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1 Introduction

1.1 Why parallel programming?
Many applications, especially scientific ones, today require a vast 

amount of computational power, e.g. weather predictions and particle 
simulations. As uniprocessors at this point are too slow to solve these 
problems at an acceptable speed, we need to utilize a larger amount of 
processors that work together in order to solve these problems. The rate 
by which performance is increasing for uniprocessors is also on a 
decline, largely because of increasing leakage currents, and increased 
power consumption due to the higher clock frequencies. This makes it 
highly unlikely that uniprocessors ever will be able to reach such speeds 
that is demanded. This is realized by chip manufacturers like Intel and 
AMD and most new processors developed by them today use dual cores, 
and even more cores are being planned for. That is, as we know that 
parallel computing is needed today and in future, there is a need for tools 
and programming languages that enables programmers to easily utilize 
the power of parallel computers.

1.2 What is NestStep? 
NestStep[1, 2] is a collection of parallel programming extensions to 

existing programming languages, developed by Christoph Kessler. 
NestStep is based on the bulk-synchronous programming model, 
introduced by Valiant[3]. The most notable features supported by 
NestStep is its shared memory model and nested parallelism. The runtime 
system developed during this project is for the extensions for the C 
programming language.

The NestStep-C runtime system is designed to work on top of parallel 
computers supporting MPI 1.2 (Message Passing Interface,  the interested 
reader may find more information at www.mpi-forum.org), since the 
supercomputer available only supports version 1.2. It uses Tlib[4], a 
library for group management on top of MPI developed by Rauber and 
Rünger for controlling processors groups. It has been tested on a 
distributed memory system at the National Supercomputer Centre in 
Linköping, Sweden.

1.3 Thesis outline
This thesis is outlined as follows:

● Background reading: In this section we will go through some 
fundamental knowledge that is required in order to benefit the 
most from this thesis.

● NestStep constructs: A brief overview covering the most 
important NestStep extensions. 
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● Communication structure: A discussion of how the NestStep 
system handles the task of communicating data.

● Project requirements.

● Interface: A set of guidelines to those interested in writing a front 
end for NestStep. This section is of no importance to any other 
section, and can thus be skipped.

● Example applications and implementations: In this section the 
reader will be introduced to some example applications and their 
implementations in NestStep.

● Evaluation: Benchmarks of the example applications on the 
NestStep system with a discussion on the performance.

● Related work: A small discussion on other similar projects.

● Conclusions and future work: A highlight of the most important 
things to note about the NestStep system, followed by some ideas 
on what directions the future development of NestStep could take.

2 Background reading
NestStep is based on the Bulk-Synchronous Programming (BSP) 

model that was introduced by Valiant[3].

Programs created using this model are modeled as a series of 
supersteps, where the computing nodes are synchronized at the beginning 
and end of each step.

When the processors are synchronized, local computation with cached 
versions of the shared data is performed. 

When  the local computation phase is finished a communication phase 
begins. During this phase each processor sends any data that other 
processors may need for the next superstep.

Please see Figure 1 for an illustration of a superstep. 

 Figure 1: A BSP-superstep.
Recreation of an illustration in [1].
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In order to get the most out of this thesis it is suggested to the reader to 
read Kessler’s papers on NestStep[1, 2]. 

To better appreciate the performance measurements it is useful to 
understand what kind of performance can be expected from parallel 
systems. Appendix A contains a brief introduction to this topic.

3 NestStep constructs
This section contains a brief overview of the most important NestStep 

constructs. For a more detailed description the reader is recommended to 
read Kessler's papers on NestStep [1,2]. For examples of these constructs 
please see section 7 of this document.

3.1 Parallel extensions
NestStep enables code sections to be run in parallel. Each processor 

that is running a parallel section together with other processors is 
assigned a rank, that ranges between 0 and the number of processors – 1. 
This collection of processors is called a group, and the processor with 
rank 0 is the leader.

Memory consistency is ensured outside the supersteps, which means 
that all shared data is identical on all processors outside the supersteps.

step statement
executes the statement in parallel, and keeps memory consistency at the 
beginning and end of statement.

neststep(k) statement
splits the current group (of size p)  in k subgroups of size ⌈ p/ k ⌉ or 
⌊ p/ k ⌋ , with the subgroups indexed from 0 to k-1. This group id can 

be accessed by the @ symbol while in statement.
neststep(k, weight) statement

Here weight must be a replicated shared array, of k or more non-negative 
floats where the sum of the elements equals one. The k subgroups that are 
created are chosen so that each group i, 0≤i≤k−1 , gets a fraction of 
the available processors that is as close as possible as the fraction in 
weight[i]. Each subgroup gets at least one processor.

neststep(k, @=intexpr) statement
creates k subgroups. intexpr is evaluated on each processor and needs to 
be in the range [0...k-1]. The processor then joins the group with an id 
identical to intexpr. If intexpr is outside of the range [0...k-1] it skips 
statement.

seq statement
statement is executed by the group leader only(rank 0). No 
synchronization is implied by this construct, if that is necessary it needs 
to be wrapped inside a step.

In Figure 2 we can see an illustration of the way the nested parallelism 
works in NestStep.
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Figure 2: Nested supersteps.
Recreation of an illustration in [1].

3.2 Symbols
#: The number of processors in the current group. It is also accessible 

by thisgroup.size().
    $: The processor rank in the current group. It is also accessible by 

thisgroup.rank().
  @: The id of the group the processor is a part of. This id is assigned 

after each split. It is also accessible by thisgroup.gid().

3.3 Shared data
Data can be shared in two ways in NestStep. The first way is to use 

replication, i.e. each processor has it own version of the data, and the 
shared data is to be made consistent at the beginning and end of 
supersteps. The other way is by distributing an array's elements across 
the processors. It is only arrays that may be distributed.

Combining
At the end of steps there is a group-wide combine phase, where the 

shared data is combined using different combine strategies. The shared 
data that can be combined is shared variables and replicated arrays, 
which we will discuss more later. All combine strategies are applied 
element wise  in the case of replicated arrays. The available strategies 
are:

<0>: The leader's value is broadcast at synchronization.

<?>: An arbitrary updated copy is chosen and broadcast.
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<=>: No combining, the programmer is responsible for ensuring that 
the processors write an equal value.

<+>: All local copies are added together and is broadcast to the 
processors of the group. This also works with multiplication and bitwise 
AND/OR.

<foo>: A user defined method is used when combining. In NestStep-C 
this function need to be declared as 

void foo(void * src1, void * src2, void * dest);

<strategy:variable>: This can be used to store the prefix sums of the 
shared variable that is used with this combine strategy in the local 
variable. As an example, let us look at how it works when using addition. 
The prefix sum is defined as variablei=∑ j=0

i−1
shared j ,∀ i , where the 

indices  refer to the processor they belong to. That is, variable is the sum 
of all updates of shared that belong to processors with lower rank than 
oneself. Here is an example of this for three processors:

These combine strategies are used in conjunction with the combine 
keyword.

sh int a, b;
int c;
...
step {
...
} combine(a<+>, b<*:c>);

If we have a shared array that needs to be combined, but only need to 
combine a part of the array, we can specify the range by using array 
notation when using combine.

Step {
...
} combine(array[lower:upper]<+>);

Replicated data

Replicated shared variables
Shared variables are declared with the keyword sh. For example,

sh int a;

One may also specify which combine strategy the variables should be 
combined with at synchronization between processors at the declaration.

7
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Here is an example of this:
sh<+> int a;
sh<?> int b;

Replicated arrays
Replicated arrays are used similarly as replicated variables. What is 

worth noting is that combine strategies work element-wise on arrays.

Distributed arrays
Only arrays may be shared in a distributed manner. The arrays 

elements may be distributed in blocks or cyclically.

Block arrays
When the array is distributed in blocks the elements are distributed 

evenly across the nodes. For example, a size of 1000 on four nodes 
would be distributed as 250 elements on each node. A size of 1013 would 
be distributed with 254, 253, 253, 253 elements respectively.
A block distributed array is declared by adding </> after the type. 
Example:

sh int b[N]</>;

Cyclic arrays
Cyclic arrays distributes the elements of the array cyclically in blocks 

of a specified block size. Cyclic arrays are declared using <%>. The 
block size is the number of elements to the right of <%>, which if 
omitted is considered one. For example, we show how to declare two 
arrays:

sh int c[5]<%>[10];
sh int d[9]<%>;

These arrays on four processors would be distributed as:

● node 0: c[0][0-9], c[4][0-9], d[0], d[4], d[8].

● node 1: c[1][0-9], d[1], d[5].

● node 2: c[2][0-9], d[2], d[6].

● node 3: c[3][0-9], d[3], d[7].

Reading/updating remote array elements
To read a range of values from a distributed array into a local array 

one can use mirror. In the following example pre is the local array.
sh int b[N]</>;
mirror(pre, b.range(lower_index, upper_index));
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To write to a distributed array one uses update. Example:
sh int c[M]<%>[N];
update(c.range(lower_index, upper_index), pre);

To move elements between distributed arrays in a parent and a child 
group, one uses importArray/exportArray similarly to mirror/update.

4 Communication structure
All communication happens in a combine phase, except for remote 

reads/writes to distributed arrays. 

Reading/writing to remote parts of distributed arrays is done after the 
combine phase. The problem of knowing how many read/write requests 
one node is going to receive from other nodes is solved by using an array 
that holds one integer for each node. For each request that a node sends 
to another, it adds one to the array element with the receiving node's 
index. This array is then combined using addition in the combine phase. 
We then read the element with the same index as the nodes rank, which 
will contain the number of read/write requests sent to it. 

The way combining works is illustrated in Figure 3. The broad gray 
lines are distributed reads/writes. The tree used in the figure is a binomial 
tree of order 3. 

Figure 3: Combining in the NestStep system
Recreation of an illustration in [2].
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The following definition of a binomial tree is taken from [5].

The binomial tree of order k≥0 with root R is the tree Bk

defined as follows:

1. if k=0 , Bk=B0={R} . That is, the binomial tree of 
order zero consists of a single node, R.

2. If k0 , B k={R , B0 , B1 ,... , Bk−1} . That is, the 
binomial tree of order k0 comprises the root R, and k 
binomial subtrees, B0 , B1 , ... , Bk−1 .

An illustration of a few binomial trees can be seen in Figure 4.

Figure 4: The first five binomial trees.
Recreation of an illustration in [5].

If we look at the the binomial trees, we can observe that if were to cut 
the branch from any node to its rightmost child, the trees below the node 
and the child would be identical. That is, if we would send a message to a 
child, afterwards the child and the parent would have an equal amount of 
nodes below them to distribute data to. This is, at least in the author's 
opinion, the most intuitive way to broadcast data fast.

There are trees similar to binomial trees that may be used in NestStep. 
These trees are associated with a fraction α that is less than one. A tree 
like this is represented in Figure 5, where T1 is number of nodes in the 
subtrees below the parent(excluding the rightmost tree with the child), 
and T2 is the number of nodes in the subtrees below the rightmost child. 

Then α= T2
T1T2 .
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Figure 5

These trees are referred to as binomial trees with a fraction α. A 
normal binomial tree has fraction 0.5.

The NestStep-C system also support flat and D-ary trees. Flat trees are 
trees where one node is the root node and the rest of the nodes are 
children to that node.

A D-ary tree is a tree where an inner node has D children, where D is 
an integer. See Figure 6 for an illustration of a D-ary tree where D = 2.

Figure 6: D-ary tree with D=2.
Recreation of an illustration in [1].

Analytically determining an optimal tree structure for a system is quite 
hard. One well known model for communication costs is the LogP 
model, that is presented in [6]. The model uses four parameters:

● L: L is the communication delay for propagating the message 
over the network.

● o: o is the communication overhead experienced when sending or 
receiving a message.

● g: g represents the communication bandwidth. This is modeled as 
the minimum time between two consecutive sends by a node, i.e. 
from the beginning of sending the first message to the beginning 
of sending the second message.

● P: P is the number of processors.

All of these parameters must be known to be able to use this model to 
predict the performance.

[7] discusses on how one might be able to find optimal trees using this 
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communication model.

We will not discuss this in length here, but will use two examples to 
illustrate that under different circumstances some tree structures may be 
better than others, and that it is worth investigating which yields the best 
performance. The objective is to broadcast a message from node 0 to all 
other nodes. To relate to NestStep, combining is a reduction, which is 
essentially a backwards broadcast except that every internal node 
perform some additional computation for each element transmitted(e.g. 
adding elements together). Since the time for sending an element over the 
network is much larger than processing it, we can ignore the processing 
time for each element when modeling the reduction phase. The commit 
phase is a broadcast. That is, we need a tree that is suitable for 
broadcasting.

As the first example, consider four nodes(i.e. P = 4) where L is five 
time units, and g and o is 1 time unit.  If we use a flat tree, node 0 will 
send three messages, to one node after one time unit(the o parameter), to 
a second node two time units, and finally to a third node after three time 
units. The first node to receive its message will receive it after 7 time 
units.(five for the latency and two for the overhead from 
sending/receiving it.) That is, if we were not using a flat tree,  first child 
would be ready to transmit to any eventual child nodes after 7 time units. 
As the message sent to node 3 from the root node occurred after 3 time 
units, there is no other tree that could do this faster than a flat tree. The 
flat tree for this situation is illustrated in Figure 7. It is clear that node 3 
in the figure can not send a message to node 1 before node 0, so a 
different tree structure would perform worse.

Figure 7: Broadcast with a flat tree using parameters from example one.

For a second example, let us change L and o  to one time unit, and g to 
five time units. In this scenario, node 3 would be ready to send the 
original message to its eventual children after 3 time units.(2o + L.) At 
that time node 0 will have two time units left before it can start sending 
to node 2. (g – 3.) In this case it will clearly be better if node 3 sends the 
message to node 2 instead of node 0, that is, a binomial tree would 
perform better than a flat tree. Figure 8 illustrates this scenario with at 
binomial tree.
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Figure 8: Broadcast with a binomial tree using parameters from example two.

A problem with the LogP model is that some of the parameters will 
depend on the message size. That is, we can not use the same values for 
different message sizes if we want a good approximation from the model. 
[8] introduces the LogGP model, which also takes into account the 
amount of data to be transmitted.

The default tree structure used in NestStep is a binomial tree structure. 
We will later show that this tree structure seems to have the most 
potential of a few selected candidate structures. 

5 Project requirements
The aim for this project was to develop a runtime system for NestStep-

C. As for most projects a set of primary requirements was set up in order 
to determine when the project can be considered to be finished. In 
addition to the primary requirements there was also two secondary 
requirements. These secondary requirements were to be met if time 
allowed. 

5.1 Primary requirements
● The runtime system must support all of the language features 

mentioned in [1] and [2] except shared volatile variables(that has 
been dropped from NestStep in [2]).
The features to be supported are: 

1. The step statement. 

2. The neststep statement. 

3. Shared variables and arrays. Shared arrays can be replicated 
or distributed.

4. Combining for shared variables, arrays and objects.

● The communication system must support D-ary trees, where D is 
to be specified at compilation time or runtime.

● Accessing remote sections of distributed arrays must be handled 
as specified in [2], i.e. as in section 4.
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● The system must not have any known bugs that prevent the use of 
the system.

5.2 Secondary requirements
● The best tree structure among the tree structures mentioned in 

section 4 should be obtained, empirically and/or by analysis. 

● The runtime system should take advantage of hybrid 
architectures, where the nodes in the clustered supercomputer 
may contain SMPs.

We were only able to find the best tree structure empirically among 
these secondary requirements before the time allocated to the project 
ended.

6 Interface
This section describes how to interface with the NestStep runtime 

system, if one were to write a front end  for NestStep-C. It is not a 
description of how one writes actual NestStep programs. It is primarily 
written for someone interested in writing a front end for NestStep, while 
others may skip it at no loss.

6.1 Identifiers of shared data
In order to be able to identify shared data among different nodes each 

shared variable/array is given a name. This name is a struct named Name 
and has two fields; procedure and relative. 

procedure should be set to 0 if it is a global variable, otherwise it 
should be set to a value that is unique for the function it is declared in, 
i.e. all names in a function share the same procedure value. Relative is an 
integer that is to be unique within the function. It should be noted that 
there is a path field in the Name struct, it is however handled by the 
runtime system and is of no concern to the front end developer. Example:

void someFunc(void) {
Name name;
name.procedure = 4; // unique for this function
name.relative = 0;
...
one = new_ShVar(name, IVAR, pointer_one);
name.relative++;
two = new_ShVar(name, IVAR, pointer_two);
name.relative++;
...

}

6.2 Shared variables
Shared variables are implemented using a normal variable for the data 

storage and a wrapper that holds it. To create the wrapper one uses the 
function 

ShVar * new_ShVar(Name name, int type, void * base);
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The arguments are:

● name: a name as discussed above.

● type: An integer that specifies the type of the variable. Possible 
entries are IVAR(int), FVAR(float) and DVAR(double).

● base: a pointer to the normal variable.

The memory used by the wrapper should later be reclaimed by 
using

void free_ShVar(ShVar * var);
For example, when a shared integer is declared it would be 
translated as:

...
int shared;
ShVar * _shared;
...
_shared = new_ShVar(unique_name, IVAR, &shared);
...
free_ShVar(_shared); /* free the memory the wrapper consumes */
...

It is possible to use pointers with this shared memory construct, by 
using the base member of the ShVar struct. Obviously the data that 
the pointer points to is what is shared.

double one, two;
ShVar * pointer;
...
/* initialize the pointer before use */
pointer = new_ShVar(unique_name, DVAR, NULL);
...
pointer->base = &one;
...
pointer->base = &two;
...
free_ShVar(pointer);
...

6.3 Replicated arrays
Replicated arrays are used in a similar manner to shared variables. 
Replicated arrays needs to have an existing array. To create and 
free a replicated array one uses

RepArray * new_RepArray(Name name, int type, int size, void * base);

and
void free_RepArray(RepArray * array);

The arguments are the same as for a shared variable, except that the 
size of the size of the array needs to be specified. Example:

int array[1000];
RepArray * _array;
...
_array = new_RepArray(unique_name, IVAR, 1000, array);
...
free_RepArray(_array);
...
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To set all elements in a replicated array to zero one can use
void set_RepArray_zero(RepArray * _array);

6.4 Distributed arrays
Distributed arrays do not use preexisting data structures, they create 

their own memory on the heap.

Block arrays distribute the memory evenly across the nodes. For 
example, a size of 1000 on for nodes would be distributed as 250 on each 
node. A size of 1013 would be distributed as 254, 253, 253, 253 elements 
respectively. To create and free a block array one uses

BlockDistArray * new_BlockArray(Name name, int type, int size);

and
void free_BlockArray(BlockDistArray * array);

An example on how to create/free a block array:
...
BlockDistArray * block_array;
block_array = new_BlockArray(unique_name, IVAR, 1000);
...
free_BlockArray(block_array);
...

To set the local elements of a block array to zero,
void set_BlockArray_zero(BlockDistArray * _array);

can be used. To take a global index and turn into a local index,
int global_local_index_b(BlockDistArray * _array, int _index);

is supplied. If the global index is not among the local elements -1 is 
returned. To take a local index and turn into a global index,

int local_global_index_b(BlockDistArray * _array, int _index);

can be used.

Cyclic arrays distribute the elements cyclically in blocks of a 
minimum block size. A size of 50 on four processors with a block size of 
10 would be distributed as:

● node 0: 0-9, 40-49

● node 1: 10-19

● node 2: 20-29

● node 3: 30-39

The size needs to be able to be divided by the block size without 
leaving a remainder.

To create and free a cyclic array one uses
CyclicDistArray * new_CyclicArray(Name name, int type, int size, int 
blocksize);
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and
void free_CyclicArray(CyclicDistArray * array);

An example on how to create/free a cyclic array:
...
CyclicDistArray * cyclic_array;
cyclic_array = new_CyclicArray(unique_name, IVAR, 100, 10);
...
free_CyclicArray(cyclic_array);
...

To set the local elements of a cyclic array to zero,
void set_CyclicArray_zero(CyclicDistArray * _array);

can be used. To take a global index and turn into a local index,
int global_local_index_c(CyclicDistArray * _array, int _index);

is supplied. If the global index is not among the local elements, -1 
is returned. To take a local index and turn into a global index

int local_global_index_c(CyclicDistArray * _array, int _index);

can be used.

6.5 Group management
Before running any function related to NestStep(including the ones 

creating the data structures), a call to
void NestStep_init(int * pargc, char *** pargv);

needs to be made. The arguments are the addresses of the arguments to 
your main function. Before the program ends a call to the following 
function needs to be made in order to clean up. After it has been called 
no more functions related to NestStep are to be called.

void NestStep_finalize(void);

int NestStep_get_rank(void);
Retrieves the node's rank in the current group.

int NestStep_get_size(void);
Retrieves the size of the node's current group.

At the beginning of a step the following function needs to be 
called.

void NestStep_step(void);

To end a step the following function needs to be called.
void NestStep_step_end(void);

void NestStep_neststep(int k);
splits the current group into k groups.
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To split the current group into k groups where the amount of nodes 
in each group is different

void NestStep_neststep_w(int k, float weight[]);

is used. weight is an array with k floats where the sum of whole 
array is 1.

To split the current group into k groups where the value of an 
integer determines the final subgroup for a node

void NestStep_neststep_c(int k, int color);
is used. A node ends up in the group that has the same value as 
color.

void NestStep_neststep_end(void);
merges groups that has been split previously.

To examine which group a node ended up in, the following 
function can be used.

int NestStep_get_group_id(void);

6.6 Combining
Before a step is ended the following function needs to be run if any 

variables or arrays are to be combined, or there is a possibility that any 
remote read/write request have been made.

int NestStep_combine(CombineList * _clist, ArrayHolder * _holder);
The parameters should be NULL. As an example:

...
NestStep_step();
{
...
}
NestStep_combine(NULL, NULL);
NestStep_step_end();

NestStep_combine uses the current group for combining, so it 
should be used after NestStep_neststep_end instead of before.

A few macros has been provided to choose how to combine items. A 
few functions below use these so they will be listed here:

● ADD: Standard addition of items.

● MULT: Standard multiplication of items

● AND: The elements are AND:ed with each other. Only for 
integers.

● OR: The elements are OR:ed with each other. Only for integers.

● FUNC: A special function is to be provided.

● LEADER: The value(s) of the node with rank 0 in the the group 
are used.

● UPDATED: The values of an updated element are used. It is not 
specified from which node with updated values they are taken 
from.
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If a shared variable is to be combined at the end of a step it needs to be 
attached to the CombineList that is to be used in the combine phase. The 
function that does this is:
int NestStep_shvar_attach(ShVar * var, 

int combine_strategy, 
void (*combineFn)(void *, void *, void *), 
int prefix_tag, 
void * prefix_base, 
int updated, 
CombineList * clist);

The parameters to the function are:

● var: The pointer returned by new ShVar.

● combine strategy: An integer that determines how the variable 
should be combined.

● combineFn: If an own function is to be used for combining the 
function pointer should be passed here. If no special function is to 
be used NULL should be passed.

● prefix_tag: If a prefix computation such as the one described in 
section 3.3 is to be performed the macro PREFIX needs to be 
supplied for this value. If no prefix computation is necessary the 
macro NO_PREFIX should be supplied.

● prefix_base: a pointer to the memory location where the prefix 
sum elements should be stored.

● updated: This parameter is a remain from an early version of the 
NestStep system. The value supplied here does not matter.

● clist: the CombineList that is to be used. This should be NULL to 
use the default combine list that belongs to the group, which is 
what should be used.

Example:
...
/* add the variables and let local_var hold the prefix sum element */
NestStep_shvar_attach(shared, ADD, NULL, PREFIX, &local_var, 0, 

NULL);
...

Replicated arrays need to be attached in the same way as shared 
variables. For this

int NestStep_RepArray_attach(RepArray * array, int _combine_strategy,
void (*_combineFn)(void *, void *, void *), int prefix_tag, 
void * prefix_base, int _updated, CombineList * _clist);

is used. The arguments are the same as for a shared variable, except 
of course that an replicated array is to be passed as the first 
parameter. To specify the range to be combine,

int NestStep_RepArray_range(RepArray * _array, int _lower, int _higher);
is used. The range is reset to normal after the next combining.

To gather/scatter the shared elements of a replicated array to a 
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distributed array the following functions are provided. The sizes of 
the arrays have to match.

/* scatters a replicated array to a block array */
int NestStep_scatter_rep_to_b(RepArray * reparray, BlockDistArray * 
barray);

/* scatters a replicated array to a cyclic array */
int NestStep_scatter_rep_to_c(RepArray * reparray, CyclicDistArray * 
carray);

/* gathers a block array to a replicated array */
int NestStep_gather_b_to_rep(BlockDistArray * barray, RepArray *  
reparray);

/* gathers a cyclic array to a replicated array */
int NestStep_gather_c_to_rep(CyclicDistArray * carray, RepArray *  
reparray);

To issue read/write requests the following functions are provided:
/* reads all elements with indexes lower to higher into buffer */
int NestStep_read_request_b(BlockDistArray * array, int lower, int higher, 

void * buffer, CombineList * clist);

int NestStep_read_request_c(CyclicDistArray * array, int lower, int higher, 
void * buffer, CombineList * clist);

/* writes to all elements with indexes lower to higher from buffer */
int NestStep_write_request_b(BlockDistArray * array, int lower, int higher, 

void * buffer, CombineList * clist);

int NestStep_write_request_c(CyclicDistArray * array, int lower, int higher, 
void * buffer, CombineList * clist);

The clist parameter should be NULL.

To import/export arrays into a subgroup the following functions 
can be used. The arrays that are imported from or exported to need 
to be available in the parent group. If active is non-zero elements 
are imported/exported, otherwise the processor just 
supplies/receives values.

int importArray_rep_to_rep(RepArray * from, RepArray * to, 
int lower, int higher, int active);

int exportArray_rep_to_rep(RepArray * from, RepArray * to, 
int _lower, int higher, int active);

int importArray_b_to_b(BlockDistArray * from, BlockDistArray * to, 
int _lower, int higher, int active);

int exportArray_b_to_b(BlockDistArray * from, BlockDistArray * to, 
int _lower, int higher, int active);

int importArray_b_to_rep(BlockDistArray * barray, RepArray * rarray, 
int lower, int higher, int active);

int exportArray_rep_to_b(BlockDistArray * rarray, RepArray * barray, 
int lower, int higher, int active);

20



int importArray_c_to_rep(CyclicDistArray * carray, RepArray * rarray, 
int lower, int higher, int active);

int exportArray_rep_to_c(CyclicDistArray * rarray, RepArray * carray, 
int lower, int higher, int active);

In order to change the trees used for combining, calls to any of the 
following three functions can be made:

void change_tree_bin(double fraction);
void change_tree_dary(int D);
void change_tree_flat(void);

These calls needs to be followed by
void rebuild_tree();

7 Example applications and implementations
We are going to look at three example applications, parallel prefix 

sums, mergesort and Gaussian elimination. In appendix D all code 
presented here is supplied without comments.

7.1 Parallel prefix

Application
The parallel prefix sums that our example is going to calculate is of the 

following form:
An input in form of an array of integers is going to be summed together 
as answer [i ]=∑ j=0

i
input [ j ] ,∀ i .

Example:

Input = [1, 2, 3, 4], Output = [1, 3, 6, 10]

Implementation
Implementing a parallel prefix summation is almost as trivial as 

implementing it in a sequential language. 

The function parprefix takes a distributed block array as an argument. 
We will assume that the number of values to be computed will be evenly 
divisible by the number of processors. 

void parprefix(sh int</> a[]) {
int i, j; // loop counters
int pre[a->size()/#]; // for storage of temporary local sums

    int myoffset; // prefix offset for this processor
    sh int sum;

...
}

Initially we declare a few variables and an array, which should be 
pretty self-explanatory together with the comments. The rest of the 
function is written using two steps, that should be located after each other 
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instead of the three dots above.

Step 1:
step {

sum = 0;
j = 0;

       forall(i, a) {
        sum += a[i];

           pre[j++] = sum;
}

} combine(sum<+:myoffset>); /* combine sum and store */
/* prefixes in myoffset */

In the first step we calculate a prefix sum into the local array. We 
specify myoffset to be used for storing a prefix sum value after 
combining.

Step 2:
step {

j = 0;
       forall(i, a) {
           a[i] += pre[j++] + myoffset;
}

Finally, in the second step, we add the prefix variable myoffset and the 
local array with the prefix values to a.

7.2 Mergesort

Application
Mergesort works as follows:

1. Divide phase: First there is a divide phase, when the array of data 
is recursively divided into two smaller arrays, until there only 
remains one element in each array.

2. Conquer phase: When we after the divide phase merge two arrays 
of data together, we keep the arrays sorted at all times. This is 
easily done by always taking the smallest values one at at time 
while moving the elements to the final array.

Figure 9 illustrates this process.

Figure 9: The principle behind mergesort.
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A more thorough description of mergesort is available in [9].

The mergesort algorithm that we are going to use sorts a distributed 
block array. The algorithm only uses some limited parallelism. In this 
case we are going to let each processor sort a subsection of an input array 
with unordered integers, and then perform the conquer phase on the 
ordered subsections. We omit the initial divide phase as the distributed 
block array already is divided into suitable parts to be sorted. We will use 
the standard quicksort function in the C library to sort these initial 
subsections. 

Figure 10 shows how the algorithm will work for four processors. The 
lines represents which parts that are sorted. When everything is sorted we 
omit the lines.

1. P0 and P2 form a subgroup that imports the array the original 
group.

2. P0 and P2 then merge these arrays.

3. P0 forms a subgroup that imports the array.

4. P0 merges the sorted parts.

5. P0 exports the array to parent group.

6. P0 and P2 export the array to the parent group.

Figure 10: Merging of arrays using version one.

The reason for using this algorithm is for testing that nested 
parallelism and importing/exporting arrays works.

We assume that the number of elements to be sorted is able to be 
distributed evenly, i.e. all processors starts with the same number of 
elements.
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Implementation
The function that calls mergesort is assumed to have sorted the local 

parts of the array before calling mergesort.
...
qsort(a->base, a->local_elements, sizeof(int), compare_ints);
mergesort(a);
...

a is a block array, and local_elements is the number of elements of 
the array that is located on the processor.

/* assume that local parts are already sorted */
void mergesort(sh int a[]</>)
{

if(# == 1) // nothing left to merge
        return;
    
    neststep(2, @ = $ % 2) {

sh int temp_array[a.size()]</>;

/* The following statement needs to be executed by all 
   processors that have some elements of the original array.
   The last parameters is a boolean flag that tells if the processor 
   should import the values, or simply provide its values to 
   other processors of another subgroup */

        
importArray(a, temp_array, 0, a.size() - 1, 1-@);

        
if(@ == 0)
{

merger(temp_array); // sort the imported array
if(# > 1) // if there are more than one processor in the group

mergesort(temp_array);
}

            exportArray(temp_array, a, 0, a->size – 1, 1-@);
    }
}

The reason for modulo 2 in the neststep-statement for determining 
group is because then half of the array to be imported is already on the 
processors.(See Figure 10.) merger merges the lower and upper local 
parts of temp_array. If there are more than one processor in the group 
left we need to call the mergesort-function recursively until we end up 
with a single processors that has the whole sorted array, after which of 
course the recursion unravels and we export the sorted parts back.

The actual merging of the sub arrays is done by the merger function.
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void merger(BlockDistArray * a)
{

int i;
int l_c;
int u_c;
int buffer[a->local_size];

l_c = a->lower; // counter for the lower section of the local array
u_c = l_c + a->local_elements / 2; // counter for the upper section

for(i = 0; i < a->local_size; i++) {
if(a[l_c] < a[u_c] && l_c < a->local_size / 2) {

buffer[i] = a[l_c];
l_c++;

}
else if(u_c < a->local_size) {

buffer[i] = a[u_c];
u_c++;

}
else {

buffer[i] = a[l_c];
l_c++;

}
}
a[a->lower:a->lower + a->local_size – 1] = buffer[:];

}

7.3 Gaussian elimination

Application
In this application we will solve an equation system using Gaussian 

elimination with pivoting, in order to avoid numerical errors in case the 
row used for elimination would have a small value in the column that is 
eliminated. The equation system is given as A*x=b, where A has the 
dimensions N*N, while x and b are vectors of length N. 

We will also run some tests using using a simplified algorithm, where 
we will skip the pivoting and back substitution in order to calculate x.

In Figure 11 we can see how the matrix A and vector b are transformed 
by the Gaussian elimination.

Figure 11: Gaussian elimination performed on A and b.

Implementation
The equation system to be solved is as mentioned previously given by 

the matrix A, and the vectors x and b, so that A*x=b. The result will be 
stored in x. 

A, b and x are originally replicated arrays given by the function call. 
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We will later scatter them to cyclic arrays.
int gaussian(sh double A[], sh double b[], sh double x[], int N) {

First we declare some variables that will be used later. 
double max = 0;
int largest = 0;
int row;
sh double[N]<%>[N] _A;
sh double[N]<%>[1] _b;
sh double b_tmp;
sh double b_elim;
sh double[N] tmp;
sh double[#] sizes;
sh double[N] elim;

int i, j, k, l;

The first thing that is done is to scatter the values in A and b to the 
cyclic arrays _A and _b. The Gaussian elimination will be performed on 
the cyclic arrays.

// scatter A and b
step {

scatter(A, _A);
scatter(b, _b);

}

Before we start we see which local values are the largest in the first 
column, in order to be able to  pivot the rows in _A and _b later. We use 
the forall2 statement to see which row has the largest value in column 0. 
We store the locally largest values in a shared array called sizes. This 
will be used in the beginning of the main loop. This calculation will be 
repeated in the end of the main loop for the column k for the remaining 
rows of the matrix. We do this in two places in the code to avoid 
unnecessary communication.

// find largest element among own kind
max = 0;
step {

forall2(i, _A) {
if(fabs(_A[i][0]) > max) {

max = fabs(_A[i][0]);
row = i;

}
}
sizes[$] = max;

}
We loop for N – 1 times, once for each column that needs to have 

elements eliminated.
for(k = 0; k < N - 1; k++) {

In the first step of the main loop each node checks whether it has the 
largest value in the active row/column. If it is true, then the row is copied 
to the shared array elim and the corresponding value in _b to the shared 
variable b_elim. If the maximum value occurs more than once, the 
processor with the lowest rank is considered to have the largest value. 
This array and variable will later be used in the elimination step. 
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// move largest array to elim or zero
step {

largest = 1;
for(l = 0; l < #; l++) {

if(fabs(sizes[l]) > max || (fabs(sizes[l]) == max && l < $)) {
largest = 0;
break;

}
}
if(largest == 1) {

elim[:] = _A[row][:];
b_elim = _b[row];

}
If the processor owns the active row, we need to store it in the shared 

structures tmp and b_tmp, in order to be able to swap it with the row that 
has the largest element.

// move swapped row to tmp or zero
if(owned(_A[k][0])) {

tmp[:] = _A[k][:];
b_tmp = _b[k];

}
}
step {

If we own the active row, we copy the elimination row into its place.
// copy elim to correct row
if(owned(_A[k][0])) {

_A[k][:] = elim[:];
_b[k] = b_elim;

}

If we had the largest value, we copy tmp and b_temp to the row that 
had the largest value.

// copy tmp to correct row
if(largest == 1) {

_A[row][:] = tmp[:];
_b[row] = b_tmp;

}
We eliminate the values below row k in column k. 

// eliminate using elim
forall2(i, _A, k + 1, _A.size() - 1, 1) {

double modifier = -_A[i][k] / elim[k];
_b[i] += modifier * b_elim;
_A[i][k:N - 1] += modifier * elim[k:N – 1];

}
After the elimination we locate which row has the largest value in 

column k+1. We do this here instead of the beginning of the loop, 
because then we only have to combine twice in the main loop, and thus 
avoid unnecessary communication.

27



// find largest element among own kind
max = 0;
forall2(i, _A, k + 1, _A.size() - 1, 1) {

if(fabs(_A[i][k + 1]) > max) {
max = fabs(_A[i][k + 1]);
row = i;

}
}
sizes[$] = max;

}
}

When we have finished the Gaussian elimination we gather the results.
// gather
step {

gather(_A, A);
gather(_b, b);

}
Finally, each node calculates the values of x, since doing this in 

parallel is hardly worth the effort. Doing this in serial requires about 
2∗N 2N  floating point instructions.(Excluding the cost of 

looping.) Calculating one value and broadcasting it to other  nodes so that 
they may begin their calculation of other values would relate to about 

2∗N 2N ∗cost of N combines
p floating point instructions, where p 

is the number of processors. This is undesirable since 
cost of N combines

p
1 by far. Trying to decrease the cost of 

combining by calculating several values between each combine is futile 
as well, since the amount of parallelism will decrease by the same 
amount and the expression will remain the same.

// calculate x
for(i = N - 1; i >= 0; i--)
{

double sum = 0;
for(j = N - 1; j > i; j--)

sum += x[j] * A[i][j];
x[j] = (b[i] - sum) / A[i][j];

}
}

The simplified version is very similar except that we do not pivot and 
calculate x. A range for which values to update when sharing data by 
using shared arrays is added. The source code for that can be found in 
Appendix D.

8 Evaluation
All applications were benchmarked using a driver program that ran the 

respective functions a number of times. In all test runs, an initial call to 
each respective function was made to set up the distributed system. This 
is because there is an initial cost for initializing the nodes, and the 
initialization is not made before the MPI processes are launched on the 
distributed system. This initial run is not weighed in to the average 
execution time. The reason for excluding it is that for real scientific 
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computations the initial cost is negligible, but for short test runs it can 
sway the average quite a bit.

The Monolith cluster at the National Supercomputer Centre in 
Linköping, Sweden, was used to evaluate the NestStep runtime system. 
Monolith has two Intel Xeon processors at 2.2 Ghz and 2 Gigabyte 
primary memory per node. The MPI library used is ScaMPI, and the 
network is a high bandwidth/low latency SCI network. The operating 
system used is a Red Hat distribution with Linux kernel 2.4.

Additional software used is Tlib[4] for the group management of the 
NestStep runtime system.

All programs were compiled using Intel's C compiler with the 
optimization flag -O2.

 Unfortunately, when both Xeon processors are used on a node cache 
conflicts may occur if two data sections worked upon have “wrong” 
offset from each other. The author was unaware of this fact when the 
testing of the system began, and two processors per node were used. 
Therefore, some of the tests give poor results. We will see a significant 
performance boost when only using one processor per node, and twice 
the amount of nodes instead. It is normally possible to get around this 
issue by making sure that data has suitable offsets from each other. The 
runtime system does not offset any data at this point. However, even 
though some results are affected by this cache conflict, the relative 
performance of different tree structures should be valid, since it is 
unlikely that these cache problems would affect the time for sending data 
over the network. It is quite probable that the differences would be larger, 
as the computation time would decrease and the communication time 
remain relatively the same.(There could be some speedup in the handling 
of data, i.e. putting data in the send buffer, committing the data to 
variables/arrays.)

Regardless of whether one or two processor per node were used, each 
processor is in charge of one MPI process. The NestStep-C runtime 
system only considers MPI processes, which means that using one or two 
processors per node is not different from the NestStep runtime system's 
point of view.

For all algorithms the parallel versions were used to measure the time 
consumption for one processor, i.e. all speedup values are relative.

In the graphs in this section, abbreviations such as D-X, B-X and Flat 
are used. D-X stand for a D-ary tree where X equals the child nodes per 
inner node, B-X stands for a binomial tree where X is the fraction as 
discussed in section 4. Flat stands for a flat tree structure.

For all gathered data, Appendix C is supplied.

8.1 Parallel prefix
The parallel prefix sum is not that interesting as a performance 

benchmark. The amount of communication is about as little as one can 
get in a parallel program, and all tree structures should be able to scale 
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well, at least as long as a reasonable amount of processors is used.
(I.e. p << N.) This algorithm was only tested with three tree structures, 
and as can be seen in Figure 12, it scales as expected. It does not quite 
reach a perfect speedup, but the execution times are so low(about 0.14 
seconds for 32 processors) for parallel prefix sums that one can not 
expect the required communication to go unnoticed. 

Figure 12: Speedup for the parallel prefix algorithm.
An average of ten runs is used.
One processor per node were used for these measurements.

8.2 Mergesort
The mergesort program was mainly written to test that certain features 

of NestStep works, namely nested parallelism and importing/exporting 
distributed arrays between parent and child. 

The programs send very large amounts of data while 
importing/exporting data, and the amount of data increases with 
increasing number of processors, so it is expected that good speedups 
will only be achieved when each node has a lot of local elements to sort, 
compared to the global merge work. As can be seen in Figure 13 and 14, 
this is exactly the case. The speedup is initially good for a low number of 
processors. The speedup is also improved when the amount of elements 
is increased. 

These tests were run using two processors per node, and probably 
suffered from the cache conflict, as both the parallel prefix computation 
and Gaussian elimination suffered from this when using two processors 
per node with them. This is not certain as no test runs were made with 
only one processor per node for mergesort.
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Figure 13: Speedup for the mergesort.
 An average of 20 runs is used.

Figure 14: Speedup for mergesort.
An average of 10 runs is used.

Since most of the overhead is from point-to-point communication it is 
hard to determine the efficiency of the NestStep runtime system from 
this, or to determine performance of different tree structures.
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8.3 Gaussian elimination

Gaussian elimination with pivoting
The Gaussian elimination application makes heavily use of the 

NestStep runtime system, as the algorithm combines twice in each 
iteration of the outer loop, sending about 2*N elements each time(since 
we do not specify a range in this version). With this amount of data and 
frequency of combines we should be able to detect some significant 
differences  in performance among different tree structures, if there are 
any.

The test runs for this version of Gaussian elimination were run on two 
processors per node, and it is expected that the speedup will be higher on 
a system without cache conflicts.

Figure 15 shows the speedup of an equation system where N=2000 
was solved, that is, A had the dimensions 2000*2000. We can see that the 
binomial trees perform a little better than the D-ary trees, as one might 
have suspected.(As discussed in section 4.) The flat tree performs poorly, 
which is not surprising, considering we have one node as a bottleneck.

Increasing N to 4000 gives a better speedup than for N = 2000. The 
results from this can be seen in Figure 16. The gap between the D-ary 
trees increases a bit, and gives further indication of that binomial trees 
are better. For N = 4000 only two runs was averaged. This is because of 
the quite long computation time for this value, around 200 seconds/run 
for one processor. This is a problem due to the limited CPU time for this 
project on the cluster, and it is hard to get the jobs scheduled for many 
processors when a lot of time is requested.

However, as the execution time is quite long, and we combine around 
eight thousand times, the variance caused by  the network should not be 
that large. 

In Figure 17 we can see the speedup for some more trees for 8, 16 and 
32 processors. The binomial trees group together, with the fraction 0.5 
being the best. The D-ary trees are quite close to each other, with D=4 
being the best among those.
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Figure 15: Speedup for Gaussian elimination. 
An average of 20 runs is used, except for 
the flat tree, which was an average of five.

Figure 16: Speedup for Gaussian elimination.
An average of 2 runs is used.
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Figure 17: Speedup for Gaussian elimination.
An average of 2 runs is used.

Simplified Gaussian elimination
In Figure 18 we can see the results from the simplified Gaussian 

elimination. 

The speedup is quite high compared to the first Gaussian elimination, 
which is expected since pivoting and backward substitution is removed, 
and for combining we added a range for the shared array in order to 
avoid sending data that is not used. The tests for the simplified version 
were also run on one processors per node, compared to two processors 
per node for the non-simplified version.

The maximum speedup is slightly over 17 for 32 processors, which 
might be considered slow for such a simple Gaussian elimination. This is 
probably caused by three things:

● It is not possible to overlap communication and computation in 
NestStep. By using MPI for example, one could send the 
elements asynchronously while beginning the elimination.

● When we get near the end of the elimination, each processor has 
very few rows to do calculations for. That is, we get a lot of 
communication but very little computation(just touching the 
network costs several thousands of cycles). Normally one may 
specify larger block sizes, and not use all processors for the end, 
but since the entire group is involved in every combine, this is not 
likely to increase the performance for NestStep. One possibility 
might be to create a subgroup that take over the computation 
when the remaining matrix gets to small. 
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● Only the commit phase when combining is really needed. In other 
implementations one might just broadcast the elements needed for 
the elimination from the node where these elements are local.

However, if we consider how short and easy the code for the 
simplified version is, the performance is not to bad.

The difference in performance between trees is reduced for the 
simplified version, as is quite natural since the amount of supersteps is 
cut in half.(We only have to combine half as many times as well, which 
means less communication.)

Figure 18: Simplified Gaussian elimination.
An average of 2 runs is used.

In Figure 19 we can see the difference between using one processor 
per node compared to using two processors per node for a binomial tree 
with the fraction 0.5. By examining the figure, we can see that using one 
processor yields better performance even if we were to use half the 
amount of processors. That is, it is better to ignore the second processor 
on each node, because using it will not give any speedup, instead it will 
make the computation run slower.
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 Figure 19: Simplified Gaussian elimination
 An average of 2 runs is used.

Simulation
Interested in what speedup can be expected from a runtime system like 

this, a program that simulates the simplified Gaussian elimination was 
written. The goal was to get an upper bound on the relative speedup. This 
simulation makes a few assumptions:

● According to NSC, Monolith can transmit a small message 
between two nodes in 4,5 microseconds. The bandwidth for large 
messages is 2 Gbit/s. For each transmission, we calculate the 
message size and divide it by the bandwidth. If this value is larger 
than 4,5 microseconds we use the calculated value as 
transmission time, otherwise we use 4,5 microseconds. This 
yields a higher performance for the simulated network than the 
real network. We do not add any time for the runtime system to 
set up the transmissions.

● The time to modify a value in the matrix was modeled as a 
constant * the time for one clock cycle. This constant was chosen 
so that the simulation and the real benchmarks got the same value 
for one processor. This means that the simulated system does not 
model any additional overhead for using more processors, and 
that the overhead present when using one processor can be 
parallelized, which it can not be in the real world.

● We assume that we have a binomial tree and that there are no 
waiting periods, that is, we only count the transmission time from 
the node furthest from the root to the root and back. This is very 
unlikely to happen in the real system, so again we improve the 
performance of the simulated one compared to any real system.
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The code used for this simulation can be found in Appendix D.

In Figure 20 we can see the speedup for the simulated system. For this 
simulation, a simplified Gaussian elimination where A is a 4000*4000 
matrix was simulated. The real system is not that far behind the simulated 
one. It should be remembered that the simulated system's transmission 
times is smaller than can be expected of a real system. The simulated 
runtime system is only considering the overhead that is present when 
using one processor(and quite unrealistically parallelizes it when more 
processors are used), while using more processors generate more 
overhead in real life. The delays where processors waits for each other is 
ignored. Considering this, the performance of the real system is pretty 
good.

One thing to note is that while the simulated version almost reaches a 
speedup of 23 in Figure 20, if we remove the combine phase and only 
keep the commit phase, we will get a speedup of 26.74. (See Appendix C 
for the measurements of the simulated version without combine phase.)

Figure 20: Simulated system

OpenMP
Open Multi Processing, OpenMP, is an open standard for a shared 

memory model. We will discuss OpenMP a little more in the following 
section, related work.

Two programs were written using OpenMP, doing essentially the same 
as simplified Gaussian elimination. The KAI OpenMP library was used, 
which is a commercial implementation. The code for these programs can 
be found in Appendix D.

In Figure 21 we can see the execution time for the OpenMP versions 
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and the simplified NestStep version for for a 2000*2000 matrix. The 
OpenMP versions perform poorly, which is probably because it is not 
possible to specify where data is located in OpenMP, and only access 
local elements. This could probably be solved by simulating a large 
shared array using non-shared arrays, and performing the shared memory 
management ourselves in the program. This would however remove the 
point of using a shared memory system, and we might as well use MPI.

Figure 21: Simplified Gaussian elimination and OpenMP versions.
An average of 2 runs is used.

Figure 22 shows the speedup gained from switching from the fastest 
OpenMP version to the NestStep version for a given amount of 
processors.(E.g., the speedup for 8 processors is the processing time for 
the OpenMP version using 8 processors divided by the processing time 
for the NestStep version using 8 processors.) As can be seen, the speedup 
is quite significant.
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Figure 22: Speedup when moving from OpenMP to NestStep.

9 Related work

9.1 UPC
Unified Parallel C, UPC, is very similar to NestStep. UPC is an 

extension to C, and gives the programmer access to a shared address 
space, regardless of whether the hardware has shared or distributed 
memory. 

UPC is not based on the BSP model as NestStep is, and 
writing/reading to a shared variable or an element in a shared array is 
possible at any time. However, to be certain that previous writes to an 
variable/array element has taken effect when reading a value, a barrier 
must have been encountered after the write.

Shared arrays and variables are distributed in UPC. It is called that 
shared data has an affinity to certain processors. That is, certain elements 
in an array that have an affinity to the processor(i.e. are local) are faster 
to access than elements that have an affinity for another processor.  This 
also applies to shared variables. Shared variables always have an affinity 
for thread 0.(The leader in NestStep.) UPC allows the programmer to 
specify the affinity for elements in a shared array in ways similar to 
NestStep's block and cyclic arrays. UPC does not have anything similar 
to NestStep's replicated arrays.

We refer the interested reader to [10] for an introduction of UPC. [11] 
is currently the latest specifications of UPC. [12] provides a more 
detailed interpretation of the specification and shows how UPC is to be 
used.
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9.2 OpenMP
Open Multi Processing, OpenMP, is an open standard for multi 

processing and is also similar to NestStep. It supports a shared memory 
model and is probably the most common specification that commercial 
vendors use for their solutions for shared memory programming.

OpenMP views data in a way similar to UPC. All shared data may be 
read/written to at any time, however a barrier or a flush operation must 
come between a write and a read to ensure that the write has taken effect. 
There is no way to specify how the data will be stored. Whether the data 
is distributed across the processors or replicated is up to the 
implementation.

For more information about OpenMP, please visit www.openmp.org. 

10 Conclusions and future work
According to the results gained, a binomial tree or similar structure 

seems to yield the best performance for the combine/commit phase. 
However, it would be good to test the system more rigorously with more 
different applications.

We also found that for some applications may take a performance hit 
when using NestStep, due to the combine phase. These are problems 
where there is always one node that has all information needed in the 
next superstep and needs to broadcast this information. This is because 
NestStep always requires combine/commit, that is, always performs one 
reduction and one broadcast. When using other ways to implement these 
applications, i.e. using MPI, the combine phase can be omitted. However, 
considering that it is considerably easier to implement parallel algorithms 
in NestStep, at least those that were developed during this project, 
NestStep's performance is still acceptable.

NestStep has very good performance compared to OpenMP, which is 
probably the most popular shared memory system. Although only 
Gaussian elimination was compared, the speedup when using NestStep 
instead of OpenMP is so remarkable that it is likely that NestStep will 
outperform OpenMP for any algorithm that makes somewhat heavy use 
of shared data.

As there is a possibility that there may be  different tree structures that 
perform better under certain circumstances,  developing a model which 
would determine the best tree at runtime given the parameters of a BSP 
step would be of great use. That would enable the NestStep runtime 
system to dynamically determine which tree structure to use for each 
step, and always use the best one. 

It would be very beneficial if a front end for NestStep was developed. 
That is, to develop a program that translates NestStep code into C code 
with the calls to the NestStep-C runtime system. Currently it is very 
cumbersome developing NestStep programs, as all calls to the runtime 
system have to be manually translated.
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12 Appendix A – Performance 
predictions/measurements

This chapter is largely based on Christoph Kessler's compendium[13] 
for the programming of parallel computers course at Linköping's 
university.

12.1 Speedup and efficiency
In order to be able to discuss the performance of parallel computing it 

is necessary to define some notions. We use speedup as a measurement 
on how much faster the program runs on p processors.

Let T s be the time it takes to complete the task using the best serial 
algorithm(on one processor of course). We also let T  p be the time it 
takes to finish using a parallel algorithm on p processors. We define the 
absolute speedup for p processors as

Sa  p=
T s

T  p
(1)

and the relative speedup for p processors as

Sr  p= T 1
T  p . (2)

Efficiency is a measurement that tells us how well we utilize the 
processors. 
We define the absolute efficiency as

Ea  p=
S a  p

p
=

T s

pT  p 
(3)

and the relative efficiency as

E r  p=S r
 p

p
=

T 1
pT  p . (4)

12.2 Amdahl's law
Lets assume that for a parallel algorithm A , there is a sequential 

part A s that cannot be parallelized and a parallel part A p that can be 
perfectly parallelized by p processors. With a problem size of n this gives 
us the total work of

w An=wAs nwA pn . (5)
The time to complete this work on one processor is

T 1=T AsT A p (6)
and on p processors it is

T  p=T As
T A p

p
. (7)

Amdahl's law:

If the sequential part of the algorithm is a fixed fraction of the total 
amount of work, then regardless of the problem size n, there is a 
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constant β=
wA s

w A
≤1 , and the relative speedup of A with p 

processors is limited by Sr  p= p
βp1−β 

≤ 1
β .

Proof:

We have:

Sr  p= T 1
T  p

=
T 1

T As
T Ap

p
(8) (2&7)

T As=βT 1 (9)
T A p=1−βT 1 (10)

Substitution with (9) & (10) into (8) gives

Sr  p= T 1

βT 11−β T 1
p

= p
βp1− β

≤ 1
β .

In Figure 23 to the left there is an 
illustration of what causes this limit to occur.

It should be noted that most parallel 
algorithms do not have a fixed sequential 
fraction, and that Amdahl's law is quite 
pessimistic. It does however serve a useful 
purpose in showing that one cannot expect 
parallel system to be p times faster.

Figure 23: An illustration of Amdahl's law.
Recreation of an illustration in [13].
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13 Appendix C – Benchmark tables

13.1 Parallel prefix
Average time of 10 runs in seconds – 200∗106  elements.

Average time for one processor: 4.325 seconds.
One processor per node were used.

13.2 Mergesort
Average time of 20 runs in seconds - 20∗220 elements.

Average time for one processor: 12.182 seconds.
Two processors per node were used.

Average time of 10 runs in seconds - 40∗220 elements.
Average time for one processor: 24.999 seconds.
Two processors per node were used.
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# procs Dary–2 Binomial–0.5 Flat
2 2.213 2.214 2.229
4 1.125 1.111 1.126
8 0.564 0.564 0.564
16 0.302 0.311 0.308
32 0.139 0.138 0.138

# procs Dary-2 Dary-3 Dary–4 Dary-5 Dary–6 Dary-7 Flat
2 7.405 7.371 7.355 7.403 7.399 7.376 7.307
4 4.794 4.806 4.857 4.787 4.731 4.794 4.755
8 3.783 3.742 3.769 3.821 3.785 3.734 3.722
16 3.781 3.724 3.773 3.771 3.760 3.853 3.788
32 5.383 5.265 5.045 5.116 5.153 5.014 5.039

# procs Binomial-0.3 Binomial-0.35 Binomial–0.4 Binomial-0.45 Binomial–0.5 Binomial–0.6
2 7.395 7.326 7.374 7.411 7.382 7.437
4 4.792 4.758 4.797 4.799 4.777 4.740
8 3.788 3.781 3.788 3.754 3.788 3.769
16 3.944 3.952 3.763 3.894 4.025 3.914
32 5.386 5.424 5.164 5.390 5.228 5.317

# procs Dary-2 Dary-4 Binomial-0.4 Binomial-0.5 Flat
2 15.052 14.862 14.798 15.082 14.833
4 9.474 9.509 9.516 9.683 9.647
8 7.219 7.088 7.224 7.345 7.143
16 6.515 6.606 6.724 6.524 6.549
32 8.144 7.817 7.205 7.867 7.493



13.3 Gaussian elimination
Average time of 20 runs* in seconds – 2000 * 2000 matrix.

Average time for one processor: 27.672 seconds.
Two processors per node were used.

*For 32 processors and a flat tree only five values were used to 
calculate the average due to its excessive time requirements.

Average time of 2 runs in seconds – 4000*4000 matrix.
Average time for one processor: 204.51 seconds.
Two processors per node were used.

Additional values for 8, 16 and 32 processors.

Average time of 2 runs in seconds – 4000*4000 matrix – simplified 
version. Average time for one processor: 199.22 seconds.
One processors per node were used.
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# procs Dary-2 Dary-3 Dary–4 Dary-5 Dary–6 Dary-7 Flat
2 29.533 27.643 27.908 27.728 27.720 27.989 27.830
4 17.646 16.982 16.497 16.997 16.818 16.890 16.514
8 12.615 12.284 12.166 11.802 12.730 12.240 12.690
16 11.021 10.580 10.580 10.689 10.349 10.754 13.384
32 11.715 11.553 10.554 11.810 12.134 11.519 31.839

# procs Binomial-0.3 Binomial-0.35 Binomial–0.4 Binomial-0.45 Binomial–0.5 Binomial–0.6
2 27.710 30.007 27.954 29.783 29.395 27.704
4 17.787 17.690 17.473 17.794 17.435 17.714
8 11.821 12.026 11.798 11.737 11.656 12.736
16 10.022 9.805 9.649 9.612 9.402 10.641
32 10.071 9.686 9.688 9.035 9.251 10.389

# procs Dary-2 Dary-4 Binomial-0.4 Binomial-0.5 Flat
2 213.08 211.92 211.60 213.63 218.78
4 121.59 118.85 118.54 119.48 114.84
8 75.52 78.36 73.77 71.81 78.83
16 58.83 58.40 53.15 52.48 77.14
32 56.74 53.40 46.24 43.12 104.47

# procs Dary-3 Dary-5 Binomial-0.35 Binomial-0.45
8 71.00 75.26 73.15 70.84
16 58.13 58.45 55.20 52.16
32 56.07 58.79 44.93 44.78

# procs Dary-2 Dary-4 Binomial-0.4 Binomial-0.5 Flat
2 102.32 101.36 101.95 101.81 100.98
4 52.75 52.08 52.26 52.58 52.56
8 29.19 28.67 28.60 28.96 29.07
16 18.15 16.98 16.96 17.51 20.59
32 13.13 12.22 11.65 12.16 23.85



Average time of 2 runs in seconds – 4000*4000 matrix – simplified 
version. Average time for one processor: 199.22 seconds.
Two processors per node were used.

Simulated Gaussian elimination – 4000*4000 matrix.

Average time of 2 runs in seconds – 2000*2000 matrix – OpenMP and 
simplified version. 
One processor per node were used.
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# procs Binomial-0.5
2 204.26
4 105.55
8 54.76
16 30.81
32 19.22

# procs Simulated Simulated without combine phase
1 203.64 203.64
2 102.32 102.07
4 51.91 51.41
8 26.96 21.21
16 14.73 13.73
32 8.87 7.92

# procs OpenMP one OpenMP two B-0.5
1 25.17 25.16 25.45
2 25.59 25.76 13.24
4 25.37 26.29 7.25
8 32.98 34.03 4.34
16 88.43 99.33 3.05



14 Appendix D – Source code listings

14.1 Parallel prefix
void parprefix(sh int</> a[]) {

int i, j; // loop counters
int pre[a->size()/#]; // for storage of temporary local sums

    int myoffset; // prefix offset for this processor
    sh int sum;

step {
sum = 0;
j = 0;

       forall(i, a) {
        sum += a[i];

           pre[j++] = sum;
}

} combine(sum<+:myoffset>); /* combine sum and store */
/* prefixes in myoffset */

step {
j = 0;

   forall(i, a) {
   a[i] += pre[j++] + myoffset;

}
}

14.2 Mergesort
/* assume that local parts are already sorted */
void mergesort(sh int a[]</>)
{

if(# == 1) // nothing left to merge
        return;
    
    neststep(2, @ = $ % 2) {

sh int temp_array[a.size()]</>;

/* The following statement needs to be executed by all 
   processors that have some elements of the original array.
   The last parameters is a boolean flag that tells if the processor 
   should import the values, or simply provide its values to 
   other processors of another subgroup */

        
importArray(a, temp_array, 0, a.size() - 1, 1-@);

        
if(@ == 0) {

merger(temp_array); // sort the imported array
if(# > 1) // if there are more than one processor in the group

mergesort(temp_array);
}

            exportArray(temp_array, a, 0, a->size – 1, 1-@);
    }
}
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void merger(BlockDistArray * a)
{

int i;
int l_c;
int u_c;
int buffer[a->local_size];

l_c = a->lower; // counter for the lower section of the local array
u_c = l_c + a->local_elements / 2; // counter for the upper section

for(i = 0; i < a->local_size; i++) {
if(a[l_c] < a[u_c] && l_c < a->local_size / 2)
{

buffer[i] = a[l_c];
l_c++;

}
else if(u_c < a->local_size) {

buffer[i] = a[u_c];
u_c++;

}
else {

buffer[i] = a[l_c];
l_c++;

}
}
a[a->lower:a->lower + a->local_size – 1] = buffer[:];

}
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14.3 Gaussian elimination

Gaussian elimination with pivoting
int gaussian(sh double A[], sh doubleb[], sh double x[], int N) {

double max = 0;
int largest = 0;
int row;
sh double[N]<%>[N] _A;
sh double[N]<%>[1] _b;
sh double b_tmp;
sh double b_elim;
sh double[N] tmp;
sh double[#] sizes;
sh double[N] elim;

int i, j, k, l;

// scatter A and b
step {

scatter(A, _A);
scatter(b, _b);

}
// find largest element among own kind
max = 0;
step {

forall2(i, _A) {
if(fabs(_A[i][0]) > max) {

max = fabs(_A[i][0]);
row = i;

}
}
sizes[$] = max;

}
for(k = 0; k < N - 1; k++) {

// move largest array to elim or zero
step {

largest = 1;
for(l = 0; l < #; l++) {

if(fabs(sizes[l]) > max || (fabs(sizes[l]) == max && l < $)) {
largest = 0;
break;

}
}
if(largest == 1) {

elim[:] = _A[row][:];
b_elim = _b[row];

}
// move swapped row to tmp or zero
if(owned(_A[k][0])) {

tmp[:] = _A[k][:];
b_tmp = _b[k];

}
}
step {

// copy elim to correct row
if(owned(_A[k][0])) {

_A[k][:] = elim[:];
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_b[k] = b_elim;
}
// copy tmp to correct row
if(largest == 1) {

_A[row][:] = tmp[:];
_b[row] = b_tmp;

}
// eliminate using elim
forall2(i, _A, k + 1, _A.size() - 1, 1) {

double modifier = -_A[i][k] / elim[k];
_b[i] += modifier * b_elim;
_A[i][k:N - 1] += modifier * elim[k:N – 1];

}
// find largest element among own kind
max = 0;
forall2(i, _A, k + 1, _A.size() - 1, 1) {

if(fabs(_A[i][k + 1]) > max) {
max = fabs(_A[i][k + 1]);
row = i;

}
}
sizes[$] = max;

}
}
// gather
step {

gather(_A, A);
gather(_b, b);

}
// calculate x
for(i = N - 1; i >= 0; i--) {

double sum = 0;
for(j = N - 1; j > i; j--)

sum += x[j] * A[i][j];
x[j] = (b[i] - sum) / A[i][j];

}
}
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Simplified Gaussian elimination
int solve(CyclicDistArray * _A, CyclicDistArray * _b, int N) {

int i, j, k, l;

sh<?> double b_elim;
sh double[N] elim;

// move first row to elim
step {

if(owned(_A[0][0])) {
elim[:] = _A[0][:];
b_elim = _b[0];

}

for(k = 0; k < N - 1; k++) {
step {

// eliminate using elim
forall2(l, _A, k +1, N -1, 1) {

double modifier = -(_A[l][k] / elim[k]);
_b[i] += modifier * b_elim;
_A[l][:]+= modifier * elim[:];

}
// move row k+1 to elim
if(owned(_A[k+1][0])) {

elim[:] = _A[k+1][:];
b_elim = _b[k+1];

}
} combine(elim[k+1:N-1]);

}
}

OpenMP versions of Gaussian elimination
double A[N][N];
double b[N];
double elim[N];
#pragma omp threadprivate(elim)

void gaussian_one(void)
{

int i, j, k;
double modifier;

for(i = 0; i < N - 1; i++)
{

#pragma omp parallel for private(k, modifier) schedule(guided)
for(j = i + 1; j < N; j++)
{

modifier = -A[j][i]/A[i][i];
for(k = i; k < N; k++)
{

A[j][k] += modifier * A[i][k];
}
b[j] += modifier * b[i];

}
}

}
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void gaussian_two(void)
{

int i, j, k;
double modifier;

for(i = 0; i < N - 1; i++)
{

#pragma omp parallel private(k, modifier)
{

#pragma omp single copyprivate(elim)
{

for(j = i; j < N; j++)
elim[j] = A[i][j];

}
#pragma omp for schedule(guided)
for(j = i + 1; j < N; j++)
{

modifier = -A[j][i]/elim[i];
for(k = i; k < N; k++)
{

A[j][k] += modifier * elim[k];
}
b[j] += modifier * b[i];

}
}

}
}
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Simulated Gaussian elimination
#include <iostream>

int main(int argc, char ** argv) {
double time = 0.0;
double N_t = (8*8)/(2048e6); // time per element for large messages
double min_t = 4.5e-6; // Transfer time for small messages
double cycle_t = 1/(2.2e9); // time for one clock cycle
unsigned int cycles_req; // used for simulating the time required for 

// one elimination
unsigned int p; // # processors
double times[33];

for(cycles_req = 1; cycles_req <= 35; cycles_req++) {
std::cout << "cycles_req: " << cycles_req << std::endl;
for(p = 1; p <= 32; p *= 2) {

time = 0.0;
std::cout << "p: " << p;
for(int N = 4000; N >= 2; N--) {

double t_time = (min_t > (N*N_t)) ? min_t : N*N_t;
switch(p) {

case 1:
t_time = 0;
break;

case 2:
t_time *=2;
break;

case 4:
t_time *= 4;
break;

case 8:
t_time *= 6;
break;

case 16:
t_time *= 8;
break;

case 32:
t_time *= 10;
break;

}
time += t_time;
time += (N*(N-1)*cycle_t*(double)cycles_req)/(double)p;

}
times[p] = time;
std::cout << " time: " << time << std::endl;

}
std::cout << "Speedup:";
for(int i = 1; i <= 32; i *=2)

std::cout << " " << times[1]/times[i];
std::cout << std::endl;
std::cout << "---------------------------" <<std::endl;

}
system("pause");
return 0;

}
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