger. Debugging tool.

e ICC: Intel C4++ Compiler. Highly optimized C and C++ compiler from
Intel.

e MFC: Memory Flow Controller. The unit in each SPU that manage DMA-

transfers.
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Glossary

ODE: Ordinary Differential Equation. A kind of Differential Equations.
PowerPC: A general purpose processor architecture by IBM.

PPE: PowerPC Processing Element. Main processor core.

PS3: PlayStation 3. Gaming console from SONY featuring a Cell processor.

Shared memory system: A computer system where all processor shares a
common memory.

SIMD: Single Instruction Multiple Data
SPE: Synergistic Processing Element. Slave processor core.

Speedup: Relative performance, e.g. a speedup of two is twise as fast as the
standard or sequantial case.

Vector: Two or more scalars put together.

A.2 Prefixes

Prefixes used in this report.

K Kilo, 103.

Ki Kibi, 21°.
M Mega, 106.
Mi Mibi, 220,
G Giga, 10°.
Gi Gibi, 239.



Appendix B

BlockLib API Reference

This appendix consists of the short BlockLib API reference from the BlockLib
source package.

B.1 General

BLock Lib API reference

This file is the short API reference to the BlockLib library. For usage examples
please see the the test program directory in blocklib/test /.

All examples in this file use floats. The double precision versions are
identical except the data type.

sDist *
Functions prefixed with sDist are parallel distributed functions working
with single precision (float).

dDist *
Functions prefixed with sDist are parallel distributed functions working
with double precision (double).

*_FUNC_S()
Macros suffixed by _FUNC_S are code generation macros generating SIMD
optimized parallel distributed code for single precision (float).
*_FUNC_D()
Macros suffixed by _FUNC_S are code generation macros generating SIMD
optimized parallel distributed code for double precision (double).

Notations

local array — A local array is a plain continuous array in SPU local store.
Is and behaves like a normal c—array .
BlockDistArray — A BlockDistArray is a NestStep distributed array.

See NestStep documentation for further information .

Common function arguments:

x,x1,x2,x3 — Argument arrays.
res — Target array .
N — The number of elements in the argument arrays (all arrays have

to be of equal size).

Common code generation macro arguments :

name — The name argument is the name of the function to be generated .

result — The variable/calculation tree name that is the result of the
defined computation.

consts — Section for all constant definitions.

funcs — Section for all calculation functions/calculation trees.

B.2 Reduce Skeleton

float sDistReduce(float (xred func) (float, float), BlockDistArray* x, int N);
double dDistReduce(double (*red_func)(double, double), BlockDistArrays x, int N);
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Reduces x to a scalar. Slow.
red__func — Function pointer to the reduce function.
float red_func(opl, op2)

float sDistReduceLocalFunc(float (xred_ func)(floatx,int),
BlockDistArray* x, int N);
double dDistReduceLocalFunc(double (sred_func) (doublex,int),
BlockDistArray* x, int N);
Reduces x to a scalar.

red__func — Function pointer to reduce function. This function reduces a
local array to a single value.
float red_func(float =xlocal_array, int N)

DEF_REDUCE_FUNC_S(name, result, consts, funcs)
DEF_REDUCE_FUNC_D(name, result, consts, funcs)

Generates a function for reduction. The resulting function looks like:
float name(BlockDistArray *x, int N);

B.3 Map Skeleton

Common arguments :
do_step — Do step can either be BL_STEP or B _NO_STEP. The function forms
a NestStep superstep if do_step i BL_STEP. If do_step is
BL_NO_STEP the function must be part of a bigger superstep .

void sDistMapOne(float (xmap_func)(float), BlockDistArrayx x1,
BlockDistArray* res, int N, enum bl_do_step do_step);
void dDistMapOne(double (*map_func)(double), BlockDistArray=* x1,
BlockDistArray* res, int N, enum bl_do_step do_step);
Maps map_ func onto x1 and store the result in res.
map__func — Function pointer to map function.
float map_func(float op)

void sDistMapOneLocalFunc(void (*map_func) (float,float*,int), BlockDistArrays x,
BlockDistArray#* res, int N, enum bl_do_step do_step);
void dDistMapOneLocalFunc(void (xmap_func) (doublex,double*,int), BlockDistArrays* x,
BlockDistArray* res, int N, enum bl_do_step do_step);
Maps map_ func onto x and store the result in res.
map_ func — Function pointer to map function. Map a whole local array.
void map_func(float =xlocal__array x1, float =xlocal__array res, int N)

void sDistMapTwo (float (xmap_func)(float ,float), BlockDistArray+ x1,
BlockDistArray* x2, BlockDistArray#* res, int N,
enum bl_do_step do_step);
void dDistMapTwo(double (#map_func) (double,double), BlockDistArrays* x1,
BlockDistArray* x2, BlockDistArray* res, int N,
enum bl_do_step do_step);
Maps map_func onto (x1,x2) and store the result in res.
map_ func — Function pointer to map function.
float map_func(float opl, float op2)

void sDistMapTwoLocalFunc(void (*map_func) (floatx,float ,float*,int),
BlockDistArray* x1, BlockDistArrays x2,
BlockDistArray* res, int N, enum bl_do_step do_step);
void dDistMapTwoLocalFunc(void (*map_func)(doublex,doublex,doublex,int),
BlockDistArray* x1, BlockDistArrays* x2,
BlockDistArray* res, int N, enum bl do_step do_step);
Maps map_func onto (x1,x2) and store the result in res.

map_func — Function pointer to map function. Map a whole local array.
void map_func(float xlocal array x1, float xlocal array x2,
float xlocal array res, int N)

void sDistMapThree(float (#map_func)(float ,float ,float), BlockDistArrays* x1,
BlockDistArray* x2, BlockDistArrays* x3, BlockDistArray=* res,
int N, enum bl _do_step do_step);
void dDistMapThree(double (#map_func)(double,double,double), BlockDistArrayx x1,
BlockDistArray* x2, BlockDistArray* x3, BlockDistArray* res,
int N, enum bl_do_step do_step);
Maps map_func onto (x1,x2,x3) and store the result in res.
map__func — Function pointer to map function.
float map_func(float opl, float op2, float op3)

void sDistMapThreeLocalFunc(void (xmap_func) (floatx*,floatx,floatx*,floatx,int),
BlockDistArray* x1,BlockDistArray* x2,
BlockDistArrays* x3, BlockDistArrays* res,
int N, enum bl_do_step do_step);
void dDistMapThreeLocalFunc(void (xmap_func) (doublex,doublex*,doublex,doublex,int) ,
BlockDistArray#* x1,BlockDistArrays* x2,
BlockDistArray* x3, BlockDistArrays* res,
int N, enum bl_do_step do_step);
Maps map_ func onto (x1,x2,x3) and store the result in res.
map_ func — Function pointer to map function. Map a whole local array.
void map_func(float =xlocal__array x1, float =xlocal__array x2,
float =xlocal__array x3, float xlocal_array res, int N)
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DEF_MAP_ONE_FUNC_S(name, result , consts, funcs)
DEF_MAP_ONE_FUNC_D(name, result , consts, funcs)
Generates a map function. The resulting function looks like:
void name(BlockDistArray #x1, BlockDistArray sres, int N,
enum bl_do_step do_step)
DEF_MAP_TWO_FUNC_S(name, result, consts, funcs)
DEF_MAP_TWO_FUNC_D(name, result, consts, funcs)
Generates a map function. The resulting function looks like:
void name(BlockDistArray *x1, BlockDistArray =x2, BlockDistArray xres,
int N, enum bl_do_step do_step)
DEF_MAP_THREE_FUNC_S(name, result , consts, funcs)
DEF_MAP_THREE_FUNC_D(name, result , consts, funcs)
Generates a map function. The resulting function looks like:
void name(BlockDistArray xx1, BlockDistArray *x2, BlockDistArray *x3,
BlockDistArray sres, int N, enum bl_do_step do_step)
B.4 Map-Reduce Skeleton
float
sDistMapOneAndReduceLocalFunc(float (*map_red_func) (floatx*,int),
float (*xred_func) (floatx,int),
BlockDistArray* x, int N);
double
dDistMapOneAndReduceLocalFunc (double (*map_red func)(doublex,int),
double (*red_func)(doublex,int) ,
BlockDistArray* x, int N);
Combined map and reduce. map_red_func maps and reduces each local array
and red_ func reduces all partial results (i.e. for the results of
map_red_ func) .
map_red_func — Function pointer to maptreduce function. Maps and reduce

a whole local array .

float map_red_func(float =local__array x1, int N)
red__func — Function pointer to reduce function. This function reduces a
local array to a single value.

float red_func(float xlocal_array, int N)
float
sDistMapTwoAndReduceLocalFunc(float (*map_red_func)(float,float*,int),
float (*red_func)(floatx,int),
BlockDistArray* x1,BlockDistArray* x2, int N);
double
dDistMapTwoAndReduceLocalFunc(double (*map_red_ func)(doublex*,doublex,int),

double (xred_func)(doublex,int),
BlockDistArray* x1,BlockDistArray* x2, int N);
Combined map and reduce. map_red_ func maps and reduces each local array
and red_ func reduces all partial results (i.e. for the results of
map_red_ func) .
map_red_func — Function pointer to maptreduce function. Maps and reduce

a whole local array.
float map_red_func(float xlocal__array x1, float xlocal__array x2,
int N)
red__func — Function pointer to reduce function. This function reduces a
local array to a single value.
float red_func(float =xlocal_ array, int N)
float
sDistMapThreeAndReduceLocalFunc(float (*map_red_func)(float,float*,floatx,int),
float (*red_func)(float=,int),BlockDistArray* x1,
BlockDistArray* x2,BlockDistArray* x3, int N);
double

dDistMapThreeAndReduceLocalFunc(double

(*map_red_func) (double,double*,doubles*,int)

double (#red_func)(doublex,int),BlockDistArrayx* xI,
BlockDistArray* x2,BlockDistArray* x3, int N);
Combined map and reduce. map_red func maps and reduces each local array
and red_func reduces all partial results (i.e. for the results of
map_red_func) .
map_red_func — Function pointer to maptreduce function. Maps and reduce

a whole local array.
float map_red_func(float xlocal_array x1, float xlocal__array x2,
float =xlocal__array x2, int N)
red__func — Function pointer to reduce function. This function reduces a
local array to a single value.
float red_func(float =xlocal_ array, int N)

DEF_MAP_ONE_AND_REDUCE_FUNC_S(name, map_result, red_result, bl_consts,

map_ funcs,
DEF_MAP_ONE_AND_REDUCE_FUNC_D(name,
map_ funcs,

a map—reduce function. The
name ( BlockDistArray =*x1,

Generates
float

map__result ,

red__funcs)
red__result ,
red__funcs)
resulting function

bl__consts ,

looks like:

int N)
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map__result, red
map_ funcs, red_funcs)
DEF_MAP_TWO_AND_REDUCE_FUNC_D(name, map_result, red
map__funcs, red_ funcs)

a map—reduce function. The resulting
name (BlockDistArray xx1,

DEF_MAP_TWO_AND_REDUCE_FUNC_S(name,

Generates
float

DEF_MAP_THREE AND_REDUCE_FUNC_S(name,
map_ funcs,
DEF_MAP_THREE_AND_REDUCE_FUNC_D(name, map_result ,
map_ funcs, red_funcs)

a map—reduce function. The resulting

map_result ,
red_funcs)

Generates

_result ,

_result ,

BlockDistArray
red_result ,

red_result ,

bl__consts ,
bl__consts ,

looks like:

int N)

function
*x2,

bl__consts ,
bl_consts ,
like:

function looks

float name(BlockDistArray xx1, BlockDistArray x=x2, BlockDistArray xx3,
int N)
B.5 Overlapped Map Skeleton
Common arguments :
overlap — Overlap is the needed access distance. This is limited in the
current implementation to 4088 floats or 2044 doubles. It is also
limited to N / number of SPU:s.
edge — BEdge specifies the edge policy. If edge is BL_ZERO all reads
outside array returns zero. If edge is BL_CYCLIC the array
is cyclic.
void sDistOverlappedMap (float (+*map_func)(float, int), BlockDistArrays* x,
BlockDistArray* res, int N, int overlap ,
enum bl__edge__value edge);
void dDistOverlappedMap (double (*map_func)(doublex, int), BlockDistArrays x,
BlockDistArray* res, int N, int overlap,
enum bl__edge__value edge);
Maps map_ func onto x and store result in res.
map_ func — Function pointer to map function. #x is a pointer to the
argument. The skeleton guarantees that x[+—overlap] contains valid
data. Index is the element index of x[0] in the BlockDistArray .
float map_func(float *x, int index)

void sDistOverlappedMapLocalFunc(void (xmap_func) (floatx*,float,int ,int),
BlockDistArray* x, BlockDistArrays+ res, int N,
int overlap, enum bl_edge_ value edge);
void dDistOverlappedMapLocalFunc(void (s*map_func)(doublex,doublex,int ,int),
BlockDistArray* x, BlockDistArrays* res, int N,
int overlap, enum bl_edge_value edge);
Maps map_ func onto x and store result in res.
map_ func — Function pointer to map function. xx is a pointer to the
arguments. The skeleton guarantees that x[—overlap] to x[N+overlap]
contains valid data. Index is the element index of x[0] in the
BlockDistArray .
void map_func(float =xx, float *red, int index, int N)
BL_SINDEXED (name, offset)
BL_DINDEXED (name, offset)
Macro for naming nearby argument elements. Name is the argument name and
offset is the distance from the current element. This macro must be put in
the function section of code generation macros. It can not be change but
are not a constant.
DEF_OVERLAPPED_MAP_ONE_FUNC_S(name, result , overlap, consts, funcs)
DEF_OVERLAPPED_MAP_ONE_FUNC_D(name, result , overlap, consts, funcs)
Generates an overlapped map function. The result looks like:
void name(BlockDistArray *x, BlockDistArray xres ,

int n, enum bl_edge_value edge)

B.6 Constants and Math Functions

General

BL_Sx*
All macros prefixed by BL_S are for single precision (float)
BL__ D
All macros prefixed by BL D are for double precision (double)
Constants
BL_SCONST (name, val)
BL_DCONST (name, val)
Defintion of a constant.
name — the name of the constant.
val — numerical constant (i.e. 3.4f for float , 3.4 for double)

Misc
BL_NONE
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Expand to nothing. Just for readability.

Mathematical functions

name — The name of the result of the function. Two mathematical functions
in the same skeleton can not have the same name.

ol — function argument one

02 — function argument two

03 — function argument three

Basic arithmetic:

BL_SADD(name, ol,02): ol 4+ o2
BL_DADD(name, ol,02)
BL_SSUB(name, ol,02): ol — 02
BL_DSUB (name, ol,o02)
BL_SMUL(name, ol,02): ol * o2
BL_DMUL(name, ol,o02)

BL_SMIN (name, ol,02): ol < 02 ? ol : o2
BL_DMIN (name, ol,o02)
BL_SMAX(name, o0l,02): ol > o2 7 ol : o2
BL_DMAX(name, ol,02)

,

BL_SDIV (name, ol,02): ol / o2
BL_DDIV (name, ol,02)

Dual operations:

BL_SMUL_ADD(name, ol,02,03): ol % 02 + 03
BL_DMUL_ADD(name, ol,o02,03)
BL_SMUL_SUB(name, ol,02,03): ol % 02 — 03
BL_DMUL_SUB(name, ol,02,03)

Misc functions:

BL_SSQRT (name, ol): sqrt(ol)
BL_DSQRT (name, ol)
BL_SEXP(name, ol): exp(ol)
BL_DEXP (name, ol)
BL_SLOG(name, ol): log(ol)
BL_DLOG (name, ol)

BL_SRECIP (name, ol): 1 / ol
BL_DRECIP (name, ol)
BL_SMOD(name, ol, o02): fmod(ol,o02)
BL_DMOD(name, ol, o02)
BL_SABS(name, ol): abs(ol)
BL_DABS(name, ol)

Trigonometric:

BL_SSIN (name, ol): sin(ol)
BL_DSIN (name, ol)
BL_SCOS(name, ol): cos(ol)
BL_DCOS(name, ol)

BL_SASIN (name, ol): arcsin (ol)
BL_DASIN (name, ol)
BL_SACOS(name, ol): arccos (ol)
BL_DACOS(name, ol)
BL_STAN(name, ol): tan(ol)
BL_DTAN(name, ol)
BL_SATAN(name, ol): arctan (ol)
BL_DATAN(name, ol)

B.7 Helper Functions
B.7.1 Block Distributed Array (BArrF/BArrD) Handlers

Block Distributed Array (BArrF/BArrD) Handlers

General:

All functions in this section are available in the following versions:
BArrF: Block Distributed Array, floats

BArrD: Block Distributed Array, double

PArrF: Private Array, floats

PArrD: Private Array, Dobule

void get_BArrF_dA(BlockDistArray* _barr, float* lsaddr, int lbound, int ubound);

void store_ BArrF_dA (BlockDistArray* _barr, float* lsaddr, int lbound, int ubound);

void get_ BArrD_dA (BlockDistArray* _ barr, double* lsaddr, int lbound, int ubound);

void store_ BArrD_dA(BlockDistArray* _ barr, doublex lsaddr, int lbound, int ubound);
Wraper functions for NestStep array get/store functions. These functions can
handle arbitrary alignment for the upper bound. The lower bound still has has
to be 16byte aligned and the size still has to be <= 16kiB. The range is as
with the NestStep versions _inclusive_ (size = ubound—lbound—1).
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BArrF__Handler

BArrD__Handler

PArrF__Handler

PArrD__Handler
Handler structures. These are slightly over 32kiB in size due to embedded
double buffering buffers. The size can be reduced by lowering the global
chunk sizes .
Interesting members:

current — Current local array.
currentSize — Size of current array
currentStart — Index of first element in current array.

void init_BArrF_Get(BArrF_Handler xh, BlockDistArray* a, int bs);
void init_ BArrF_Put (BArrF_Handler xh, BlockDistArray* a, int bs);
Initialization functions for the above handlers.
bs — block size/chunk size. Will not lower the handlers memory
consumption .

int get_sw_BArrF(BArrF_Handler xh);

int put_sw_BArrF(BArrF_Handler xh);
Gets/stores chunk and get next buffer. Will start DMA of next chunk before
returning . Return value is the current chunk size. Returns Zero when all
chunks are done.

void wait_put_BArrF_done(BArrF_Handler xh);
Wait for the DMA transfers from the last put to finish.

B.7.2 Synchronization

Synchronization functions using inter SPE signals. They are a specialized
alternative to the NestStep built in combines for some special cases.

void blGroupSync () ;
A group synchronization using the synchronization system chosen at
compiletime .

void bIMPGroupSync() ;
Group Synchronization using inter SPU signals.

void bIMPDistSync(volatile voidx data, void+ localElement , unsigned int elementSize
Group synchronization with data synchronization. The array data will contain
all SPU:s localElement:s after synchronization. localElement can be any data

structure smaller than 2kiB but has to be padded to a factor of 16 byte in
size if bigger than 8 bytes. Elements of size 8 or less must be naturally
aligned .

Message Passing
Message Passing functions using inter SPU signals and inter SPU DMA.

void blSendMsg(volatile void % data, int size, int target);
Send array data to SPU target. Data must be naturally aligned. Size is
payload (data) size in bytes.

void blWaitMsgAck(int source);
Wait for receiver to acknowledge message. This is sent by blWaitMsgDMA when
DMA transfer is done.

int blRecvMsg(volatile void x data, int source);
Wait for message to arrive. Start DMA of message payload when message
arrive. Data is payload target. Returns the payload size in bytes. Payload
Transfer is not finished when function returns.

void blWaitMsgDMA (int source) ;
Wait for message payload to complete. This functions also sends message
acknowledge .

Signals
void blSendSignallBit(int bit, int target);
Send bit ’bit’ as signal to target. Use with cation when used together

with other BlockLib inter SPU synchronizations.

void blWaitSignallBit (int bit);
Wait for bit ’'bit’ to arrive.

B.7.3 Pipeline

pipeF__Handler;
Handler for a pipeline. This structure is 48kiB due to tripple buffering.

Interesting members:
current .p — pointer to current array.
current.size — size of current array.
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current .start — start index of first element in current.p.

void init_pipeF_first(pipeF_Handler xh, PrivateArray* a, int toRank, int bs);
Initialize handler. First SPU in pipeline. A is data source. Bs is chunk
size. Bs must be a factor of 4 or of size 1 or 2. ToRank is next SPU in
pipeline .

void init_pipeF_mid(pipeF_Handler xh, int fromRank, int toRank, int bs);
Initialize handler. Internal SPU in pipeline. Bs is chunk

size , must be the same as the first SPU’s chunk size. FromRank is previous
in pipeline, toRank is next.

void init__pipeF__last (pipeF_Handler xh, PrivateArrays a, int fromRank, int bs);
Initialize handler. Last SPU in pipeline. A is data source. Bs is chunk
size , must be the same as the first SPU’s chunk size. FromRank is previous

SPU in pipeline. A is target private array. A may be NULL if pipeline
stream is not to be saved.

int step_PipeF (pipeF_Handler xh);
Step pipeline one chunk forward. The return value is the size of the the
current chunk. The return value is zero when pipeline is finished.

SPU
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Code for Test Programs

C.1 Map Test Code
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* BlockLib Test Program — Map

e/

#include <stdio.h>

#include <NestStep_spulib/neststep__spu.h>
#include "block_lib.h"

#include <spu_intrinsics.h>

// Initialization wvalue for the counter
#define DEC_INIT_VAL OXFFFFFFFF

#define MAX(a,b) (a>b ? a:b)

int N = 1024%1024x%5;

int MY RANK;

BlockDistArray x;

BlockDistArray* y;

BlockDistArray* z;

float func(float left , float right)

return MAX(left ,right) *(left—right);

¥
void func_local(float xx1, float *x2, float xres, int N)
int i;
for (i=0;i<N;i++)
res[i] = MAX(x1[i],x2[i]) = (x1[i]— x2[i]);
}

float sqrt_func(float x)

return sqrt (x);

}
float gen(int i)

return (float)i;

}
float genMod(int i)

return (float) (i%34);

DEF_GENERATE_FUNC_S(mGen, iF, BL_NONE, BL_NONE)

DEF_MAP_TWO_FUNC_S(map_ func, t3, BL_NONE,
BL_SMAX(t1, opl, op2)

BL_SSUB(t2, opl, op2)

BL_SMUL(t3, t1,t2)
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)

float map_saxpy__alpha = 3;
DEF_MAP_TWO_FUNC_S(map_saxpy, t1,
BL_SCONST (alpha, map_saxpy_alpha),
BL_SMUL_ADD(t1, opl, alpha, op2)

)

DEF_MAP_ONE_FUNC_S(sqrt_one, tl, BL_NONE,
BL_SSQRT(t1, op)
)

DEF_MAP_THREE_FUNC_S(map_matr, rq,
BL_SCONST(c11,
BL_SCONST (c12,
BL_SCONST(c13
BL_SCONST (c14
BL_SCONST (c21
BL_SCONST (c22
BL_SCONST (c23 ,
BL_SCONST (c24
BL_SCONST (c31
BL_SCONST (c32
BL_SCONST (¢33
BL_SCONST (c34
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)

BL_SMUL_ADD(x11, opl, cll, cl4)
BL_SMUL_ADD(x12, opl, cl2, x11)
BL_SMUL_ADD(x1r, opl, c13, x12)
BL_SMUL(x1q, xlr, x1r)

BL_SMUL_ADD(x21 op2 c21 c24)

) s s
BL_SMUL_ADD(x22, op2, c22, x21)
BL_SMUL_ADD(x2r, op2, c¢23, x22)
BL_SMUL_ADD(x2q, x2r, x2r, x1q)

BL_SMUL_ADD(x31, op3, c31, c34)
BL_SMUL_ADD(x32, op3, c32, x31)
BL_SMUL_ADD(x3r, op3, ¢33, x32)
BL_SMUL_ADD(rq, x3r, x3r, x2q)
)

void calculate (){
sDistGenerate(&gen, x, N,BL_STEP);
sDistGenerate (&genMod, y, N, BL_STEP);
sDistGenerate(&gen, z, N, BL_STEP);
clearTimers (&bl _time) ;
sDistGenerate (&gen, x, N,BL_STEP);
printBArrF (x,N, 65);
prsO("\nSimpel_generator_ (1l,0ops/n)")
prsO("opn: . 1")
printTimersDetailed_ flops (bl_time, N);
prso (")
blGroupSync () ;
clearTimers (&bl_time) ;
mGen(x, N,BL_STEP) ;
printBArrF (x,N, 65);
prsO ("\nMacro_generated generator, (l_ops/n)")
prs0("opn:,l")
printTimersDetailed_ flops (bl_time, N);
prso("")
blGroupSync () ;
clearTimers(&bl__time) ;

map_matr(x, y,z, z, N, BL_STEP);

prsO ("\nmap lenght in,quadr after, matrix transformation , macro, generated (23,
ops/n)")

prs0 ("opn:.,23")

printTimersDetailed flops (bl_time, N);

prs0 (")

blGroupSync () ;
clearTimers(&bl_time) ;

sDistMapTwo(&func, x, y, z, N, BL_STEP);

//printBArrF (z,N);
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int

prsO ("\nmap max(a,b)=(a—b), simple,(4.0ps/n)")
prsO("opn:_4")

printTimersDetailed_flops (bl_time, N);
prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

sDistMapTwoLocalFunc(&func_local ,x, y, z, N, BL_STEP);

prsO ("map max(a,b)*(a—b), local map,function (4, 0ps/n)")
prsO("opn:_4")

printTimersDetailed_flops (bl_time, N);

prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

map__func ( vy, z, N, BL_STEP);

prs0 ("\nmap max(a,b)*(a—b) , macro.generated. (4,0ps/n)")
prsO("opn:_4")

printTimersDetailed__flops (bl_time, N);

prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

sDistMapOne(&sqrt_func, x,z,N, BL_STEP);
printBArrF (z,N, 65);

prsO ("\nmap_ one sqrt simple (lusqrt/n)")
prsO("opn:_1")

printTimersDetailed_flops (bl_time, N);
prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

sqrt_one (x,z,N,BL_STEP) ;

prsO ("\nmap_one,sqrt_macro_ generated_ (l.sqrt/n)")
prsO("opn:_1")

printTimersDetailed_flops (bl_time, N);

prsO("")

blGroupSync () ;

clearTimers(&bl_time) ;
map_saxpy_alpha = 3.5;
map_saxpy (x,y,z,N, BL_STEP);

printBArrF (z,N, 65);

prsO ("\nsaxpy.macro_generated, (2_0ps/n)")
prsO("opn:.2")

printTimersDetailed_flops (bl_time, N);
prsO(""

clearTimers (&bl _time) ;

main(unsigned long long speid, Addr64 argp, Addr64 envp)

spu_write__decrementer (DEC_INIT_VAL) ;
int i;

NestStep_ SPU_init(argp) ;

MY RANK = NestStep get rank () ;
Name name;

name.procedure = 1;
name.relative = 0;

x = new_ BlockDistArray (name,FVAR,N) ;
name. relative-+4-4;
y = new_ BlockDistArray (name,FVAR,N) ;
name.relative4+4;
z = new_ BlockDistArray (name,FVAR,N) ;

for (i=0;i<2;i++){
i f (MY_RANK==0)
printf("\n\niteration %d:\n", i);
calculate () ;

}
prd0 (N)

NestStep_ SPU_ finalize () ;
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return 0;

C.2 Reduce Test Code

L

* BlockLib Test Program — Reduce

R

#include <stdio.h>

#include <NestStep__spulib/neststep__spu.h>

#include "block_lib.h"
#include <spu__intrinsics.h>

// Initialization value for the counter
#define DEC_INIT VAL OXFFFFFFFF

int N = 1024%1024%5;
int MY_RANK;

BlockDistArray* x;

float add(float left, float right)

return left4right;

}
float addReduce(float xx, int n)

int i;

float res=x[0];
for (i=1;i<n;i4++)
{

i

return res;

res+=x[i];

}
float addReduceVec(float *x, int n)

int i;

float res=0;

int nVec=0;

_ _align_hint(x,16,0) ;
if (n>8)

nVec = n/4;

vector float vec_res _ _ attri
vec_res = spu_splats (0.0f);
for (i=0;i<nVec;i++)

bute__ ((aligned (16)));

vec_res = spu_add(vec_res, ((vector floatsx*)x)[i]);

res += spu_extract(vec_res,

0) + spu_extract (vec_res,

vec_res, 2) + spu_extract(vec_res, 3);

}
for (i=nVec4;i<n;i++)
res+=x[i];

return res;

float gen(int i)

return (float)i;

i

DEF_REDUCE_FUNC_S(max, tl1, BL_NONE,
BL_SMAX(t1l, opl, op2)
)

DEF_REDUCE_FUNC_S(my_add_red, t1, BL_NONE,

BL_SADD(t1, opl, op2)
)

void calculate (){
int i, j, no_chunks;
i =j = 0;
float res;

sDistGenerate(&gen, x, N, BL_STEP);

clearTimers(&bl__time) ;
res = sDistReduce(&add, x, N);

1) + spu_extract(
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prsO("\nSimple,sum (1 0ps/n)")
prsO("opn:_1")

prfO(res)

printTimersDetailed_flops (bl_time, N);
prs0O("")

blGroupSync () ;
clearTimers (&bl _time) ;

res = sDistReduceLocalFunc(&addReduce, x, N);

prsO("\nLocal.sum. (1l 0ops/n)")
prsO("opn:_1")

prfo(res)

printTimersDetailed_flops (bl_time, N);
prs0O("")

blGroupSync () ;
clearTimers (&bl _time) ;

res = sDistReduceLocalFunc(&addReduceVec, x, N);

prsO("\nLocal_,vectorized jsum,(1_ops/n)")
prsO("opn:_1")

prfO(res)

printTimersDetailed_flops (bl_time, N);
prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

res = my_add_red(x, N);

prsO("\nLocal macro,generated sum, (1, ops/n)")
prsO("opn:_1")

prfO(res)

printTimersDetailed_flops (bl_time, N);

prs0 (")

blGroupSync () ;
clearTimers (&bl _time) ;;

res = max(x, N);

prsO("\nLocal macro,generated max.,(2,0ps/n)")
prsO("opn:.2")

prfO(res)

printTimersDetailed_flops (bl_time, N);

prsO ("'

clearTimers (&bl_time) ;;

}
int main(unsigned long long speid, Addr64 argp, Addr64 envp)
{

spu_write__decrementer (DEC_INIT_VAL) ;

int i;

NestStep_ SPU__init (argp) ;

MY_RANK = NestStep__get_rank () ;

Name name;

name. procedure = 1;

name.relative = 0;

x = new_ BlockDistArray (name,FVAR,N) ;

for (i=0;i<2;i4++){

if (MY_] ==0)
printf("\n\niteration %d:\n", i);
calculate () ;

}

prdo (N)

NestStep__SPU_ finalize () ;

return 0;
}

C.3 Map-Reduce Test Code

/s koo koo ok ok koo ok ok koo ok ok koo K koo K ok o
% BlockLib Test Program — Map—Reduce
ekt koo ok koo K koo K koo K Kk oo K K koo ok ok

#include <stdio.h>
#include <NestStep__spulib/neststep__spu.h>
#include "block_ lib.h"
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#include <spu_intrinsics.h>
// Initialization wvalue for the counter
#define DEC_INIT_VAL OXFFFFFFFF

int N = 1024%1024x5;
int MY _RANK;

BlockDistArray* x;
BlockDistArray* y;
BlockDistArray* z;

float gen(int i)

return (float)i;

}

DEF_MAP_THREE AND_REDUCE_FUNC_S(matr_len, rq, t1,
BL_SCONST(cl11 ,

BL_SCONST(c12,
BL_SCONST (c13
BL_SCONST (c14
BL_SCONST (c21
BL_SCONST (c22
BL_SCONST (c¢23
BL_SCONST ( c24
BL_SCONST (c31
BL_SCONST ( c¢32
BL_SCONST (¢33
BL_SCONST (¢34

OO W
P
"ocoococoococoooo
[SETQUEvENEVEUENEE VS
FANN NN NN

)

BL_SMUL_ADD(x11, m_opl, cll, cl4)
BL_SMUL_ADD(x12, m_opl, cl12, x11)
BL_SMUL_ADD(x1r, m_opl, cl13, x12)
BL_SMUL(x1q, xlr, x1r)

BL_SMUL_ADD(x21, m_op2, c21, c24)
BL_SMUL_ADD(x22, m_op2, c22, x21)
BL_SMUL_ADD(x2r, m_op2, c23, x22)
BL_SMUL_ADD(x2q, x2r, x2r, xlq)

BL_SMUL_ADD(x31, m_op3, c31, c34)
BL_SMUL_ADD(x32, m_op3, c¢32, x31)
BL_SMUL_ADD(x3r, m_op3, ¢33, x32)
BL_SMUL_ADD(rq, x3r, x3r, x2q),
BL_SMAX(t1l,r_opl,r_op2)

)

DEF_MAP_TWO_FUNC_S(my_map, t1, BL_NONE,
BL_SMUL(t1, opl, op2)
)

DEF_REDUCE_FUNC_S(my_red,t1, BL_NONE,
BL_SADD(t1, opl, op2)

)

DEF_MAP_TWO_AND_ REDUCE_FUNC_S(my_dot, mres, rres, BL_NONE, BL _SMUL(mres, m_opl,
m_op2), BL_SADD(rres, r_opl, r_op2))

void calculate (){
float res;
sDistGenerate(&gen, x, N, BL_STEP) ;
sDistGenerate(&gen, y, N, BL_STEP);
sDistGenerate(&gen, z, N, BL_STEP);

blGroupSync () ;
clearTimers(&bl__time) ;

res = my_dot(x,y,N);

prs0 ("\nmap—reduce dot, (2, 0ps/n)")
prsO ("opn:, 2")

prfo (res)

printTimersDetailed flops (bl _time, N);
prs0 (")

blGroupSync () ;
clearTimers(&bl__time) ;

my_map(x,y,z,N, BL_STEP) ;
res= my_red(z,N);

prs0 ("\nseperate map and reduce, dot, (2 0ops/n)")
prsO("opn: 2")

prf0(res)

printTimersDetailed__flops (bl_time, N);

prso (")

blGroupSync () ;
clearTimers (&bl _time) ;
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res = matr_len(x,y,z,N);

prsO("lenght of, vector, longest after.matrix transformation. (24.0ps/n)\n")
prsO ("opn: 24")

prfO(sqrt(res))

printTimersDetailed_flops (bl_time, N);

prs0("")
}
int main(unsigned long long speid, Addr64 argp, Addr64 envp)
{

spu_write__decrementer (DEC_INIT_VAL) ;

int i;

NestStep_ SPU_init(argp) ;

MY_RANK = NestStep__get_rank () ;

Name name;

name. procedure = 1;

name. relative = 0;

x = new_ BlockDistArray (name,FVAR,N) ;

name. relative+-4;

y = new_ BlockDistArray (name,FVAR,N) ;

name.relative++;

z = new_ BlockDistArray (name,FVAR,N) ;

for (i=0;i<2;i4++){

i f (MY RANK==0)
printf("\n\niteration %d:\n", i);
calculate () ;

}

prd0 (N)

NestStep_SPU_ finalize () ;

return 0;
}

C.4 Overlapped Map Test Code

/s s o o o o s e ook sk ok ks sk oK oK oK oK SR SR SR KSR KKK KKK CH KKK KRR
* BlockLib Test Program — Owerlapped Map
Sk R R R R R R R R R R R R R K K K K o o 3 3 3 o 3 o o 3 o o o o o o o o o o o o ok ok ok /

#include <stdio.h>

#include <NestStep_spulib/neststep__spu.h>
#include "block_lib.h"

#include <spu_intrinsics.h>

#define DEC_INIT_ VAL OXFFFFFFFF

int N = 1024%1024x%5;
int MY RANK;
BlockDistArray* x;
BlockDistArray* xD;
BlockDistArray* y;
BlockDistArray* yD;
float gen(int i)

return (float)i;

}
double gen_d(int i)

return (double)i;

}
float genMod(int i)

return (float) (i%34);

float overlapTest(float xx, int i)

return x[—2]%0.1 + x[—1]%0.2 + x[0]%0.4 + x[1]%0.2 + x[2]%0.1;
}

void overlapLocal(float xx, float xres, int startN, int n)

{
int i;
for (i=0;i<n;i++)
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res[i] = x[i—2]%0.1 4+ x[i—1]%0.2 + x[i]%0.4 + x[i+1]%0.2 4+ x[i+2]%0.1;
}

double dOverlapTest(double *x, int i)

return x[—2]%0.1 + x[—1]%0.2 + x[0]%0.4 + x[1]%0.2 + x[2]%0.1;

}
void dOverlapLocal(double *x, double *res, int startN, int n)
int i;
for (i=0;i<n;i++)
res[i] = x[i—2]%0.1 + x[i—1]%0.2 + x[i]*0.4 + x[i+1]%0.2 + x[i+2]%0.1;

}

DEF_OVERLAPPED_MAP_ONE_FUNC_S(conv_s, vs5, 8,
BL_SCONST(p0, 0.4f)
BL_SCONST(pl, 0.2f)
BL_SCONST(p2, 0.1f),
BL_SINDEXED (vm2, —2)
BL_SINDEXED (vml, —1)
BL_SINDEXED (v, 0)
BL_SINDEXED (vpl, 1)
BL_SINDEXED (vp2, 2)
BL_SMUL(vsl, vm2, p2)
BL_SMUL_ADD(vs2, vml, pl, vsl)
BL_SMUL_ADD(vs3, v, p0, vs2)
BL_SMUL_ADD(vs4, vpl, pl, vs3)
BL_SMUL_ADD(vs5, vp2, p2, vsd)

)

DEF_OVERLAPPED_MAP_ONE_FUNC_D(conv_d, vs5, 8,
BL_DCONST(p0, 0.4)
BL_DCONST(pl, 0.2)
BL_DCONST(p2, 0.1),
BL_DINDEXED (vm2, —2)
BL_DINDEXED (vm1, —1)
BL_DINDEXED (v, 0)

BL_DINDEXED (vpl, 1)
BL_DINDEXED (vp2, 2)
BL_DMUL(vsl, vm2, p2)
BL_DMUL_ADD(vs2, vml, pl, vsl)
BL_DMUL_ADD(vs3, v, p0, vs2)
BL_DMUL_ADD(vs4, vpl, pl, vs3)
BL_DMUL_ADD(vs5, vp2, p2, vs4)

DEF_GENERATE_FUNC_S(mGen, iF, BL_NONE, BL_NONE)
DEF_GENERATE_FUNC_D(mGen_d, iF, BL_NONE, BL_NONE)

void calculate (){
int i, j, no_chunks;
i =3 = o0;

mGen(x, N,BL_STEP) ;
mGen(y, N,BL_STEP);
mGen_d(xD, N, BL_STEP);
mGen_d(yD, N, BL_STEP) ;

if (MY_RANK == 0)

printf ("<<<<>>>>\n\n");
clearTimers(&bl__time) ;

sDistOverlappedMap(&overlapTest , x, y, N, 4, BL_ZERO);
// sDistOverlappedMap (&overlapTest, =, y, N, 4, BL_CYCLIC);

printBArrF (y,N, 65);

prsO ("\nSimple overlapped (single). (9 ops/n)")
prsO("opn: 9")

printTimersDetailed__flops (bl_time, N);
prs0("")

blGroupSync () ;
clearTimers(&bl_time) ;

sDistOverlappedMapLocalFunc(&overlapLocal , x, y, N, 4, BL_ZERO);
// sDistOverlappedMapLocalFunc(&overlapLocal , =, y, N, 4, BL_CYCLIC);

printBArrF (y,N, 65);

prsO("\nLocal overlapped,(single). (9. .0ps/n)")
prsO("opn:_,9")

printTimersDetailed__flops (bl_time, N);
prso("")

blGroupSync () ;
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//

//

//

//

int

C.

clearTimers(&bl__time) ;

conv_s(x,y,N,BL_ZERO) ;
conv_s(z,y,N,BL_CYCLIC) ;

printBArrF (y,N, 65);

prs0 ("\nMacro, genterated overlapped  (single) (9, 0ps/n)")
prs0("opn:, 9")

printTimersDetailed flops (bl_time, N);

prs0("")

blGroupSync () ;
clearTimers(&bl__time) ;

dDistOverlappedMap(&dOverlapTest , xD, yD, N, 4, BL_ZERO);
dDistOverlappedMap (6dOverlapTest , zD, yD, N, 4, BL_CYCLIC);

printBArrD (yD,N, 65);

prsO("\nSimple overlapped (double)  (9.,0ps/n)")
prsO("opn:.9")

printTimersDetailed__flops (bl_time, N);
prs0("")

blGroupSync () ;
clearTimers(&bl_time) ;

dDistOverlappedMapLocalFunc(&dOverlapLocal , xD, yD, N, 4,

printBArrD (yD,N, 65);

prsO("\nLocal_ overlapped,(double) (9.0ps/n)")
prsO("opn:_.9")

printTimersDetailed_flops (bl_time, N);
prsO("")

blGroupSync () ;
clearTimers (&bl _time) ;

conv_d (xD,yD,N,BL_ZERO) ;
conv_d (zD,yD,N,BL_CYCLIC) ;

printBArrD (yD,N, 65);

prs0 ("\nMacro_genterated ,overlapped.(double) . (9.0ps/n)")
prsO ("opn:L9")

printTimersDetailed flops (bl _time, N);

prso("")

blGroupSync () ;
clearTimers (&bl _time) ;

main(unsigned long long speid, Addr64 argp, Addr64 envp)

spu_write_decrementer (DEC_INIT_VAL) ;
int i;

NestStep_ SPU_init (argp) ;
MY_RANK = NestStep_get_rank () ;
Name name ;

name. procedure = 1;

name. relative = 0;

x = new_ BlockDistArray (name,FVAR,N) ;
name.relative4+4;
xD = new_ BlockDistArray (name,DVAR,N) ;
name.relative-4+4;
y = new_BlockDistArray (name,FVAR,N) ;
name. relative++;
yD = new_ BlockDistArray (name,DVAR,N) ;

for (i=05i <2;i++){
i £ (MY_RANK==0)
printf("\n\niteration %d:\n", i);
calculate () ;
}

NestStep_SPU__finalize () ;

return 0;

5 Pipe Test Code

[ R

BL_ZERO) ;
dDistOverlappedMapLocalFunc(&dOverlapLocal , D, yD, N, 4, BL_CYCLIC);
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% BlockLib Test Program — Pipeline
N

#include <stdio.h>

#include <NestStep__spulib/neststep__spu.h>
#include "block_ lib.h"

#include <spu_intrinsics.h>

// Initialization value for the counter
#define DEC_INIT VAL OXFFFFFFFF

int rank;
int groupSize;
spu__timers timers={{0,0},{0,0},{0,0},{0,0},{0,0}};
void binPrint(unsigned int val)

int u;

char out[33];

for (u=31;u>=0;u——)

out[3l—ul=(val&(l<<u) 7 ’'1’:°0);
out [32]="\0";
printf ("(%d): %s\n", NestStep_get_ rank (), out);

}

DEF_GENERATE_FUNC_PRIVATE S(gen, iF, BL_NONE, BL_NONE)
DEF_GENERATE_FUNC_PRIVATE_S(genZero, zero, BL_SCONST(zero, 0.0f), BL_NONE)

int N = 1024%1024x%1;
#define CHSIZE 4096
DEF_GENERATE_FUNC_S(mGen, iF, BL_NONE, BL_NONE)

int main(unsigned long long speid, Addr64 argp, Addr64 envp)
{

spu_write_decrementer (DEC_INIT_VAL) ;
int i;

NestStep__SPU__init (argp) ;

rank = NestStep_get_rank () ;
groupSize = NestStep__get_size () ;
Name name;

name.procedure = 1;
name.relative = 0;

PrivateArray* parr;
if (rank == 0 || rank == groupSize —1)

parr = new_ PrivateArray (name, FVAR, N, (Addr64)NULL) ;
name. relative—+-4;
BlockDistArray* x;

x = new_BlockDistArray (name,FVAR,NxgroupSize) ;
mGen (x, N,BL_STEP);

if (rank == 0)
gen (parr, N, BL_NO_STEP) ;
else if(rank == groupSize —1)
genZero (parr, N, BL_NO_STEP) ;

initMp () ;

clearTimers (&bl _time) ;

clearTimers(&timers) ;

NestStep_step () ;

{
pipeF_Handler pipe; // pipe handler
BArr__Handler baX; // block dist array handler
for (i=0;i <1000;i++)

start Timer(&timers.total);

// set the pi up .
if (rank == 0)
init_pipeF_ first(&pipe, parr, rank+1, 4096);
else if(rank != groupSize —1)
init_pipeF_mid(&pipe, rank—1, rank+1, 4096);
else

init_pipeF_last(&pipe, NULL, rank—1, 4096);

// init block dist array handler
init_ BArr_ Get(&baX, x, 4096);
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while (step__PipeF (&pipe)) // loop trough all

get_sw__ BArr(&baX) ;
// work on chunks here
stopTimer(&timers . total) ;
1}\rcstSccp7combinc (NULL,NULL) ;
}Ncststcpicndistop O

prs("done");

printTimersDetailed_flops (timers ,Nx100011 x4) ;

printTimersDetailed (bl_time) ;

if (rank == 0 || rank == groupSize —1)
free_PrivateArray (parr) ;

free_BlockDistArray (x) ;

NestStep_ SPU_ finalize () ;

return 0;

chunks

C.6 Ode Solver (Core Functions)

VIADSISSSSSS555SS55555
// Skeleton defintions

DEF_MAP_TWO_AND_ REDUCE_FUNC_D(dDistSubAbsMax, abs, max,
, m_op2) BL_DABS(abs, sub), BL DMAX(max, r_opl, r
DEF_MAP_TWO_AND_ REDUCE_FUNC_D(dDistMaxAbsQuot, abs, max,

m_opl, m_op2) BL_DABS(abs, div), BL_DMAX(max, r_.

double yscalH;

DEF_MAP_TWO_FUNC_D(dDistYscal , s2, BL DCONST(cl,
BL_DABS(yabs, opl)
BL_DMUL( hstg, op2, h)

BL_DABS(hstgabs ,
BL_DADD(sl1, yabs,

hstg)
hstgabs)

//abs (hxhelp1l / (abs(y) + abs(h*xstagev))+1.0e—30)
//(hxhelp) / ((fabs(y[i]) + fabs(h x

DEF_MAP_THREE AND_ REDUCE_FUNC_D(dDistMaxAbsQuotYscal,
—30) BL_DCONST(h, yscalH),

BL_DABS(yabs, m_opl)

BL_DMUL( hstg , m_op2, h)

BL_DABS(hstgabs , hstg)

BL_DADD(sl1, yabs, hstgabs)

BL_DADD(s2, sl1, cl)

BL_DMUL(h_help, h, m_op3)

BL_DDIV(div, h__help,

BL_DABS(abs, div),

s2)

BL_DMAX(max, r_opl, r_op2))

DEF_MAP_ONE_FUNC_D(dDistCopy , op, BL_NONE, BL_NONE)
DEF_MAP_ONE_AND_REDUCE_FUNC_D(dDistAbsMax, abs, max,
BL_DMAX(max, r_opl, r_op2));
DEF_REDUCE_FUNC_D(dDistMax , max, BL_NONE,
DEF_REDUCE_FUNC_D(dDistSum , sum, BL_NONE,
DEF_REDUCE_FUNC_D(dDistMin, min, BL_NONE,
DEF_GENERATE_FUNC_D(dDistZero , BL_DCONST (zero ,

BL_DMAX(max ,
BL_DADD (sum ,
BL_DMIN (min ,
zero ,

double map_dscale_alpha = 0;

DEF_MAP_ONE_FUNC D(depScdle, t1,

BL_DCONST (alpha , map_dscale_alpha),

BL_DMUL(t1, op, alpha))

void dDistScale (double alpha,
enum bl_do__step do__step)

{

BlockDistArray =x1,

map_dscale_alpha = alpha;
dMapScale(x1, res, n, do_step);

double map_mad_ two_al = 0;
double map_mad_two_a2 = 0;
DEF_MAP_TWO_FUNC_D(dMapMadd2,
BL_DCONST (al, map_mad_two_al)
BL_DCONST (a2, map_mad_two_a2),
BL_DMUL(r1, al, opl)

s1,

BL_NONE, BL_DSUB(sub,
_op2));

opl,

1.0e—30) BL_DCONST(h,

abs ,

BL_NONE, BL_DABS(abs,

opl,
opl,
opl,
0.0),

BlockDistArray

m_ opl

BL_NONE, BL_DDIV(div ,
r_op2));

yscalH) ,

stagevec [0][i])) + 1.0e—30);

max, BL_DCONST(cl, 1.0e

m_opl) ,
op2))
op2))
op2))

BL_NONE)

*res , int n,
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BL_DMUL_ADD(s1, op2, a2, rl))

void dMaddTwo(double al, BlockDistArray xx1, double a2, BlockDistArray =x2,
BlockDistArray =xres, int n, enum bl _do_step do_step)

{
map__mad_two_al = al;
map_mad_two_a2 = a2;
dMapMadd2(x1, x2, res, n, do_step);
}
double map_mad_three_al = 0;
double map_mad_three_a2 = 0;

double map__mad_three_a3 = 0;
DEF_MAP_THREE_FUNC D(dMapMaddS s2,
BL_DCONST(al, map_mad_three_al)
BL_DCONST (a2, map_mad_three_a2)
BL_DCONST (a3, map_mad_three_a3),
BL_DMUL(rl, al, opl)
BL_DMUL_ADD(sl, op2, a2, rl)
BL_DMUL_ADD(s2, op3, a3, sl))

void dMaddThree(double al, BlockDistArray #x1, double a2, BlockDistArray xx2,

double a3, BlockDistArray =*x3, BlockDistArray *res, int n, enum bl_do_step
do__step)
{
map__mad__three_al = al;
map__mad__three_a2 = a2;
map_mad_three_a3 = a3;
dMapMadd3(x1, x2, x3, res, n, do_step);
}
double map_daxpy_alpha = 0;

DEF_MAP_TWO_FUNC D(dMapDAXPY t1,
BL_DCONST (alpha , map_daxpy_alpha),
BL_DMUL_ADD(t1, opl, alpha, op2))

void dDistAXPY(double alpha, BlockDistArray xx, BlockDistArray *y, BlockDistArray

*res , int n, enum bl_do_step do__step)
{
map_daxpy_alpha = alpha;
dMapDAXPY (x,y, res ,n,do_step) ;
}

// The code below is derived from Matthias Korchs and Thomas Raubers work LibSolve

Y7 SSSSSSSSSSSSSSsSsS
// Runge Kutta Core loop

// simple port. Most of the commented code is the code before comvertion to skeleton instance
void par_simplD(double t0, BlockDistArray *y0, double bf, double H,

BlockDistArray xy, double xxa, double xb,
double xbs, double *c, uint s, uint ord)

{
uint i, j, 1;
if (NestStep__get_rank () 0)
printf("par_simplD\n");
// locked at seven stages, order 5;
BlockDistArray xstagevec [7];
// double xxstagevec, *xold_y, shelp, shelpl, xerr_vector, syscal

BlockDistArray =old_y, *help, xhelpl, xerr_vector, =yscal;
double temp, error__max;

double h, old_h, t = t0, te = t0 + H;

double xbbs;

prd0 (ode__size) ;
bbs = MALLOC(s, double);
for (i 0; i < s; 4+i)

bbs[i] = b[i] — bs[i

Name name ;
name. procedure = 5;
name.relative = 0;

// set up y directly ad y0 to save some ram

yO0=y;

// moved over stage—wvec init to keep ram usage down
h = par_initial_step(ord, t0, H, y0);

prfo (h)

//ALLOC2D(stagevec , s, ode_size, double);

for (i=0;i<s;i++)

{
stagevec[i] = new_BlockDistArray (name,DVAR, ode__size) ;
name. relative+-4;

// old_y = MALLOC(ode_size, double);
//  help = MALLOC(ode_size, double);
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//  helpl = MALLOC(ode_size, doub
// err_wvector = MALLOC(ode_size ,
// yscal = MALLOC(ode_size, doub

le);
double) ;
le);

old_y = new_BlockDistArray (name,DVAR, ode_size) ;

name. relative-4+;

help = new_ BlockDistArray (name,DVAR, ode__size) ;

name. relative-4+;

helpl = new_BlockDistArray (name,DVAR, ode_ size) ;

name. relative++4;

err_vector = new_ BlockDistArray (name,DVAR, ode__size) ;

name. relative+-4;

yscal = new_ BlockDistArray (name,DVAR, ode__size) ;

name.relative++;

// for (i = 0; i < ode_size; ++i)
/) uli] = yoli];

//dDistCopy (y0,y, ode_size , BL_STEP);
//  printBArrD(y, ode_ size, 2048);

//h = par_initial_step (ord, t0, H,

int steps = 0;
while (t < te)

steps++;

for (i

0; i < s; ++i)

y0);

J/for (j = 0; j < ode_size; ++j)

//helpl[j] = 0.0;

dDistZero (helpl, ode_size, BL_STEP);

//for (i = 0; § < i; ++j)

//  for (1l = 0; I < ode_

size; ++1

)
V7 help1[l] += a[i][]] * stagevec[j][

for (j = 0; j < i; ++j)

dDistAXPY (ali][j],

stagevec[j],

J//for (j = 0; j < ode_size; ++j)
//  helpl[j] = h * helpl[j] + y[j]:

dDistAXPY (h, helpl, y,

startTimer (&timer . calc

helpl, ode_size,

)

L]

helpl ,

helpl , ode_size, BL_STEP);

BL_STEP) ;

//ode_eval_all(t + c[i] = h, helpl, stagevec[i]);
h, helpl, stagevec|[i]);

par_eval__all(t + c[i]=
stopTimer(&timer.calc)

}

J//for (i = 0; i < ode_size; ++i)

Vit
/) help[i] = 0.0;
/) helpl[i] = 0.0;
//}

dDistZero (help, ode_size,
dDistZero (helpl, ode_size,

for (i = 0; i < s; ++i)

BL_STEP) ;
BL_STEP) ;

//help[j] += bbs[i] * stagevec[i][]]

stagevec [i][j];

evec[i], help,
ec[i], helpl,

{
J/for (j = 0; j < ode_size; ++j)
V7at
//helpt [j] += b[i] =
//}
dDistAXPY (bbs[i], stag
dDistAXPY (b[i], stagev
}
J/for (i = 0; i < ode_size; ++i)
//{
// old_y[i] =
V) yscal[i] =
/)

dDistCopy (y,old_y, ode_size, BL_STEP);

yscalH = h;
dDistYscal(y, stagevec[O],

yscal , ode__size,

J/for (i = 0; i < ode_size; ++i)

//{

// yl[i] += h % helpl[i];

// err_wvector[i] = h x help [
I/}

dDistAXPY (h, helpl, y, vy,
dDistScale (h, help, err_ve
old_h = h;

// error_mazx = 0.0;

i];

;i

help ,
helpl ,

ode_size , BL_STEP) ;
, BL_STEP) ;

ctor , ode_size

ode__size , BL_STEP);
ode__size , BL_STEP);

yli];
(fabs(y[i]) + fabs(h % stagevec [0][i])) + 1.0e—80;

BL_STEP) ;
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J/for (i = 0; i < ode_size; ++i)
/7L

// temp = fabs(err_vector[i] / yscall[i]);
// if (temp > error_maz)
//

error_max = temp ;
//}
error_max = dDistMaxAbsQuot (err_vector , yscal,
error_max = error_max / bf;
pre0 (h)
pre0 (error__max)
if (error_max <= 1.0) /* accept x/
{

h x=
MAX(1.0 / 3.0, 0.9 % pow(l.0 / error_max,

t 4= old_h;

ode_size);

1.0 / (ord

+ 1.0)),

//ode_update(t, y); points to a dummy for the bruss—problems

else /* reject x/

{

h = MAX(0.1 % h, 0.9 % h % pow(1.0 / error_max, 1.0 / ord),

J/for (i = 0; i < ode_size; ++i)
//yli] = old_y[i];
dDistCopy (old_y, y, ode_size, BL_STEP);

}
h = MIN(h, te — t, double);
}
prd0(steps)
double sum = dDistSum (y, ode_size);

prf0 (sum) ;

// FREE2D(stagevec);
// FREE(yscal);
// FREE(old_vy):
// free(err_vector);
// FREE(help);
// FREE(help1);

for (i=0;i<s;i++)
free__BlockDistArray (stagevec[i]);

free_BlockDistArray (old_y);
free_BlockDistArray (help);

free_ BlockDistArray (helpl);
free_BlockDistArray (err_vector );
free_ BlockDistArray (yscal);

FREE(bbs) ;

// Optimized version. Multiple maps in a single superstep, Multiple

single map etc

void par_simplD_optl(double t0, BlockDistArray xy0, double bf,
BlockDistArray *y, double %%a, double xb,

double %bs, double xc, uint s,

wint i, j, l;

if (NestStep_get_rank () == 0)
printf ("par_simplD_optl\n");
// locked at seven stages, order 5;
BlockDistArray sstagevec [7];
// double xxstagevec, xold_y, xhelp, shelpl, %err_vector,
BlockDistArray xold_y, #help, xhelpl, %err_vector,
double temp, error_max;
double h, old_h, t = t0, te = t0 + H;
double xbbs;

prd0 (ode_size) ;

bbs = MALLOC(s, double);

for (i = 0; i < s; ++i)
bbs[i] = b[i] — bs[i];

Name name;
name.procedure = 5;
name.relative 0;

// set up y directly ad y0 to save some ram
//dDistCopy (y0,y, ode_size , BL_STEP) :
y0=y;

// moved over stage—wvec init to keep ram usage down
h = par_initial_step (ord, t0, H, y0);

uint ord)

xyscal
xyscal;

argument arrays

double H,

double) ;

double) ;

to
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prfo (h)

//ALLOC2D (stagevec , s, ode_size, double);
for (i=0;i<s;i++)

{
stagevec[i] = new_BlockDistArray (name,DVAR, ode_ size) ;
name.relative-4+;

// old_y = MALLOC(ode_size, double);
Y/ help = MALLOC(ode_size, double);

Y/ helpl = MALLOC(ode_size, double);

// err_vector = MALLOC(ode_size, double);
// yscal = MALLOC(ode_size, double);

helpl = new_ BlockDistArray (name,DVAR, ode_size) ;
name.relative-4+4;

/) for (i = 0; i < ode_size; ++i)

/) yli] = yol[i];

// dDistCopy(y0,y,ode_size, BL_STEP);

// printBArrD(y, ode_size, 2048);

// h = par_initial_step (ord, t0, H, y0);

int steps = 0;
while (t < te)
{

steps++;

startTimer (&timer.calc);
par_eval_all(t + c[0]*h, y, stagevec[0]);
stopTimer(&timer.calc);

for (i = 1; i < s; ++i)

{
J/for (j = 0; j < ode_size; ++j)
J/help1 (5] = 0.0;
NestStep_step () ;
{
//for (= 0; § < @i 4++j)
/) for (L = 0; | < ode_size; ++1)
// help1 [l] += a[i][j] = stagevec[j][L]:
switch (i)
case 1:
dMaddTwo(a[i][0]*h, stagevec[0], 1, y, helpl, ode_size,
BL_NO_STEP) ;
break;
case 2:
dMaddThree(a[i][0]*h, stagevec[0], a[i][l]xh, stagevec[1l],
1, y, helpl, ode_size, BL_NO_STEP) ;
break ;
case 3:
dMaddThree(a[i][0]*h, stagevec[0], a[i][l]*h, stagevec[1],
al[i][2]*h, stagevec[2], helpl, ode_size, BL_NO_STEP);
dMaddTwo (1, helpl, 1, y, helpl, ode_size, BL_NO_STEP) ;
break;
case 4:
dMaddThree(a[i][0]*h, stagevec[O], a[i][l]*h, stagevec[1],
al[i][2]*h, stagevec[2], helpl, ode_size, BL_NO_STEP);
dMaddThree(a[i][3]*h, stagevec[3], 1, helpl, 1, y, helpl,
ode_size , BL_NO_STEP) ;
break ;
case 5:
dMaddThree(a[i][0]*h, stagevec[0], a[i][l]xh, stagevec[1l],
al[i][2]*h, stagevec[2], helpl, ode_size, BL_NO_STEP);
dMaddThree(a[i][3]*h, stagevec[3], a[i][4]*h, stagevec[4],
1, helpl, helpl, ode_size, BL_NO_STEP) ;
dMaddTwo (1, helpl, 1, y, helpl, ode_size, BL_NO_STEP);
break;
case 6:
dMaddThree(a[i][0]*h, stagevec[0], a[i][1]+*h, stagevec|[1],
ali][2]*h, stagevec[2], helpl, ode_size, BL_NO_STEP);
dMaddThree(a[i][3]+h, stagevec[3], a[i][4]*h, stagevec[4],
1, helpl, helpl, ode_size, BL_NO_STEP) ;
dMaddThree(a[i][5]*h, stagevec[5], 1, helpl, 1, y, helpl,
ode_size , BL_NO_STEP) ;
break;
startTimer (&timer .comb) ;
//NestStep__combine (NULL, NULL) ;
bIMPGroupSynec () ;
stopTimer(&timer .comb) ;
}
NestStep__end_step () ;
startTimer(&timer. calc) ;
//ode_eval_all(t + c[i] * h, helpl, stagevec[i]);
par_eval_all(t + c[i]*h, helpl, stagevec[i]);
stopTimer(&timer.calc);
}

J/for (i = 0; i < ode_size; ++i)
//{
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// help[i] = 0.0;
// helpl[i] = 0.0;
iz

// cale error
NestStep__step () ;
{

dMaddThree (bbs [0] , stagevec [0], bbs[1l], stagevec[l], bbs[2], stagevec

[2], helpl, ode_size, BL_NO_STEP) ;

dMaddThree (bbs [3] , stagevec[3], bbs[4], stagevec[4], 1, helpl, helpl,

ode_size , BL_NO_STEP) ;

dMaddThree(bbs [5], stagevec[5], bbs[6], stagevec[6], 1, helpl, helpl,

ode_size , BL_NO_STEP) ;

startTimer (&timer .comb) ;
//NestStep_combine (NULL, NULL) ;
bIMPGroupSync () ;
stopTimer(&timer .comb) ;

NestStep_end_step () ;

old_h = h;

// error_maz = 0.0;

// for (i = 0; i < ode_size; ++i)
//

{
// temp = fabs(err_vector[i] / yscal[i]);
// if (temp > error_maz)

// error_mazx = temp ;

/)

/) error_maz = dDistMazAbsQuot(err_vector, yscal, ode_size);

yscalH = h;

error__max dDistMaxAbsQuotYscal(y, stagevec[0], helpl, ode_size);
error_max = error_max / bf;

if (error_max <= 1.0) // accept

{

NestStep_step () ;
dDistZero (helpl, ode_size, BL_NO_STEP);
for (i = 0; i < s; ++i)
¢ J/for (§j = 0; j < ode_size; ++j)

//help [j] += bbs[i] = stagevec[i][j];
J/helpl (5] 4= b[i] * stagevee[i][i]:

//}
dDistAXPY (b[i], stagevec|[i], helpl, helpl, ode_size, BL_NO_STEP
) ;
J/for (i = 0; i < ode_size; ++i)
//{
/) eld_y[i] = y[i];
//  yscal[i] = (fabs(y[i]) + fabs(h % stagevec[0][i])) + 1.0e—230;
//}

J/for (i = 0; i < ode_size; ++i)

Vst
// wyli] 4= h % helpl[i];
// err_wector[i] = h x help[i];

//}

dDistAXPY (h, helpl, y, y, ode_size, BL_NO_STEP) ;
startTimer (&timer .comb) ;
//NestStep_combine (NULL, NULL) ;

bIMPGroupSync () ;

stopTimer(&timer .comb) ;

}
NestStep_end_step () ;

h *=

MAX(1.0 / 3.0, 0.9 % pow(1.0 / error_max, 1.0 / (ord + 1.0)), double);

t 4= old_h;
//ode_update(t, y); points to a dummy for the bruss—problems
else // reject
h = MAX(0.1 % h, 0.9 % h % pow(1.0 / error_max, 1.0 / ord),
//for (i = 0; i < ode_size; ++i)

// wyli] = old_y[i];
//dDistCopy(old_y, y, ode_size, BL_STEP);

double) ;
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h = MIN(h, te — t, double);
}

prdO(steps)
double sum = dDistSum(y, ode_size);
prf0 (sum) ;

// FREE2D(stagevec);
// FREE(yscal);
"// FREE(old_y);
// free(err_vector);
// FREE(help) ;
// FREE(helpl);

for (i=0;i<s;i+4)
free BlockDistArray (stagevec[i]);
free BlockDistArray (helpl);

FREE(bbs) ;

[/ SESSSSSISSSSSSSSSSS>
// Evaluation functions

// original evaluation function structure
double brus_mix_eval_ t;

void brus_mix_eval_local(double %y, double xf, int start, int n)
{

int i;

for (i=0;i<n;i++)

f[i] = bruss_mix_eval _comp(start+i, brus_mix_eval_t, &y[—start]);

}
// restructured evaluation function
void brus_mix_eval_ local2(double xy, double *f, int start, int n)
{

int i;

int u;

int N = bruss_grid_size;

int N2 = N4N;
for (i=0;i<n;i++)
{
int k=(itstart)/(N2);
itstart )—kx=(N2);

"= 0) || (k==N-1) || (j==N-=1) || (j = 0)))

int next = (k+1)*(N2)—start —2;
next = (mnext < n 7 next : n);
double alpha = bruss__alpha;
double N1 = (double) N — 1.0;
double ann = alpha*N1xN1;
if ((itstart)&1)
{
fli] = 3.4 = y[i — 1] — y[i — 1] = y[i — 1] * y[i] 4+ ann %= (y[i —
N2] + y[i + N2] + y[i — 2] + y[i + 2] — 4.0 = y[i]);
it++;
¥
for (;i<next —1;i4=2)
{
fli] = 1.0 + y[i] = y[i] * y[i + 1] — 4.4 % y[i] + ann * (y[i —
N2] + y[i 4+ N2] 4+ y[i — 2] + y[i + 2] — 4.0 % y[i]);
i++4;
fli] = 3.4 % y[i — 1] — y[i — 1] % y[i — 1] = y[i] 4+ ann =

i]
(D (y[i — N2] + y[i + N2] + y[i — 2] + y[i + 2] — 4.0
« y[i]);

b
if (i<next)

if ((itstart)&1)
£l

= 3.4 % y[i — 1] — y[i — 1] = y[i — 1] = y[i] 4+ ann =* (y|[
i- N2] 4 ylio4+ N2] boylio— 2] Foylio+ 2] - 4.0 % y[i]);
else
fli] = 1.0 + y[i] = y[i] = y[i + 1] — 4.4 = y[i] + ann * (y|
) i — N2] + y[i + N2] + y[i — 2] + y[i + 2] — 4.0 * y[i]);
else
i——
¥
else
f[i] = bruss_mix_eval comp(start4i, brus_mix_eval t, &y[—start]);
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}

// SIMD optimized evaluation function
void brus_mix_eval_local3(double *xy, double xf, int start, int n)
{

int i;

int u;

int N = bruss_grid_size;

int N2 = N4N;

for (i=0;i<n;i++)

{

int k=(it+start)/(N2);

int j=(itstart)—k=(N2);
j >>=1;
if(M((k==10) || (k=N=1) [|] (j ==N=1) || (j ==0)))
{
int next = (k+1)x(N2)—start —2;
next = (next < n ? next : n);
double alpha = bruss_alpha;
double N1 = (double) N — 1.0;
vector double v_a = spu_splats(alpha);
vector double v_N1 = spu_splats (N1);
vector double v_4 = spu_splats(4.0);
vector double v_3 4 = spu_splats(3.4);
vector double v_4 4 = spu_splats(4.4);
vector double v_1 = spu_splats (1.0);
vector double v_ann = spu_splats(alphaxN1«N1);
if ((itstart)&l)
{
fli] = 3.4 = y[i — 1] — y[i — 1] = y[i — 1] * y[i] 4+ alpha =
N1 = N1 = (y[i — N2] + y[i + N2] + y[i — 2] + y[i + 2] —
4.0 * y[i]);
e
}
if (i<next —3)
for (;i<next —3;i+=4)
vector double ev_i = il,yli+2]};
vector double ev_ipl yli4+1],y[i+2+1]};
vector double ev_ip2 yv[ii+2],y[i+2+2]};
vector double ev_im2 y[i—-2],y[i+2—-2]};
vector double ev_imN2 {y[i-N2],y[i4+2—-N2]};
vector double ev_ipN2 = {y[i4+N2],y[i+24+N2]};
vector double eres = spu_mul(v_ann, spu_sub (spu_add(ev_imN2,
spu_add(ev_ipN2, spu_add(ev_im2, ev_ip2))), spu_mul(v_4,
ev_i)));
eres = spu_add(spu_sub(spu_add(v_1l, spu_mul(spu_mul(ev_i,ev_ipl
), ev_i)), spu_mul(v_4_4, ev_i)),eres);
it++;
vector double ov_i = {y[i],y[i+2]};
vector double ov_iml = {y[i—1],y[i+2—1]};
vector double ov_ip2 = {y[i+2],y[i+2+2]};
vector double ov_im2 = {y[i—2],y[i+2-2]};
vector double ov_imN2 {y[i-N2],y[i+2-N2]};
vector double ov_ipN2 = {y[i+N2],y[i+2+N2]};
i——
vector double ores = spu_mul(v_ann, spu_sub (spu_add(ov_imN2,
spu_add (ov_ipN2, spu_add(ov_im2, ov_ip2))) ,spu_mul(v_4,
ov_1)));
ores = spu_add(spu_sub(spu_mul(v_3_4, ov_iml), spu_mul(ov_iml,
spu_mul(ov_iml, ov_i))), ores);
fli] = spu_extract(eres, 0);
fli+1] = spu_extract (ores, 0);
fli+2] = spu_extract(eres, 1);
fli+3] = spu_extract (ores, 1);
}
if (i<next—1)
fli] = 1.0 + y[i] = y[i] = y[i 4+ 1] — 4.4 % y[i] + alpha =* N1 x
N1 x (y[i — N2] 4+ y[i 4+ N2] + y[i — 2] + y[i + 2] — 4.0 * y[i
DN
i4+5
fli] = 3.4  y[i — 1] — y[i — 1] %= y[i — 1] % y[i]+ alpha % N1 x NI
* (y[i = N2] + y[i + N2] 4+ y[i — 2] + y[i + 2] — 4.0 % y[i]);
i++;
3
if (i<next)
if ((i+start)&1)
fli] = 3.4 % y[i — 1] — y[i — 1] = y[i — 1] = y[i] + alpha =
N1 x N1 x (y[i — N2] 4+ y[i + N2] + y[i — 2] + y[i + 2] —

4.0 x y[i]);
else
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fli] = 1.0 + y[i] = y[i] = y[i + 1] — 4.4 * y[i] + alpha =
N1 x NI = (y[i — N2] + y[i + N2] + y[i — 2] + y[i + 2] —
4.0 x y[i]);
else
i——
}
else
fli] = bruss_mix_eval_comp (start+i, brus_mix_eval_t, &y[—start]) ;
}
}
// skeleton callers
void dist__bruss_mix__eval_all(double t0, BlockDistArray =y , BlockDistArray =f)
{
brus_mix_eval_t = t0;
// dDistOverlapedMapLocalFunc(&brus_miz_eval local, y, f, ode_size, (int)ode_acc_dist(),
BL_ZERO) ;
// dDistOverlapedMapLocalFunc(8brus_miz_eval_local2, y, f, ode_size, (int)ode_acc_dist(),
BL_ZERO) ;
dDistOverlapedMapLocalFunc(&brus_mix_eval_local3, y, f, ode_size, (int)
ode__acc_dist () +4, BL_ZERO) ;
}

// evaluation of a single component

double bruss_mix_eval comp(uint i, double t, const double xy)
{

double alpha = bruss_alpha;

uint N = bruss_grid_size;

double N1 = (double) N — 1.0;
uint N2 = N + N;

uint k ;
//uwint j = i % N2;
J/uwint v = j % 2;

/15 /= 2;

uint j = i — k x N2
uint v i & 1
j>>= 1

if (1v) /) — U

+oyli] = y[i] = y[i + 1] — 4.4 = y[i]
+ alpha % N1 * N1 % (2.0 % y[i + N2] + 2.0 = y[i + 2] — 4.0 = y[i]);
if (j =N — 1)

// U(0,N—1)

return 1.0
+ y[i] = y[i] = y[i + 1] — 4.4 « y[i]
+ alpha * N1 * NI x (2.0 * y[i + N2] + 2.0 * y[i — 2] — 4.0 = y[i]);
// U0, j)
return 1.0
yii] = y[i] * y[i + 1] — 4.4 = y[i]

alpha * N1 x N1
(2.0 = y[i + N2] + y[i — 2] + y[i + 2] — 4.0 * y[i]);

l1se if (k == - 1)

o+

if (j == 0)
// U(N—1,0)
return 1.0
+yli] = y[i] = y[i + 1] : y[i
+ alpha * N1 % N1 % (2.0 % y[i — N2] + 2.0 = y[i + 2] — 4.0 = y[i]);
if () =N - 1)
// U(N—1,N—1)
return 1.0

+ y[i] » y[i] * y[i + 1] — 4.4 « y[i]
+ alpha % N1 % N1 x (2.0 = y[i — N2] 4+ 2.0 * y[i — 2] — 4.0 % y[i]);
// U(N=1,7)
return 1.0
+ y[i] = y[i] = y[i + 1] — 4.4 x y[i]
+ alpha * N1 x N1
% (2.0 % y[i — N2] + y[i — 2] + y[i + 2] — 4.0 = y[i]);
else
{
if (j == 0)
// U(k,0)
return 1.0
+ y[i] = y[i] = y[i + 1] — 4.4 x y[i]

+ alpha % N1 x N1
* (y[i — N2] + y[i + N2] + 2.0 = y[i 4+ 2] — 4.0 = y[i]);
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if (j == N — 1)
// U(k,N—1)
return 1.0
+ y[i] = y[i] = y[i + 1] — 4.4 = y[i]

+ alpha % N1 *x NI1

* (y[i = N2] 4+ y[i + N2] + 2.0 * y[i — 2] — 4.0 = y[i]);

/) U(k,j) allgemein
return 1.0

+ yli] = y[i] = y[i + 1] — 4.4 = y[i]
+ alpha * N1 % N1
; (y[i = N2] + y[i + N2] + y[i = 2] + y[i + 2] = 4.0 % y[i]);
}
else /) —V
if (k == 0)
if (j == 0)
// V(0,0)
return 3.4 x y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha % N1 % N1 % (2.0 % y[i 4+ N2] + 2.0 % y[i + 2] — 4.0 =
if (j == N — 1)
// V(0,N—1)
return 3.4 * y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha % N1 % N1 % (2.0 % y[i + N2] + 2.0 % y[i — 2] — 4.0 =
// V(0. i)
return 3.4 x y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha * N1 % N1
; (2.0 = y[i + N2] 4+ y[i — 2] + y[i + 2] — 4.0 % y[i]);
else if (k == N — 1)
if (j == 0)
// V(N—1,0)
return 3.4 % y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha % N1 % N1 % (2.0 % y[i — N2] + 2.0 % y[i + 2] — 4.0 =
if (j == N — 1)
// V(N—1,N—1)
return 3.4 % y[i — 1] — y[i — 1] = y[i — 1] = y[i]
+ alpha % N1 % N1 % (2.0 % y[i — N2] + 2.0 % y[i — 2] — 4.0 =
// V(N=1,5)
return 3.4 x y[i — 1] — y[i — 1] = y[i — 1] = y[i]
+ alpha % N1 = N1
* (2.0 x y[i — N2] + y[i — 2] + y[i + 2] — 4.0 = y[i]);
else
if (j == 0)
// V(k,0)
return 3.4 x y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha * N1 % N1
* (y[i — N2] + y[i + N2] + 2.0 = y[i + 2] — 4.0 = y[i]);
if (j == N — 1)
// V(k,N—1)
return 3.4 * y[i — 1] — y[i — 1] = y[i 1] % y[i]
+ alpha % N1 % N1
* (y[i — N2] + y[i + N2] + 2.0 = y[i — 2] — 4.0 = y[i]);
// V(k,j) allgemein
return 3.4 x y[i — 1] — y[i — 1] % y[i — 1] = y[i]
+ alpha * N1 % N1
; (y[i = N2] + y[i + N2] 4+ y[i = 2] + y[i + 2] — 4.0 % y[i]);

y[il);



