
Parallelism and Compilers

Christoph W. Keßler

Habilitationsschrift

Fachbereich IV
Universität Trier

December 13, 2000

ii

Preface

This thesis describes some of my contributions to several aspects of the large and rapidly
growing area of compiling and programming for parallel computer architectures.

It is submitted as habilitation thesis to the Fachbereich IV of the University of Trier, Ger-
many, in partial fulfillment of the pre-requirements for the habilitation examination.

I assure that I have written this thesis myself, and that I have given proper credit to all ideas
contributed by other people or taken from the literature, according to my best knowledge.
Most of the results described here have been previously published in international refereed
journals, conferences, workshops, and in technical reports, and part of the material presented
in Chapters 4 and 5 follows my contributions to a recent textbook entitledPractical PRAM
Programming[B1]. For this reason, this thesis will not be published in its present form. Some
ideas and results are, however, new and by now unpublished. New work can be found in each
of the main chapters; most of this was developed in parallel to writing this thesis. References
to my own publications are marked and listed separately; the complete list of my publications
can be found in Appendix D after the general bibliography. A part of the work has been done
jointly with other researchers, who are explicitly mentioned in the introduction and in the
acknowledgement sections at the end of each main chapter.

The introductory chapter (Chapter 1) gives a personalized view of the main topics dis-
cussed in this thesis. In particular, it gives a comprehensive survey of my scientific work and
my publications of the last decade.

The main body of this thesis is structured into four main chapters: Chapters 2, 3, 4, and 5.
Addressing different aspects of the common area of programming and compiling for parallel
architectures, Chapters 2, 3, and 4 are self-contained and may be read independently. Chapter
5 discusses compilation aspects of the parallel programming languages introduced in Chapter
4 and thus depends partially on that chapter.

The appendices contain background material, longer proofs and longer example programs
that have been shifted from the main chapters in order to not disrupt the flow of reading.

Acknowledgments

My scientific work in the last two years, and the work on this thesis in particular, has been sup-
ported by a two-year habilitation fellowship of theDeutsche Forschungsgemeinschaft(DFG)
in 1999 and 2000. From 1997 to 2000, the DFG also supported the SPARAMAT project,
which is described in Chapter 3.

From 1995 to 2000, I worked in the group for programming languages and compiler con-

iii

iv

struction, led by Prof. Dr. Helmut Seidl, at the University of Trier. I thank Helmut Seidl for
many constructive discussions and fruitful cooperation.

From 1995 to 1998 I was, as an assistant professor, fully involved in the teaching activities
(lectures, seminars, exercises, labs) at the computer science department of the University of
Trier. I also thank my colleagues and former colleagues in Trier for their friendship and a
cooperative working environment. Particular thanks go to the group’s secretary, Mrs. Brigitta
Weiland.

A major component of my work originated from theSB-PRAM project at Prof. Dr. Wolf-
gang Paul’s group of computer architecture and parallel computers at the computer science
department of the University of Saarbrücken, where I did my diploma project in 1989–90 and
my PhD project in 1991–94. I thank Wolfgang Paul and my former colleagues in his group for
the constructive cooperation. In 1991–94 my PhD project was supported by a three-year PhD
fellowship of the DFG in the Graduiertenkolleg Informatik at the University of Saarbrücken.
In 1994 I was involved in theSB-PRAM project work and started work on the design and
implementation of the PRAM programming languageFork, which I continued when I started
to work in Trier in 1995.

Finally, I thank my wife Susanne, for her continuous love, support of my work, and for
tolerating my commuting to Trier during the last six years. I also thank all my friends and my
family, in particular my parents.

In the end of 2000, I will leave the University of Trier and join the University of Linköping,
Sweden, as an associate professor in the computer science department. In this context, I see
this monograph, beyond its role as habilitation thesis, as a final documentation of my scientific
work of the last years, which was mostly done while I was affiliated with the University of
Trier.

Trier, December 13, 2000

CHRISTOPHKESSLER

Contents

1 Introduction and Overview 1
1.1 Instruction Scheduling . 3
1.2 Automatic Program Comprehension and Automatic Parallelization 5
1.3 Design and Implementation of Parallel Programming Languages 7

2 Instruction Scheduling 13
2.1 Introduction . 13

2.1.1 Processor Model . 13
2.1.2 Instruction Selection . 15
2.1.3 Instruction Scheduling . 16
2.1.4 Register Allocation . 19
2.1.5 The Phase-Ordering Problem . 20
2.1.6 Overview of the Chapter . 21

2.2 Basic Definitions . 22
2.2.1 DAGs and Schedules . 22
2.2.2 Register Allocation for Basic Block Schedules 23
2.2.3 Optimal Register Allocation for a Given Schedule 24

2.3 Contiguous Schedules . 26
2.3.1 Computing Space-Optimal Schedules for Trees 27
2.3.2 Enumerating Contiguous Schedules for DAGs 27
2.3.3 Further Reducing the Number of Schedules 32
2.3.4 Splitting the DAG into Subtrees . 34
2.3.5 Evaluating Trees with Import and Export Nodes 35
2.3.6 Experimental Results . 37
2.3.7 Summary of the Algorithms for Contiguous Schedules 39
2.3.8 Weaknesses of Contiguous Schedules 39

2.4 Computing Optimal Schedules . 40
2.4.1 Enumerating Schedules . 40
2.4.2 Improvement . 46
2.4.3 Parallelization . 47
2.4.4 Experimental Results . 48
2.4.5 Simultaneous Optimization of Register Space and Execution Time . . 49
2.4.6 Time–Space Profiles . 55
2.4.7 A Randomized Heuristic . 57

v

vi CONTENTS

2.4.8 Heuristic Pruning of the Selection DAG 59
2.5 Extension for Optimal Scheduling of Spill Code 63
2.6 Extension for Partial Recomputations . 66

2.6.1 Recomputing Single DAG Nodes 66
2.6.2 Recomputing for Sets of Instructions 66

2.7 Related Work . 67
2.7.1 Approaches to Optimal Instruction Scheduling 67
2.7.2 Heuristics for Instruction Scheduling 69

2.8 Summary . 71

3 Automatic Comprehension and Parallelization of Sparse Matrix Codes 75
3.1 Introduction . 75

3.1.1 Basic Terminology . 76
3.1.2 Problems in Program Comprehension for Sparse Matrix Computations 77
3.1.3 Application Areas . 77
3.1.4 Overview of the Chapter . 78

3.2 Vectors and (Sparse) Matrices . 78
3.2.1 Basic Terminology: Vectors and Matrices 78
3.2.2 An Overview of Data Structures for Sparse Matrices 79

3.3 Concepts . 84
3.3.1 Some Concepts for Sparse Matrix Computations 86
3.3.2 Exception Slots . 90

3.4 Speculative Concept Recognition . 91
3.4.1 Compile-Time Concept Matching 91
3.4.2 Speculative Concept Matching . 93
3.4.3 Speculative Loop Distribution . 95
3.4.4 Preservation and Propagation of Format Properties 96
3.4.5 Placing Runtime Tests . 96
3.4.6 A Parallel Algorithm for the Monotonicity Tests 100
3.4.7 A Parallel Algorithm for the Injectivity Tests 100

3.5 SPARAMAT Implementation . 101
3.5.1 Static Concept Matching . 102
3.5.2 Delayed Format Resolution . 103
3.5.3 Descriptors . 103

3.6 The Concept Specification Language CSL 105
3.6.1 Header Specification . 106
3.6.2 Concept Instance Lists . 107
3.6.3 Selector Expressions . 107
3.6.4 Specification of Templates for Vertical Matching 109
3.6.5 Specification of Templates for Horizontal Matching 110
3.6.6 Further Features of CSL . 113

3.7 Related work . 116
3.8 Future Work . 117

3.8.1 More Concepts, Templates, Example Programs 117

CONTENTS vii

3.8.2 Interactive Program Comprehension 117
3.8.3 Application to Automatic Parallelization 117
3.8.4 Applicability to Other Problem Domains 117

3.9 Summary . 118

4 Design of Parallel Programming Languages 119
4.1 The SPMD Processor Group Concept . 120
4.2 Fork Language Design . 122

4.2.1 The PRAM model . 122
4.2.2 Fork Language Design Principles 124
4.2.3 Shared and Private Variables . 127
4.2.4 Expressions . 129
4.2.5 Synchronous and Asynchronous Regions 131
4.2.6 Synchronous Execution and the Group Concept 136
4.2.7 Pointers and Heaps . 143
4.2.8 Exploring the Asynchronous Mode 146
4.2.9 Thejoin Statement . 155
4.2.10 Programming Style and Caveats . 162
4.2.11 Graphical Trace File Visualization 167
4.2.12 The History ofFork . 175
4.2.13 The Future ofFork . 177

4.3 A Plea for Structured Parallel Programming inFork 178
4.3.1 Data Parallelism . 180
4.3.2 Nestable Skeleton Functions . 182
4.3.3 Reductions . 184
4.3.4 Composing Skeleton Functions . 188

4.4 ForkLight Language Design . 189
4.4.1 SPMD Execution . 191
4.4.2 Variables and Expressions . 191
4.4.3 Control-Synchronous and Asynchronous Program Regions 192
4.4.4 Groups and Control Synchronicity inForkLight 193
4.4.5 Pointers and Heaps . 196
4.4.6 Standard Atomic Operations . 196
4.4.7 Discussion: Support of Strict Synchronicity inForkLight? 197
4.4.8 Example: Parallel Mergesort . 200

4.5 NestStep Language Design . 201
4.5.1 The BSP Model . 201
4.5.2 NestStep Language Design Principles 203
4.5.3 Supersteps and Nested Supersteps 204
4.5.4 Supersteps and Control Flow . 206
4.5.5 Sharing Variables, Arrays, and Objects 209
4.5.6 Distributed Shared Arrays . 214
4.5.7 Pointers . 218

4.6 Other Parallel Programming Languages . 220

viii CONTENTS

4.6.1 MIMD Message Passing Environments 221
4.6.2 MIMD Asynchronous Shared Memory Environments 221
4.6.3 Fork-Join-Style Shared Memory MIMD Languages 222
4.6.4 SPMD-Style Asynchronous Shared Memory MIMD Languages . . . 222
4.6.5 SIMD and Dataparallel Programming Languages 223
4.6.6 PRAM Languages . 224
4.6.7 BSP Languages . 225
4.6.8 Integration of Task Parallelism and Data Parallelism 226
4.6.9 Skeleton Languages . 227

4.7 Summary . 227

5 Implementation of Parallel Programming Languages 231
5.1 CompilingFork for theSB-PRAM . 231

5.1.1 Extensions to the C Compiler Phases and Data Structures 232
5.1.2 Shared Memory Organization and Frame Layout 232
5.1.3 Translation ofstart andjoin . 234
5.1.4 Translation of the Privateif Statement 235
5.1.5 Groups and Control Flow . 237
5.1.6 Accessing Shared Local Variables 238
5.1.7 Runtime Overheads and Optimizations 238
5.1.8 Implementation of Barrier Synchronization 241
5.1.9 Implementation of the Simple Lock 242
5.1.10 Implementation of the Fair Lock . 242
5.1.11 Implementation of the Reader–Writer Lock 244
5.1.12 Implementation of the Reader–Writer–Deletor Lock 246
5.1.13 Implementation of thetrv Trace Visualization Tool 247

5.2 CompilingFork for Other Parallel Architectures 250
5.2.1 Emulating Additional PRAM Processors in Software 252
5.2.2 Compiling for Asynchronous Shared Memory Architectures 259
5.2.3 Compiling for Distributed Memory Architectures 263

5.3 CompilingForkLight for an Asynchronous PRAM 264
5.3.1 Translation of a Function Call . 265
5.3.2 Translation of thefork Statement 266
5.3.3 Accessing Local Shared Variables 267
5.3.4 Optimization of Barriers . 267
5.3.5 Virtual Processing . 268
5.3.6 Translation to OpenMP . 268
5.3.7 Performance Results . 269

5.4 CompilingNestStep to a Distributed Memory System 271
5.4.1 Group Objects and Group Splitting 271
5.4.2 Naming Schemes for Addressing Shared Variables 272
5.4.3 Values and Array Objects . 273
5.4.4 Shared Variables . 273
5.4.5 Combine Items . 274

CONTENTS ix

5.4.6 Serialization of Combine Lists . 274
5.4.7 Combine Trees . 275
5.4.8 Combining . 275
5.4.9 Bulk Mirroring and Updating of Distributed Arrays 279
5.4.10 Optimizations . 280
5.4.11 Prototype Implementation . 281

5.5 Summary . 283

A Supplementary Material to Chapter 2 287
A.1 Proof of the optimality oflabelfs2 . 287

B Supplementary Material to Chapter 3 289
B.1 An Example for SPARAMAT Analysis . 289
B.2 Example for theSTRIP Concept . 290

C Supplementary Material to Chapters 4 and 5 293
C.1 NestStep Implementation of BSPp-way Quicksort 293

D List of Publications 315

x CONTENTS

Chapter 1

Introduction and Overview

Today’s computer architectures increasingly rely on parallel execution to keep pace with the
demand for computational power. For instance, for further improvements in single-processor
speed it becomes more and more critical to exploit instruction-level parallelism because the
“automatic” improvements due to higher integration in chip technology will soon approach
their physical limits. At the upper end of the performance scale, the supercomputer indus-
try has recognized that self-designing sophisticated special purpose hardware is too time-
consuming, while using off-the-shelf components reduces development costs and allows to
participate in the advances of microprocessor performance. Hence, most modern supercom-
puters consist of hundreds or thousands of standard processors that are connected by an in-
terconnection network to allow for synchronizing and exchanging data. In the middle of the
spectrum, today’s advanced workstations and servers usually have multiple processors as well,
which are connected by a shared memory. Hence, the opportunities to speed up computations
by exploiting parallelism become ubiquitous.

On the other hand, the problem of writing efficient code for parallel computers or compil-
ing for such architectures is notoriously difficult, such that there emerged the so-called “paral-
lel software crisis”. Modern microprocessor technology has even decided to solve part of this
problem in hardware by analyzing data and control dependencies at run time and dispatching
instructions to pipelined and parallel functional units on-line, although this automatic reorder-
ing at run time is only applicable within the limited scope of a small window containing a
few subsequent instructions in the code. Nevertheless, the compiler has a much larger insight
into the program and can, by an off-line algorithm for suitably ordering the instructions in the
generated machine program, relax the limited scope problem of the runtime scheduler, such
that it can issue more instructions in the same cycle and use registers economically. Hence,
the main task of exploiting parallelism remains with the programmer and the compiler.

Parallelism can be exploited by compilers at several different levels. In some cases, the
task of determining opportunities for concurrent execution can be partially automatized.

For instance, when compiling for modern superscalar processors, the code generation
phase of the compiler should be aware of the existence of multiple functional units when
determining the order of instructions in the target program, such that independent instructions
may be executed concurrently. This allows to exploit fine-grain parallelism at the instruction
level.

1

2 Chapter 1. Introduction and Overview

Loops in the source program often exhibit a large potential for parallel execution. Further-
more their simple control structure allows for a condensed analysis of parallelizability. There
exists a well-known theory of analyzing data dependences among the iterations of a loop nest,
for transforming loop nests, for detecting parallelizable loops, and for scheduling their itera-
tions for execution on different processors of a parallel computer. Nevertheless, the automatic
parallelization technology for loops is bound to the sequential control structure of the source
program. On the other hand, sophisticated parallel algorithms have been devised for vari-
ous parallel architectures and for many problems. In general, these can not be derived from
corresponding sequential algorithms and programs just by applying simple program transfor-
mations. For the user of a parallel computer, there remain thus two possibilities to exploit this
rich potential of parallel algorithms.

The first approach is to make automatic parallelization more intelligent. Although the
general problem of automatically understanding the meaning of a program is undecidable, it
is, given sufficient application-domain-specific information, possible to identify computations
on a local level and replace them by a parallel algorithm with the same semantics. This allows
to go beyond the sequential program’s control structure, but assumes a certain homogeneity of
the application domain, which is necessary to avoid a combinatorial explosion of the different
program concepts to be recognized and replaced. This condition is fulfilled e.g. in the domain
of numerical matrix computations, while it is hardly met in the area of nonnumerical or highly
irregular computations.

The second approach imposes the task of specifying the parallelism to be exploited on
the programmer—albeit at a higher level than that offered by the default programming inter-
face to the parallel hardware. For this purpose, explicitly parallel programming languages
are required. Such a language should offer more means for expressing parallelism than just a
parallel loop construct, because there are, especially in nonnumerical and irregular problems,
many flavours of parallelism that cannot be expressed easily using parallel loops. Neverthe-
less, the compiler is still responsible for efficiently mapping the parallel activities specified
by the programmer to the parallel target machine by exploiting the features of the parallel
architecture.

In the last years I have done research in all of these facets of compiling for parallel archi-
tectures. The main part of my scientific work can thus be subdivided into three main subjects:

1. Instruction schedulingfor RISC, superscalar, and vector processors, with the goal of
minimizing the execution time and / or the number of registers used.

2. Automatic Program Comprehension: Identifying computation and data structure con-
cepts in numerical codes (idiom recognition, tree pattern matching) with the goal of
replacing them by suitable parallel equivalents.

3. Design, Implementation, and Application of Parallel Programming Languages, pro-
viding practical programming environments for the—up to now—mainly theoretically-
based machine models PRAM, Asynchronous PRAM, and BSP.

The remainder of this chapter gives an informal introduction to these issues and provides
a summary of my own contributions to the topics discussed in this thesis. A more formal and
detailed presentation of selected work follows in the subsequent chapters of this book.

1.1. Instruction Scheduling 3

In the following, citations like [J6] (refereed journal paper), [C18] (refereed conference
paper), [I7] (invited conference / workshop paper), [D1] (thesis) and [M11] (other publication
like technical reports) refer to the list of my own publications at the end of this book, starting
with page 315. All other citations refer to the bibliography.

1.1 Instruction Scheduling

Since 1989, when I started with research for my diploma thesis [D1], I worked on problems
in code generation for RISC, superscalar, and vector processors.

Instruction scheduling is one of the core problems to be solved in the code generation
phase of a compiler The goal is to minimize the number of registers used and / or the number
of machine cycles taken by the execution of the schedule on the target machine. Usually, the
instructions are not generic any more, i.e. they are already specific to the target processor, but
they still operate on symbolic registers.

We consider the problem of local instruction scheduling, that is, the scope of optimiza-
tion is a basic block1 The data dependences of a basic block form a directed acyclic graph
(DAG), where the nodes represent the instructions and the values computed by them, and the
edges imply precedence relations among the instructions. Most edges are due to value flow
dependences, that is, the value generated by the source instruction is used as an operand by
the target instruction. A(list) scheduleof the basic block resp. DAG is a total order of the
instructions that does not conflict with the partial order given by the DAG edges. By adding
the time and space constraints of the target processor (e.g., delayed instructions or a limited
number of available registers), the list schedule usually determines a fixed, unique execution
scenario for the instructions of the DAG. We will discuss some exceptions later.

A register allocationfor a given (list) schedule is a mapping of the DAG nodes to the
available processor registers, such that each value computed by an instruction into a register
remains in that register and is not overwritten till its last use by a parent instruction. The total
number of registers used is theregister needof the allocation. A register allocation is called
optimal for the given schedule if there is no other register allocation for that schedule that
needs fewer registers. An optimal register allocation can be computed in a greedy manner in
linear time.

A time slot allocation(or time schedule) for a given (list) schedule is a mapping of the
instructions to time slots 1,2,... that indicate the point in time where the execution of the
corresponding instruction will start on the target processor. An instruction must not start
unless all its direct predecessor instructions in the DAG have completed their computation
and have written their result values into registers. Theexecution timeof a schedule is the
time slot where all instructions in that schedule have completed their execution. A time slot
allocation isoptimalfor the given list schedule if there is no other time slot allocation that has
a smaller execution time. An optimal time slot allocation for the given list schedule can be
computed in a greedy manner in linear time, even for superscalar processors with out-of-order
execution if the runtime scheduling strategy of the target processor’s dispatcher is known at
compile time.

1A basic block is a sequence of instructions that contains no branch and no join of control flow.

4 Chapter 1. Introduction and Overview

A list schedule of a DAG is calledspace-optimalif there is no other list schedule for the
same DAG that yields an optimal register allocation needing less registers than this schedule.

A list schedule of a DAG is calledtime-optimalif there is no other list schedule for the
same DAG that yields an optimal time slot allocation needing less machine cycles than this
schedule.

If the DAG has a special structure and the target processor meets certain conditions, sev-
eral scheduling problems can be solved in polynomial time. For instance, if the DAG is
a tree, a space-optimal list schedule for a single-issue RISC processor can be computed in
linear time by the labeling algorithm of Sethi and Ullman [SU70], which is summarized in
Section 2.3.1. For a general DAG the problem of computing a space-optimal schedule is
NP-complete [Set75]. In the same way, computing a time-optimal schedule for a DAG and
a processor with delayed instructions or parallel functional units is NP-complete. A thor-
ough overview of the relevant literature on instruction scheduling will be given in Chapter 2,
especially in Section 2.7.

When I started working on computing space-optimal schedules, I first developed a ran-
domized linear-time heuristic for computing a schedule with low register need [C1], which is
described in Section 2.3.2. By experiments with many randomly generated DAGs I showed
that, compared to a single randomly generated schedule, the register need can be reduced by
30% on the average by this heuristic. However, no guarantee is given how far away is the
register need of the reported solution from the actual optimum. Moreover, no method was
known at this time to compute the optimum at all.

The heuristic [C1] was implemented in a Vector–Pascal compiler [FOP+92] for the vector
processorSPARK2 [FOP+92] built at the institute for parallel computer architecture of Prof.
Dr. W.J. Paul at the University of Saarbrücken. TheSPARK2 has a vector register file of
4096 words that can be partitioned by the programmer into vector registers of arbitrary size,
which are addressed by pointer arithmetics. For vector basic blocks derived from Vector-
Pascal programs, I developed a method [C2] that determines, for the computed schedule, the
optimal vector register length (which implies the number of available vector registers) and,
if necessary, decides about spilling some register contents to the main memory, such that the
total execution time on theSPARK2 is minimized.

As discussed above, computing space-optimal schedules for DAGs is hard. Trying to
avoid the complexity of the general problem, I restricted the scope of optimization to the
so-calledcontiguousschedules. A contiguous schedule is a schedule that can be obtained
by a postorder traversal of the DAG. Hence, the number of contiguous schedules for a DAG
with n nodes is bound byO(2n), while the number of (all) schedules is bound byO(n!).
Together with Prof. Dr. Thomas Rauber I developed an algorithm [C3,C7,J1] that computes
space-optimal contiguous schedules for DAGs. The algorithm (see Section 2.3.2) enumerates
the search space of different postorder traversals of the DAG and applies sophisticated prun-
ing techniques that avoid the generation of duplicate or symmetric schedules and exploit tree
structures of the remaining DAG nodes not yet traversed, which are handled by a modification
of the Sethi–Ullman labeling algorithm. On the average, this algorithm reduces the complex-
ity of the problem to aboutO(2n=2). In practice, this is good enough to handle basic blocks
with up to 80 instructions within acceptable time. Note that nearly all basic blocks that occur
in real programs are much smaller.

1.2. Automatic Program Comprehension and Automatic Parallelization 5

The restriction to contiguous schedules means nevertheless that the described algorithm
could find only suboptimal solutions, namely if no contiguous schedule is an optimal sched-
ule. In order to be able to determine an optimal solution, I developed an algorithm [C12,J4]
that solves the problem of determining a space-optimal schedule. As described in Section 2.4,
the algorithm traverses the solution space by generating (conceptually) all topological order-
ings of the nodes of the DAG bottom-up by a dynamic-programming method. The algorithm
exploits the fact that prefixes of schedules that contain the same subset of DAG nodes can
be handled uniformly with respect to time and register constraints, and hence can be sum-
marized as a single subsolution for which only one optimal subschedule needs to be stored.
By classifying the subsolutions according to schedule length, register need, and execution
time, the space of subsolutions can be traversed in a way that is most suitable for the in-
tended primary optimization goal. The user can thus select either space or time optimization
as the primary and the other one as the secondary optimization direction. It is also possible
to specify a combined optimization criterion. In this way, the subspace implied by the most
promising subsolutions can be explored first, and hence the algorithm defers the combinato-
rial explosion of the enumeration process to a later point of time that is, ideally, never reached
because an optimum solution has been found meanwhile. Furthermore, the algorithm allows
to exploit massive parallelism. The implementation showed that the algorithm is practical for
basic blocks with up to 40 instructions, a class that contains nearly all basic blocks occurring
in application programs. Hence, this method could be used in highly optimizing compilers. It
should be noted that, for correctness only, any schedule is acceptable for code generation, and
hence these expensive optimizations need only be applied in the final, optimizing compilation
of the application.

Beyond describing these previously published results, Chapter 2 contains some by now
unpublished material. For a faster optimization of large basic blocks I present and evaluate
two heuristics. Then, I discuss how the performance of the dynamic programming method for
time and time-space optimizations can be further improved by the novel concept of time-space
profiles. Moreover, I discuss the extensibility of my enumeration algorithm for situations
where spilling of some register contents to main memory or recomputations of some DAG
nodes are permitted. I conclude with an extensive survey of related work.

This work will be continued in the near future in a new research project that is funded by
the Ceniit programme of the University of Linköping.

1.2 Automatic Program Comprehension and Automatic Par-
allelization

Program comprehensionis the process of discovering abstract concepts in the source code,
e.g. the identification of data structures and (sub-)algorithms used. In its generality, this prob-
lem is undecidable, but, given some knowledge of the program’s application domain, auto-
matic understanding of programs is possible at least on a local level. In this case, understand-
ing becomes a recognition process: it can be sketched as matching a given source program
against a set of known programming concepts.

A number of problems have to be dealt with when facing automated recognition of al-

6 Chapter 1. Introduction and Overview

gorithmic concepts [Wil90]: The most important ones aresyntactic variation, algorithmic
variation (a concept can be implemented in many different ways),delocalization(the imple-
mentation of a concept may be spread throughout the code), andoverlapping implementations
(portions of a program may be part of more than one concept instance).

Automatic program comprehension systems, working without user interaction, are mainly
used for two purposes: to support software maintenance [RW90, HN90, KNS92, KNE93], e.g.
for the automatic documentation of code, and to support automatically parallelizing compilers.
Several methods for both areas have been proposed within the last years, and some (mostly
experimental) systems have been built. Here we focus on the second issue.

Automated program recognition can play an important role in enhancing the capabilities
of existing parallelizing compilers [BS87, Bos88, Cal91, PP91, RF93, SW93, PP94, PE95],
in particular for target machines with a distributed memory [J2]. For instance, replacement
of recognized sequential code by suitable parallel algorithms represents an aggressive code
transformation which is not bound to the sequential program’s control structure. Moreover, the
acquired knowledge enables automatic selection of sequences of optimizing transformations,
supports automatic array alignment and distribution, and improves accuracy and speed of
performance prediction.

The application domain considered mainly consists of numerical computations, in partic-
ular linear algebra and PDE codes. Domain analysis done in my PhD thesis [D2] for the area
of regular numerical computations on vectors and dense matrices has shown that the size of
the set of concepts typically occurring in such codes remains reasonably small. But also in
non-numerical or irregular numerical fields, recognition of algorithmic concepts in the code
can drive the selection of suitable parallelization strategies ([DI94], [C15]).

When starting to do research for my PhD project, I discovered that concept recognition
techniques may be well suited for numerical codes operating on dense matrices, because these
exhibit a certain homegeneity of data structures (vectors, matrices) and algorithms and pro-
gramming idioms used in Fortran source codes. In fact, I found by analyzing a representative
set of Fortran77 programs that a rather small set of 150 concepts with only a few recogni-
tion rules per concept is sufficient to cover large parts of these programs, in particular for the
time-consuming inner loops that are important to be parallelized.

Next, I developed and implemented an algorithm similar to bottom-up tree pattern match-
ing for the automatic identification of these concepts [D2,I1,I2,C4,C5,J2]. Recognized code
parts, represented as a subtree in the treelike intermediate representation of the program, are
replaced by a summary node (concept instance) that contains all information about the iden-
tified concept occurrence, i.e. the function computed by this code part, together with a list of
program objects that occur as parameters of this function. Nevertheless the summary node ab-
stracts from all the detailshow this function is computed in the source program. Finally, it is
more or less straightforward to generate calls to parallel library functions from the summary
nodes. The integration of the concept recognizer in a large automatic parallelization sys-
tem for distributed memory target machines, called PARAMAT, is described in [D2,C6,J2].
A front end and the concept recognizer of PARAMAT have been implemented; an imple-
mentation of the overall PARAMAT system was not possible because I was assigned other
work after finishing my PhD thesis, and a corresponding project proposal was not accepted
by DFG. Nevertheless, a simple back end [I2] exists for the shared-memory parallel com-

1.3. Design and Implementation of Parallel Programming Languages 7

puterSB-PRAM built at the institute of parallel computer architecture of the University of
Saarbr̈ucken.

There is only few related work on automatic program comprehension for automatic par-
allelization that has actually been implemented. One promising approach, although more tar-
geted to interactive parallelization instead of code replacement, has been presented by Prof.
Dr. Beniamino di Martino [DI94]. In a joint work [C9,M9,J6] we analyzed the fundamental
differences and similarities of our approaches and proposed a method to combine them.

For a project proposal in 1996 I started to investigate the applicability of the PARAMAT
approach to computations on sparse matrices. Sparse matrix codes lead to irregular numerical
programs that are hard to parallelize automatically by today’s parallelizing compiler technol-
ogy, because part of the data dependency information required for parallelization is not known
until run time. In a feasibility study [I5,C15] I discussed the potential and the challenges of
a speculative concept recognitionwhere a part of the identification of a concept may be de-
ferred to run time tests. The placement of the run time tests can be optimized by a data flow
framework. Out of these ideas grew theSPARAMAT project at the University of Trier, which
was funded by the DFG from 1997 to 2000.SPARAMAT defines a special concept specifica-
tion language CSL [C17,M11]. A generator parses a set of CSL specifications and constructs
from these a hierarchically working concept recognizer (a C++ program), which is then able
to process sequential source programs (Fortran77 in our implementation).

The foundations and the implementation of the SPARAMAT system are described in Sec-
tion 3.

1.3 Design and Implementation of Parallel Programming
Languages

The PRAM2 is a popular programming model in the theory of parallel algorithms. It denotes a
massively parallel synchronous MIMD3 computer with a sequentially consistent shared mem-
ory and uniform memory access time. Although widely regarded as being highly unrealistic,
a massively parallel realization of a Combine CRCW PRAM, the strongest PRAM variant4

known in theory, has been designed and built by the parallel computer architecture group
of Prof. Dr. Wolfgang Paul at the University of Saarbrücken, Germany. TheSB-PRAM,
theoretically based on Ranade’s “Fluent machine” emulation approach [Ran87, RBJ88], com-
bines several important concepts from parallel computer architecture, like multithreading and
pipelining for latency hiding and cost-efficient use of silicon, a scalable combining intercon-

2PRAM = parallel random access machine, a straightforward extension of the sequential random access
machine (RAM, also known as the von-Neumann architecture) by connecting multiple processors to a shared
memory with machine-wide synchronous execution at the instruction level. The PRAM assumes unit memory
access time for all processors and hence abstracts completely from the cost of shared memory access and data
locality issues.

3MIMD = multiple instruction streams, multiple data streams. Program control is individual for each proces-
sor.

4Indeed, the strongest parallel machine model currently used is the BSR, which is even stronger than the
Combine CRCW PRAM. Usually the BSR is not considered a PRAM variant but instead constitutes a different
machine model.

8 Chapter 1. Introduction and Overview

nection network for resolving concurrent memory access conflicts and computing prefix and
reduction operations on-the-fly in the network, simple RISC processors with a constant cycle
time, and a common clock signal, which allows the whole machine to run synchronously at
the machine instruction level and makes the computations (in principle) deterministic. The
architecture is cost-effective and scalable. Unfortunately, no off-the-shelf components could
be used; the prototypes are built with technology from 1991 when the design was fixed. Pro-
totypes with (from the programmer’s view) 31, 124, 498 and 1984 processors have been built;
the largest prototype is currently (March 2000) still in the testing phase. TheSB-PRAM
group also wrote some system software and a software simulator that can be used for devel-
opment and testing purposes. In short, theSB-PRAM is the only massively parallel shared
memory MIMD machine in the world that is completely synchronous at the instruction level.

Together with the research on the architectural design of theSB-PRAM at the Univer-
sity of Saarbr̈ucken, a programming language calledFORK[HSS92] was proposed in 1989.
The main goal ofFORKwas to exploit the synchronous execution feature of theSB-PRAM
and make it transparent to the programmer at the operator level of the source language. A
hierarchical processor group concept allows for the static and dynamic nesting of parallelism
by splitting groups into subgroups, where the groups define the scope of sharing and of syn-
chronous program execution. Group splitting can be arranged either explicitly by the pro-
grammer, or implicitly by the compiler where branches depending on nonshared values may
compromise synchronous execution. In the latter case, the current group is split into one sub-
group for each branch target, narrowing the scope of synchronous execution to the subgroups.
With the group splitting feature,FORKenables the straightforward implementation of parallel
divide-and-conquer algorithms.

But FORKwas only a theoretical design and lacked nearly all features needed for practical
work: pointers, data structures, dynamic arrays, function variables, floatingpoint numbers,
input and output. There was no means (beyond group splitting) to escape from synchronous
execution, and the language syntax was not compatible with any sequential programming
language used in the real world. These restrictions inFORKseemed desirable to enable so-
phisticated program analyses [Sei93] and formal correctness proofs [Sch91, Sch92, RS92].
For the practical use with theSB-PRAM however,FORKwas completely unusable. A com-
piler for FORKwas started [Lil93] in the compiler construction group at the Computer Science
department of the University of Saarbrücken but was finally abandoned in early 1994. In the
meanwhile theSB-PRAM group at Saarbrücken implemented on their own an asynchronous
C dialect as a straightforward extension of thegcc compiler and ported the P4 library to the
SB-PRAM. pgcc has been used by theSB-PRAM group to implement the operating system
PRAMOS and several large-scale applications from the SPLASH benchmark suite.

Immediately after finishing my PhD thesis in spring 1994 I was assigned the task to write
a (new) compiler forFORK. Together with Prof. Dr. Helmut Seidl (now at FB IV Informatik,
University of Trier, Germany) I completely redesigned [M6] theFORKlanguage; the syn-
chronous execution controlled by the processor groups was complemented by a second, asyn-
chronous mode of program execution. We decided in favor of ANSI-C as the new sequential
basis language5. In this way, the new language dialect, calledFork95 [I3,C8,J3], became a

5This was because C was the de-facto standard in 1994. A generalization ofFork to C++ as basis language
is more or less straightforward, as its parallelism features are orthogonal to the object features of C++. On the

1.3. Design and Implementation of Parallel Programming Languages 9

proper superset of the asynchronous C variantpgcc [I6].
The implementation of theFork95 compiler for theSB-PRAM [I3], which I did on my

own, was partly based on an existing ANSI-C compiler [FH91a, FH91b, FH95]. However,
the entire code generation phase, driver and the standard libraries had to be (re)written from
scratch. A first runnable version of the compiler could be presented in 1995.

In the subsequent years,Fork95 was extended several times. An important new lan-
guage construct is thejoin statement [I4,C14,B1] which provides a flexible way to collect
asynchronously operating processors and make them synchronously execute a (PRAM) algo-
rithm. A straightforward application ofjoin is the parallel execution of—up to now, always
sequentialized—critical sections, because the synchronous program execution guarantees the
deterministic parallel access to shared program objects.

Currently, theFork language has reached a stable state and is used not only by myself
but also by several instructors at various European universities for teaching classes on PRAM
algorithms and parallel programming.Fork is also used in research projects on parallel pro-
gramming, e.g. for the design of skeleton programming [Col89] languages [Mar97] or for the
implementation of thePAD library of PRAM algorithms and data structures by Dr. Jesper
Träff [C10,C13,J5,B1]. I have written myself manyFork programs, e.g. a solver for linear in-
equality systems [C11] or the highly irregular force calculation phase in aN -body simulation
[B1].

Unfortunately, theSB-PRAM project was technologically overtaken by the continuous
performance improvement of modern microprocessors, such that performance figures—except
for highly irregular or I/O-bounded applications—do no longer look impressive if compared
with small-scale shared memory multiprocessor servers or even sequential PCs.

On the other hand, the efficient compilation ofFork [B1] relies on some unique hardware
features of theSB-PRAM, like the instruction-level synchronous program execution or the
nonsequentializing execution of atomic fetch&add instructions that are used in basic synchro-
nization mechanisms in theFork compiler. When compilingFork for asynchronous parallel
machines [B1], these features must be emulated in software by the compiler or the runtime
system, which would lead to a dramatical loss of performance. Hence, we had, in the long
range, to retarget our research on parallel programming language design and implementation
to commercially available parallel machines, while usingFork only for teaching and experi-
menting with parallelism.

In 1996/97 I designed together with Prof. Dr. Helmut Seidl the control-synchronous par-
allel programming languageForkLight [M10,C16], which is based on the Asynchronous
PRAM model [CZ89, Gib89].ForkLight has many similarities toFork, like a sequentially
consistent shared memory, SPMD execution with support for nested parallelism by a hierar-
chical group concept, and the duality of a synchronous and an asynchronous execution mode.
However, the synchronicity of program execution is relaxed to the boundaries of the basic
blocks in the program. This so-calledcontrol-synchronicityallows for more efficient compi-
lation on asynchronous shared memory machines like e.g. the Tera MTA. In a similar way as
in Fork, ForkLight relates the degree of control synchronous program execution to the block

other hand, Java could not be chosen because the parallelism concept used inFork is not compliant with the
thread-based parallelism of Java. In [C18,J7] I have studied the combination ofFork-like SPMD parallelism
with a thread-free subset of Java.

10 Chapter 1. Introduction and Overview

structure of the program and makes it thus transparent for the programmer. I have written
an experimental compiler forForkLight. ForkLight may also be regarded as a more flexible
alternative to the recent shared memory programming standard Open-MP [Ope97].

While ForkLight, in the same way asFork, offers sequential consistency of the shared
memory, this is not efficiently supported on many parallel platforms (e.g. some virtual shared
memory systems) and must be emulated by the run-time system or the compiler. In many
cases, though, sequential memory consistency is not really necessary at every point of the
program. Many virtual shared memory systems offer low-level constructs for controlling the
consistency of shared program objects individually. Unfortunately, this results in a low-level
programming style that is as tedious and error-prone as message passing.

Valiant proposed the BSP6 model [Val90] as a more realistic alternative to the PRAM
model, by assuming a distributed-memory architecture and taking also the communication and
synchronization costs into account when analyzing the complexity of a parallel program. The
BSP model requires the programmer to structure a SPMD program as a sequence of so-called
supersteps that are separated by global barriers. A superstep contains a phase of local compu-
tation followed by a global interprocessor communication phase specified by message passing
primitives. This flat program organization is not well-suited for irregular applications. Some
BSP library implementations [HMS+98, BJvR98] support one-sided communication, which
offers more comfort than two-sided message passing by automatizing receiving of messages
and storing their data at the target site of a communication. Nevertheless, explicit message
passing means low-level, error-prone programming.

In order to introduce a shared memory programming interface and to allow for nested par-
allelism in the BSP model, I developed the BSP programming languageNestStep [C18,I8,J7].
Again exhibiting some similarities toFork andForkLight, NestStep uses the group concept
to specify the scope of supersteps and of shared memory consistency. I have written an ex-
perimental implementation of theNestStep run time system based on Java; experience has
shown that Java is unsuitable for this purpose because it exhibits poor performance. Hence,
an implementation in C with (e.g.) MPI calls for the communication of updates to shared
variables appeared to be preferable. Such a reimplementation was planned as a master student
project since end of 1998. Due to a lack of master students in our group at the University of
Trier, I finally decided early in 2000 to write the C/MPI variant myself. Early results show
an improvement in the execution time of a factor of 5 (for sequential arithmetics-dominated
programs) up to a factor of more than 20 for communications-dominated programs with up
to 5 processors (our local Linux PC cluster) with respect to the corresponding Java versions.
In the course of this implementation work for the C-basedNestStep versionNestStep-C, I
reworked and simplified the concept of distributed arrays and abolished the support of volatile
shared variables in order to obtain a unified, BSP-compliant memory consistency schema.
Section 4.5 presents the newNestStep standard and thus partially contains previously un-
published material.

Together with Prof. Dr. J̈org Keller and Dr. Jesper Träff I have written a textbook [B1] with
the (somewhat provocative) titlePractical PRAM Programming, which appears in late 2000
at Wiley (New York). This book deals with the theory, emulation, implementation, program-
ming, and application of synchronous MIMD computers with shared memory. It introduces

6BSP = bulk-synchronous parallel programming.

1.3. Design and Implementation of Parallel Programming Languages 11

the PRAM model and basic PRAM theory, discusses PRAM emulation approaches, gives a
complete reference to theSB-PRAM system architecture, and describes theFork language
design and implementation. It explains how to write structured parallel programs withFork
for many different parallel algorithmic paradigms and programming techniques, surveys the
implementation of fundamental PRAM algorithms in thePAD library, and concludes with a
parallel application written inFork from the field of visualization and computational geome-
try. Part of the material that I contributed toPractical PRAM Programming, in particular the
description of the languageFork, the concept of skeleton-style programming inFork, and the
implementation aspects ofFork, has been used and adapted in the Chapters 4 and 5 of this
thesis.

12 Chapter 1. Introduction and Overview

Chapter 2

Instruction Scheduling for RISC,
Superscalar, and Vector Processors

2.1 Introduction

The front end of a compiler usually generates an intermediate representation (IR) of the source
program that is more or less independent of the source language as well as of the target ma-
chine. This intermediate representation could be regarded as a program for a virtual machine.
It is the job of the compiler’s back end to generate efficient target code from the intermediate
representation.

The most important optimization problems in the code generation phase of a compiler
are instruction selection, register allocation, and instruction scheduling. Although these three
problems have complex dependence relations among each other, and thus should be solved
simultaneously, it is the current state of the art in code generators that instruction selection is
performed first, while there is no general agreement on the best order and degree of integration
between register allocation and instruction scheduling.

In this work we focus on approaches to the integration of register allocation and instruction
scheduling for basic blocks.

2.1.1 Processor Model

Our work is independent of any particular target processor. Rather, we characterize the run-
time behaviour of the class of processors where our work may be immediately applied by a
tuple

P = (k;NU ; NI ; U;�)

wherek denotes the maximum number of instructions that may start execution in the same
clock cycle,NU specifies the number of (parallel) functional units,NI is the number of differ-
ent types of instructions,U : f1; :::; NIg ! f1; :::; NUg specifies for each type of instruction
on which unit it is to be executed, and� : f1; :::; NIg ! N0 gives the number of delay cycles
for each type of instruction. The type of an instructionv in the intermediate representation of
a program is given bytype(v) 2 f1; :::; NIg.

13

14 Chapter 2. Instruction Scheduling

A processor withk = 1 (e.g. the DLX architecture in [HP96]) is called asingle-issue
processor, a processor withk > 1 is called amulti-issue processor. A single-issue processor
with �(i) = 0 for all i 2 f1; :::; NIg is called asimple (RISC) processor; a single-issue pro-
cessor with�(i) � 0 for all i 2 f1; :::; NIg and�(i) > 0 for at least one instruction typei is
called apipelined (RISC) processor. Multi-issue processors can be VLIW (very long instruc-
tion word), EPIC (explicitly parallel instruction code), or superscalar processors. In aVLIW
processorthe compiler determines concretely which IR instructions will execute at runtime in
the same clock cycle on different units, and composes these to a single, wide instruction word
(code compaction). The assembler-language interface to a VLIW processor thus consists of
specialized, wide instructions as atomic units, where different parts of a wide instruction word
address different functional units (horizontal instruction set architecture, horizontal code). In
contrast, for asuperscalarprocessor the instructions remain uncompacted, and the decoding
and assignment of the instructions to the functional units is done online by a runtime scheduler
(theinstruction dispatcher), which usually has a lookahead of a few instructions. Generally, a
k-issue superscalar processoris able to dispatch up tok instructions in the same clock cycle.
Obviously, this latter variant imposes less work on the compiler and the resulting machine
code is more portable than with VLIW architectures. On the other hand, the dispatcher adds
time overhead and complexity to the target processor. The more recent EPIC approach [SR00]
is a compromise that should combine the advantages of both approaches, namely the exploita-
tion and transfer of compile-time information within the code as in VLIW architectures and
the flexibility of superscalar processors.

Note that our characterization of the runtime behaviour of processors contains the follow-
ing simplifying assumptions:

� For the first, we assume for simplicity thatk = NU . This property holds usually for
VLIW architectures. For a superscalar processor it means that the dispatcher is not the
performance bottleneck. In most single-issue and superscalar processors, however, the
maximum degree of instruction-level parallelism is limited by the dispatcher’s capacity
k. For instance, the Motorola 88110 has 10 parallel functional units but can only issue
up to 2 instructions per clock cycle.

� There is only one instance of each type of functional unit. Some superscalar proces-
sors provide multiple instances of certain types of units, e.g. multiple units for integer
calculcations. For instance, the Motorola 88110 has two integer units and two graphics
units.

� Each instruction can be executed on exactly one of the functional units. In some super-
scalar processors there may be certain types of instructions that may execute on different
types of units (possibly with different time behaviour); for instance, some floatingpoint
unit may be able to perform also certain integer arithmetics.

� Only one functional unit is involved in the execution of an instruction. This is not
necessarily the case on all architectures: For instance, on the IBM Power architecture,
storing a floatingpoint number simultaneously needs the integer unit (for the address
calculation) and the floatingpoint unit [Wan93].

2.1. Introduction 15

� Execution of an instruction occupies the corresponding functional unit only for one
clock cycle. Hence, even for delayed instructions, another instruction may be fed into
the same unit in the following clock cycle.

� The functional units are independent of each other. In some architectures (e.g. Motorola
88100) it is possible that some stages of different functional units share components,
which may lead to further delays and additional scheduling constraints [EK91].

Even for target processors where one of these constraints is not fulfilled, we are often able
to work around easily by applying only a small modification to our framework. For instance,
for a k-issue superscalar processor withk < NU , we only need to add that constraint to the
function that computes the run time of a given schedule. In the same way we can easily
handle multiple instances of the same type of functional unit. However, we renounce the full
generality in order to keep the presentation simple.

For a further introduction to the design of RISC, VLIW, and superscalar processors, we
refer to [Ung95] and [HP96].

2.1.2 Instruction Selection

The instruction selection problem consists in covering all abstract operations of the intermedi-
ate representation of the program by sequences of concrete instructions of the target processor,
such that the semantics is the same as that of the intermediate representation. If the target ma-
chine provides multiple addressing modes for an operation, or there are different sequences of
operations resulting in the same behaviour, instruction selection should favour a covering with
minimum total cost, in terms of execution time and register requirements. A good introduction
to the instruction selection problem can be found e.g. in [FH95].

There are several integrative approaches to instruction selection for basic blocks where
the precedence constraints among the IR operations form a tree1. The dynamic programming
algorithm by Aho and Johnson [AJ76] for trees integrates the problems of instruction selection
and register allocation for a zero-delay RISC processor with multiple addressing modes for
arithmetic operations, such that these can either directly access operands stored in the memory
or fetch their operands from registers.

As a generalization, approaches based ontree pattern matching[Kro75, HO82, Cha87] al-
low to handle more complex patterns that consist of more than one IR tree node. Such systems
are based on rewrite rules defined by tree grammars and work with one or several passes over
the IR tree. Examples are [GG78], Twig [AG85, AGT89], [PG88], [WW88, Mat90],burg
[FHP92b],iburg [FHP92a, FH95], [FSW92]. Beyond instruction selection, systems based on
tree pattern matching are also able to perform certain simple tree transformations like oper-
ator strength reduction or application of distributivity rules automatically, such asOPTRAN
[LMW88], Trafola [HS93],puma [Gro92],TXL [CC93].

The least-cost instruction selection problem for DAGs is NP-complete [Pro98]. Ertl [Ert99]
proposes a heuristic that splits the DAG into disjoint subtrees and applies tree pattern match-
ing by burg to each subtree separately. For a given tree grammar (i.e., processor type) it can

1Unless otherwise stated, bytree we mean anin-tree, i.e. a directed acyclic graph where each node has at
most one successor node.

16 Chapter 2. Instruction Scheduling

be checked easily whether a situation can occur where the heuristic may produce suboptimal
results. Similar approaches to instruction selection for DAGs have been discussed by Boy-
land and Emmelmann [BE91] and Proebsting and Whaley [PW96]. The earlier approach by
Davidson and Fraser [DF84] describes a heuristic for trees and DAGs which is not based on
tree pattern matching but allows more flexible patterns (not just tree patterns).

2.1.3 Instruction Scheduling

By the instruction selection phase, we obtain a machine program that uses symbolic names
(so-calledvirtual registers) for program objects which may be either stored in a register or
reside in memory (or both). Although usually stored in a flattened representation, this program
is merely a graph: the definitions and uses of the virtual registers imply only a partial order
among the program’s instructions, which must be preserved by the scheduler. The scheduler
is responsible for deriving a total order of the instructions with respect to their time and space
behaviour on the target processor (and, if necessary, a mapping of instructions to suitable
functional units) such that all precedence constraints are preserved and furthermore a certain
quality criterion is met, typically based on register need or execution time.

Depending on the target processor features and the scope of code optimization, we distin-
guish between several different scheduling problem groups and problem variations that are to
be solved.

The group ofinstruction scheduling problems for basic blockscontains the following prob-
lem variations:

� MRIS = minimum register instruction scheduling problem:

Given a basic block whose precedence constraints are given by a directed acyclic graph,
compute a schedule for a RISC processor with no delayed instructions such that the
number of registers used is minimized.

For the simplest case where instructions are not delayed (i.e., execution of each instruc-
tion takes unit time to complete and does not overlap) and partial recomputations are
not admitted, MRIS is a classical NP-complete problem [Set75] (see also Table 2.1).
Only if the DAG has some very simple structure, the problem can be solved in poly-
nomial time. If the DAG is atree, the labeling algorithm of Sethi and Ullman [SU70]
yields an optimal solution; its run time is linear in the number of instructions; spilling
of registers is not considered. If the DAG isseries-parallel, a modification of the label-
ing algorithm by G̈uttler [Güt81, G̈ut82] computes an optimal solution in polynomial
time. The general problem remains NP-complete even if considering only DAGs where
nodes with multiple parents appear only as parents of leaves, and if the target processor
has arbitrarily many registers available [AJU77], and if the target processor has only a
single register [BS76].

There are also some asymptotic results known for the minimum and maximum register
need: Paul, Tarjan and Celoni proved that any DAG (with fixed indegree, here 2) of
sizen can be scheduled such that its register need isO(n= logn) [PTC77]. On the
other hand, it is possible to construct DAGs of sizen with a minimum register need

2.1. Introduction 17

of
(
p
n) registers [Coo73], sharpened in [PTC77] to
(n= logn), which reaches the

upper bound. Paul and Tarjan [PT78] give, for a class of DAGs, an asymptotic lower
and upper bound of�(

p
n) registers and show that for the constructed class of DAGs, a

growth in schedule length from linear to exponential time must be taken into account to
achieve only a constant-factor improvement in the register need. As all these asymptotic
results are based on contrived DAGs that are highly unlikely to occur in real-world
programs, they are hardly helpful in practice, albeit providing fundamental insights for
complexity theory.

� MTIS = minimum time instruction scheduling problem:

Given a basic block whose precedence constraints are given by a directed acyclic graph,
compute a schedule for a given type of target processor with delayed instructions and
/ or with multiple functional units, such that the execution time of the schedule by the
target processor is minimized, assuming an unlimited number of available registers.

This problem is especially important for modern microprocessors which have sophisti-
cated hardware features like pipelining and multiple functional units.

� RCMTIS = register-constrained MTIS problem:

Solve the MTIS problem under the additional constraint that only a fixed number of
registers is available. If some values cannot be held in registers, spill code for loading
and / or storing them must be generated and scheduled as well.

� The converse, a time-constrained MRIS problem, makes no sense in practice.

� SMRTIS = simultaneous minimization of register space and time in instruction
scheduling:

Given a basic block whose precedence constraints are given by a directed acyclic graph,
compute for a target processor with delayed instructions and / or multiple functional
units a schedule that is optimal with respect to a user-specified combined criterion of
register need and execution time, assuming an unlimited number of available registers.

The MRIS, MTIS, and RCMTIS problems are thus special cases of the SMRTIS prob-
lem.

Instruction scheduling problems with a scope beyond basic blocks comprise techniques to
enlarge basic blocks by loop unrolling [DJ79], trace scheduling region scheduling [GS90], by
speculative or predicated execution of conditional branches [HHG+95], by weighting cost es-
timations with execution frequencies [BSB96], by simple transformations to fill branch delay
slots [GR90], or software pipelining of loops with and without loop unrolling.

Trace scheduling, described by Fisher [Fis81] and Ellis [Ell85], is a technique that vir-
tually merges basic blocks on frequently executed control flow pathes to larger basic blocks
(called traces), which allows to apply scheduling and optimizations at a larger scope for the
time-critical parts of the program, while compensation code must be introduced in the less
frequently executed parts of the program’s control flow graph to reinstall correctness. In the
worst case, the compensation code may cause the program to grow exponentially in length.

18 Chapter 2. Instruction Scheduling

Percolation scheduling, introduced by Nicolau [Nic84] and later improved by Ebcioglu
and Nicolau [EN89], considers individual instructions and repeatedly applies a set of local
code transformations with the goal to move instructions “upwards” the program flow graph,
that is, into the direction of program start. If necessary, compensation code must be inserted.
The advantage of percolation scheduling over trace scheduling is that it usually produces
less compensation code. Additional transformations may be integrated into the framework,
for instance, rules that exploit associativiy or distributivity of arithmetic operators [NP90] in
order to reduce the height of expression trees.

Region scheduling, proposed by Gupta and Soffa [GS90], is a heuristic technique that
tries to avoid idle cycles caused by program regions with insufficient parallelism. Program
regions consist of one or several blocks of statements that require the same control conditions,
as defined by the program dependence graph (PDG) [FOW87]. Region scheduling repeat-
edly applies a set of local code transformations such as creating additional instructions by
loop unrolling, moving instructions across basic block boundaries from regions with excess
parallelism to regions with insufficient parallelism, and merging of regions, until all regions
have sufficient parallelism. As a measure for the average degree of parallelism in a region, the
approach uses the number of instructions in a region, divided by the length of the critical path
of that region.

Software pipelining, introduced by Aiken and Nicolau [AN88] and Lam [Lam88], see
also e.g. [ELM95, LVA95, CBS95], may reduce the execution time of a loop on a multi-
issue processor by suitably overlapping the execution of subsequent iterations. The loop is
transformed such that independent instructions from several consecutive iterations may be
executed concurrently. Nevertheless, this technique tends to increase the length of operand
live ranges and thus the register need. Various improvements of software pipelining have
been proposed that are more sensitive with regard to the register pressure [NG93, WKE95,
ANN95, BSC96].

But even for basic blocks, there was (prior to our work) no method that integrates register
allocation and scheduling that is guaranteed to find anoptimalsolution for register allocation
or both register need and completion time if the dependence graph is a DAG. In fact, nothing
better thanO(n!) [C7,J1] was known, making the problem intractable for basic blocks of more
than 15–20 instructions.

The two (not entirely orthogonal) optimization goals of minimizing register space (MRIS)
and minimizing execution time (MTIS) often conflict with each other. During the 1990ies,
MRIS was more or less subordinated to MTIS because, in order to exploit the deep pipelines of
modern superpipelined and superscalar processors, time-conscious instruction scheduling was
essential. Recently, MRIS regains importance because of two reasons [GZG99]: (a) Power
consumption in embedded systems depends strongly on the number of memory accesses,
and caches are usually quite small. (b) Superscalar processors with a runtime instruction
dispatcher that is able to issue instructions out-of-order may, by hardware renaming, access
internally more registers than are visible in the assembler language interface. Once a register
contents has been spilled to memory by the compiler, the corresponding spill code must be
executed, and the dispatcher cannot undo this decision at run time.

In the presence of delayed instructions or multiple functional units, the register require-
ments are either completely ignored for scheduling (e.g., [BG89]), or the DAG is assumed to

2.1. Introduction 19

problem MRIS MTIS MTIS RCMTIS with
spill code scheduling

dependenciesDAG tree DAG DAG
machine RISC Superscalar/ pipelined RISC pipelined RISC
model, VLIW, 2 units with different
delays no delays no delays delays,d > 1 delays� 1

NP-complete NP-complete NP-complete NP-complete
reference [Set75, BS76] [Li77, BRG89] [GJ79] [HG83] [MPSR95]

[AJU77] [LLM +87] [PS90]
remarks linear for O(n log n) for polynomial NP-hard also

trees [SU70] 1 arithmetic and if d � 1 if all delays= 0
s-p DAGs 1 load/store unit [Set75]

TABLE 2.1: NP-completeness results for some of the problems mentioned in this chapter.
It should be noted that the global register allocation problem for a fixed program (usually
solved by graph coloring) is NP-complete [GJ79], and that the least-cost instruction selection
problem in DAGs (node cover) is also NP-complete [Pro98].

be a tree [BJR89, PF91, KPF95, VS95], or heuristic techniques are applied [HG83, GM86,
Tie89, BJR89, BEH91, KPF95, MPSR95]. A summary of instruction scheduling methods for
basic blocks is given in Section 2.7.

2.1.4 Register Allocation

If run before instruction scheduling, theregister allocation problemconsists of two subprob-
lems: One subproblem is deciding, for each value in the program whether it is worth being
stored in a register or whether it must reside in memory, e.g. by taking access frequencies into
account. Moreover, the register allocator determines a mapping (theregister assignment) of
the values considered worth being held in a register to the machine registers, such that val-
ues that will be alive simultaneously in any schedule will be mapped to different registers. If
two values are mapped to the same register, this implies sequentialization constraints for the
scheduler.

If run after instruction scheduling, the lifetimes of the program values are fixed, and hence
the register allocation can only be as good as the given schedule permits. It remains to compute
a mapping of IR variables to machine registers such that simultaneously alive variables are
mapped to different machine registers. If there are not enough machine registers available, the
register allocator must decide about which values to spill to memory, and generate spill code
and insert it correctly in the schedule.

For this second (and more common) variant, global register allocation by coloring a regis-
ter interference graph [Ers71, Sch73, CAC+81, Cha82] is still the state of the art and has been
refined by several heuristic techniques [CH84, BGM+89, BCKT89, CCK91, PF92, KH93,
Pin93, AEBK94, NP94, BGS95, GA96, THS98, NP98]. There are precoloring strategies for
basic blocks and for special control flow graph structures [KP95, JR96]. Spill code is auto-
matically generated until the register need of the code does not exceed the number of physical
registers. However, since the scheduling phase was not aware of the spill code introduced

20 Chapter 2. Instruction Scheduling

in the register allocation phase, the final schedule (with the spill code inserted a-posteriori)
may be sub-optimal with respect to the RCMTIS problem, even if the scheduling phase had
returned an optimal solution to the MTIS problem.

Hsu, Fischer, and Goodman [HFG89] propose a method to determine an optimal register
allocation for a given schedule of a basic block such that the total spill cost is minimized. The
given code needs not be in single-assignment form. The algorithm constructs a decision DAG
of register status configurations, labels the edges with costs corresponding to load and store
instructions implied by going from one configuration to the next one, and computes a mini-
mum cost path through this DAG. Some pruning rules can be used to reduce the combinatorial
explosion. Where the decision DAG would grow too large, a heuristic can be applied.

These pre-pass approaches to register allocation work on a given fixed schedule of the
instructions. This typically results in a suboptimal usage of registers and increased register
need. In [D1] we have shown that for large randomly generated basic blocks the register
need could be reduced by approximately 30 percent on the average by suitably reordering the
instructions within a range permitted by the data dependences among them.

Using as few registers as possible and minimizing the spill code is crucial for performance
where registers are a scarce resource, because execution of load and store instructions takes,
on most processors, more time than arithmetic operations on registers. This is especially
important for vector processors which usually have a small number of vector registers (e.g.,
the CRAY vector computers have 8 vector register of 64� 64 bit) or a register file that can be
partitioned into a number of vector registers of a certain length (e.g., the vector acceleration
units of the CM5 have register files of length 128� 32 bit that can be partitioned into 1, 2, 4 or
8 vector registers, see [Thi92]). A vector operation is evaluated by splitting it into appropriate
blocks and computing the blocks one after another. If the register file is partitioned into a small
number of vector registers, each of them can hold more elements and the vector operations
can be split into fewer blocks. This saves startup times and results in a faster computation. On
the other hand, if such a small number of vector registers has to be enforced at the expense of
holding some intermediate results not in vector registers but in the main memory, the overall
execution time increases again due to the additional memory references. By balancing this
trade-off, an optimal number of vector registers can be found [D1,C2].

Using fewer registers also pays off if less registers are to be saved and restored at procedure
calls.

Basic blocks are typically rather small, up to 20 instructions. Nevertheless, scientific
programs often contain also larger basic blocks, due to e.g. complex arithmetic expressions
and array indexing. Larger basic blocks can also be produced by compiler techniques such
as loop unrolling [DJ79] and trace scheduling [Fis81]. Therefore, it is important to derive
register allocation techniques that cope with rather large basic blocks [GH88].

2.1.5 The Phase-Ordering Problem

As we can see from the previous description, there is a cyclic dependence between instruction
scheduling and register allocation, known as thephase-ordering problem.

If instruction scheduling is performed first (pre-pass scheduling), it is generally done with
the primary goal of minimizing the execution time on the target processor. In any case,

2.1. Introduction 21

scheduling installs a total order among the instructions, which may be a disadvantageous one
from the point of view of the subsequent register allocation phase, because, in particular in
the presence of delayed instructions, time-conscious instruction scheduling tends to lengthen
the lifetimes of values to be stored in registers and hence increases the register pressure, as
more values are alive at the same time. If not enough registers are available, some register
contents must be spilled and kept in main memory instead, resulting in additional load and
store instructions that must again be scheduled, which may compromise the optimality of the
schedule determined by the first phase.

On the other hand, if register allocation is performed first (post-pass scheduling), by as-
signing physical register names to the virtual registers, this allows to select good candidates for
spilling (if necessary) and to generate the spill code before the subsequent scheduling phase,
but it also introduces additional serialization constraints for the scheduling phase, because dif-
ferent virtual registers that are mapped to the same register must not be alive simultaneously.
Hence, the instruction scheduler may have less opportunities for minimizing the execution
time.

[BEH91] shows that separating register allocation and instruction scheduling produces
inefficient code. Most instruction scheduling approaches (see the related work summary in
Section 2.7) address just the MTIS problem (while trying to keep register pressure low if pos-
sible) and apply a-posteriori spilling of some values where the number of available registers
is exceeded. Note that the problems of a-posteriori spilling just those virtual registers that
lead to the minimization of some cost function (i.e., graph coloring) and generating optimal
spill code [BGM+89, MD94] are NP-complete. Some approaches like [GH88] hence switch
back and forth between the two phases, gradually refining the solution. Beyond our work pre-
sented in this chapter, [MPSR95] is one of the first approaches that considers both problems
simultaneously.

2.1.6 Overview of the Chapter

First, we consider the problem of reordering the instructions of a basic block whose depen-
dence graph is a DAG, in order to just minimize the register need (MRIS problem). We begin
with heuristic methods based on so-called contiguous DAG schedules, a subset of the set of all
possible schedules of a DAG. This includes an advanced enumeration algorithm that computes
the optimal contiguous schedule and is practical for large DAGs up to 80 nodes.

Next, we present an advanced enumeration algorithm for computing an optimal solution
to the MRIS problem based on dynamic programming that reduces the worst-case time bound
for finding an optimal schedule fromO(n!) to O(n22n). Tests for large basic blocks taken
from real scientific programs and for suites of randomly generated basic blocks have shown
that the algorithm makes the problem generally solvable for the first time also for medium-
sized basic blocks with up to 40–50 instructions, a class that contains nearly all basic blocks
encountered in real programs. The time complexity can be further reduced because we can
exploit massive parallelism present in the algorithm.

We further show how this method can be adapted to solving the MTIS problem and the
SMRTIS problem for target processors with delayed instructions and multiple functional units.
As for such targets the two goals of scheduling, namely register space optimality and time

22 Chapter 2. Instruction Scheduling

optimality, typically conflict with each other, we extend our algorithm such that it can optimize
either time or space consumption as the first priority, or one may specify a linear combination
of time and space as the optimization goal.

Unfortunately, by these extensions for the SMRTIS problem, the algorithm is practical
only for rather small basic blocks with up to 22 or 23 nodes. We complement the algorithm
by a fast heuristic based on generating and testing random schedules, which can be used for
larger basic blocks. We propose in Section 2.4.6 a generalization of the algorithm for time
optimization such that more occasions for early pruning of suboptimal partial solutions can
be exploited.

Another heuristic is based on pruning the solution space by splitting the basic block heuris-
tically into multiple disjoint subblocks. The subblocks are scheduled separately by our enu-
meration method and the partial schedules are finally merged. It appears that this heuristic
is not necessarily more successful than the naive random scheduling, and its run time and
practicality is strongly dependent on the DAG structure and the sizes of the subDAGs.

Finally, we give an outlook of how to extend the main optimization algorithm to the op-
timal generation and scheduling of spill code where the number of available registers is ex-
ceeded, and shortly discuss the problems involved in allowing partial recomputation of some
instructions to save register space.

We will conclude this chapter with a summary of related work on instruction scheduling.

2.2 Basic Definitions

2.2.1 DAGs and Schedules

We assume that we are generating code for a RISC-style single processor machine with
general-purpose registers numbered consecutively (1, 2, 3, ...) and a countable sequence
of memory locations. The arithmetic machine operations are three–address instructions like
unary (Ri 	Rj) and binary (Ri Rj �Rk) arithmetic operations on registers, loading
a registerR from a memory addressa (R Load(a)), and storing the contents of a register
R to a memory addressa (Store(a) R). For the first part of this chapter, we assume
that each instruction takes one unit of time to execute, i.e. the result of an instruction can
be used by the next instruction in the next time slot. The extension of our work for delayed
instructions is discussed in Section 2.4.5.

Each input program can be partitioned into a number of basic blocks. On the machine
instruction level, abasic blockis a maximum-length sequence of three–address instructions
that can only be entered via the first instruction and only be left via the last one. The data
dependencies in a basic block can be described by adirected acyclic graph (DAG). The nodes
of the DAG represent as well the instructions of the basic block as the values computed by
them. For simplicity we assume that all leaves of the DAG correspond toLoad instructions,
i.e. to values occurring as input to the basic block. A generalization of our algorithms to DAG
leaves corresponding to constants or to values already residing in a register is straightforward.
In general, DAG edges represent precedence constraints for the execution of instructions.
For the sequel, we assume that DAG edges are caused by data flow, i.e. a DAG edge(u; v)
connects instructionu to instructionv iff the value computed byu is used byv as an operand.

2.2. Basic Definitions 23

An example DAG is given in Figure 2.1. An algorithm to build the DAG for a given basic
block can be found in [ASU86].

Definition 2.1 For a DAGG = (V;E), the lower cone(or just cone for short) of a node
v 2 V in G, denoted by cone(G; v), is the subsetC � V such that for eachc 2 C there is
a path inG from c to v. Thecone DAGof v, denoted by coneDAG(G; v), is the sub-DAG
of G induced by its coneC, i.e. (C;E \ (C � C)). Theupper coneof v in G, denoted by
uppercone(G; v), is accordingly the subsetU � V such that for eachu 2 U there is a path in
G fromv to u.

LetG = (V;E) be such a DAG withn nodes. A schedule ofG is a total order of the nodes
in V such that the partial order implied by the dependence arcs inE is preserved:

Definition 2.2 A (list) scheduleS of a DAGG is a bijective mapping of the nodes inV to
the set of time slotsf1; :::; ng such that for all inner nodesv 2 V with childrenv1; :::; vk holds
S(v) > S(vi), i = 1; :::; k, i.e. v is computed only after all its childrenv1,...,vk have been
computed.

This implies that a schedule iscomplete, i.e. all nodes are scheduled at some time slot
between 1 andn, and the schedule containsno recomputations, i.e., each node of the DAG is
scheduled only once. Moreover, the schedule isconsistentbecause the precedence constraints
are preserved. Thus, a schedule is just a topological order ofG.

The termlist schedulefor a total order of DAG nodes has been coined in [Cof76], where
a list schedule is generated by a greedy topological sort traversal of the DAG. The name is
due to the fact that the topological sorting algorithm maintains a set of nodes ready to be
scheduled; if a total order among these is installed, e.g. by some heuristic priority function,
these can be stored in a linear list. Hence, algorithms that compute a schedule by a topological
sort traversal of the DAG are calledlist scheduling algorithms.

In our implementations we represent a scheduleS of lengthn as a list of nodes

[S�1(1); S�1(2); : : : ; S�1(n)]

As the target processor considered by now has no delayed instructions and no multiple
functional units, the (list) schedule is identical to the time schedule, and the execution time of
any schedule is always equal to the numbern of nodes.

2.2.2 Register Allocation for Basic Block Schedules

A register allocation regfor a given schedule maps the DAG nodes, in the order defined by
that schedule, to a set of virtual machine registers such that the values computed by the DAG
nodes are kept in registers from their definition up to their last use2:

Definition 2.3 A mapping reg:V ! f1; 2; : : :g is called aregister allocationfor S, if for all
nodesu; v; w 2 V the following holds: Ifu is a child ofw, andS(u) < S(v) < S(w), i.e.v
is scheduled byS betweenu andw, then reg(w) 6= reg(u) 6= reg(v).

2See also footnote 3 on page 24.

24 Chapter 2. Instruction Scheduling

An optimal register allocationfor a given scheduleS uses the minimal number of regis-
ters,m(S), that is still possible with that schedule:

Definition 2.4 LetRS denote the set of register allocations for a scheduleS. Then,

m(S) = min
reg2RS

�
max
v

reg(v)
�

is called theregister needof the scheduleS.

An optimal register allocation for a given schedule can be computed in linear time, as
described in Section 2.2.3.

A schedule is calledspace-optimal(or justoptimal for short, as long as time constraints
are not considered) if an optimal register allocation for this schedule uses not more registers
than any other schedule for the DAG:

Definition 2.5 A scheduleS for a DAGG is calledspace-optimalif for all possible schedules
S 0 ofG holdsm(S 0) � m(S).

In general, there will exist several space-optimal schedules for a given DAG. Recall that
the problem of computing a space-optimal schedule for a DAG (the MRIS problem) is NP-
complete [Set75].

2.2.3 Optimal Register Allocation for a Given Schedule

If a schedule for the basic block is given, we can compute an optimal register allocation in
linear time.

The technique of usage counts was first proposed in [Fre74]: Letget reg() be a function
which returns an unoccupied register and marks it ‘occupied’. Letfree reg(r) be a function
that marks registerr ‘unoccupied’ again.get reg() is called each time a node is scheduled to
hold the value computed by that node.free reg(reg(u)) is called immediately before3 the last
parent of nodeu has been scheduled. To determine this event, we keep a usage counter for
each nodeu which counts the number ofu’s parent nodes already scheduled. Obviously, a
register allocation for a given schedule can be computed with run time linear in the number of
DAG edges, which is at most twice the number of instructions.

If one desires to keep register usage asunequalas possible (in order to obtain good candi-
dates for a-posteriori spilling of registers) we propose the following method that keeps the list
of unoccupied registers sorted by usage and hence requires an additional factor ofO(log n)
[C3,C7,J1]. Instead ofget reg we use a register allocation function calledfirst free reg that
allocates, for each node, the free register in this list with the smallest index. Since a new
register is allocated only if there is no other free register left, the generated register allocation
is optimal and the number of allocated registers is equal to the register need of the schedule.

3On most target architectures, the target register of an instruction may also be identical to one of the source
registers (i.e.,reg(w) = reg(u) may be possible in Definition 2.3). Then, the register ofu can be freed im-
mediatelybeforeissuing the last parent ofu. In the context of (strip-mined) vector instructions, however, the
architecture may require registers to be mutually different [C2]. The latter variant was used in the example of
Figure 2.1 and in Section 2.3.

2.2. Basic Definitions 25

q q q

q

q

q q

q q

q q

a a

g1 g2
b b c

d

f

e

h
�
�

� �
+ +

1 1

2 2 1 1 1

33

4

4

6 6
�
��

�
�
�
�
�
���

@
@I

�
��

@
@I

@
@
@I

�
�
��
@
@I

a
g2
b
d
b
c
e
f
a
g1
h

R1 Load(a)
R2 �R1
R1 Load(b)
R3 R2 +R1
R1 Load(b)
R2 Load(c)
R1 R3 �R4
R4 R1 +R2
R2 Load(a)
R3 �R2
R2 R3 �R1

q q q

a

g
b c

d e

f

h

�
�

�

q q
+ +

q

q

q

�

�
HH

HHY

J
J
J]
J
J
J]

6

6
J
J
J]

�

S0 :
a
g
b
d
c
e
f
h

R1 Load(a)
R2 �R1
R1 Load(b)
R3 R2 +R1
R4 Load(c)
R5 R1 +R4
R1 R3 �R5
R3 R2 �R1

c
b
e
a
g
d
f
h

R1 Load(c)
R2 Load(b)
R3 R1 +R2
R1 Load(a)
R4 �R1
R1 R4 +R2
R2 R1 �R3
R1 R4 �R2

FIGURE 2.1: Example: Suppose the expression tree for(�a)� ((�a+ b)� (b+ c)) has been
scheduled using the Labeling algorithm ofSethi/Ullmanwith minimal register need 4. —
Common subexpression elimination results in a DAGG, reducing the number of instructions
to be executed. IfG is scheduled according toS0, now 5 registers are required. The better
schedule on the right obtained by reordering the instructions needs only 4 registers, which is
optimal.

This extended register allocation scheme uses a binary tree with the register 1,...,n as
leaves. In each node, there is a flagfreethat indicates whether the subtree of this node contains
a free register. In order to allocate a free register,first free reg walks along a path from the
root to a free register by turning at each node to its leftmost child with aTRUEfreeflag. After
switching the flag of the leaf found toFALSE, we traverse the path back to the root in order to
update the flags. For each node on the path we setfreeto FALSEiff its two children havefree
= FALSE. If a register is marked free again,free regmust restore thefreeflags bottom–up on
the path from this register back to the root in the same way by setting for each nodefree to
TRUEif at least one child has a truefreeflag. The time for allocating or freeing a register is
O(log n), hence the total time for computing the register allocation isO(n log n) for a DAG
with n nodes.

The advantage of this allocation method is that the allocated registers usually differ more in
their access rates since, in general, registers with a low index are used more often than registers
with a high index. If the DAG nodes do not differ much in their outdegree, this results in an
allocation scheme that is well suited for spilling registers: If we have fewer registers available
in the target machine than the schedule requires, we would spill the registers with the largest
indices [C2].

On the other hand, this simple strategy does not take the actual spill cost into account,
which is proportional to the sum of the outdegrees of all DAG nodes mapped to a register.

26 Chapter 2. Instruction Scheduling

FIGURE 2.2: A DAG withR > 1 root nodes is made
single-rooted by adding an artificialR-ary root node
which corresponds to an emptyR-ary operation.

Hence, the total spill cost may perhaps be improved by keeping the registers sorted in de-
creasing order of accumulated spill cost. But even with this strategy the register allocation
computed may not be optimal with respect to the total spill cost, because the problem of
determining a register allocation for a given schedule and a fixed number of registers with
minimum total spill cost is NP-hard. Anyway, for pipelined or superscalar processors this
problem is not really the interesting one, because the spill code must also be scheduled, which
may change the original schedule. In Section 2.5 we will show on how to solve all aspects of
the spilling problem optimally for the RCMTIS problem, such that the spill code is already
taken into account in the scheduling phase.

2.3 Contiguous Schedules

In this section we assume for simplicity of presentation that the DAGG = (V;E) representing
the basic block under consideration has a single root node (with outdegree zero). Where this
is not the case, the multiple root nodes are gathered by adding an artificial root node on top of
the DAG as shown in Figure 2.2. In any schedule of the modified DAG the new root node will
appear as the last instruction, as it depends on all other DAG nodes. Hence, it can be easily
removed after the schedule has been computed.

Definition 2.6 A scheduleS of a DAGG = (V;E) is calledcontiguous, if for each binary
nodev 2 V with childrenv1 andv2 the following restriction holds: IfS(v1) < S(v2)), each
u 2 cone(G; v2)� cone(G; v1) (i.e.,u is a DAG predecessor ofv2 but not ofv1), is scheduled
afterv1, i.e.S(v1) < S(u). Vice versa, ifS(v2) < S(v1)), eachu 2 cone(G; v1)�cone(G; v2)
(i.e.,u is a DAG predecessor ofv1 but not ofv2), is scheduled afterv2, i.e.S(v2) < S(u).

A contiguous schedule has thus the property that for each binary nodev, all nodes in
the cone of one ofv’s children are scheduled first, before any other node belonging to the
remaining cone ofv is scheduled (see Figure 2.3). A generalization of this definition tok-ary
nodesv is straightforward by determining the remaining cone DAGs of thek children ofv
according to a fixed linear order of the children. While general schedules can be generated
by variants of topological-sort, contiguous schedules are generated by variants ofdepth-first
search.

Obviously not all schedules of a (nontrivial) DAG are contiguous. As a consequence, as
we shall see later, even a space-optimal contiguous schedule needs not be a space-optimal
schedule.

2.3. Contiguous Schedules 27

w
v1 v2p p

p

�
�
�
�

�
�
�
�

@
@

@
@

@
@

@
@

HH��

V1 V2
V 0

FIGURE 2.3: Example to the definition of a contiguous sched-
ule. For any cone DAGGv rooted at a binary nodev, ei-
ther all nodes inV1 = cone(Gv; v1) are scheduled before the
remaining nodes inV2 � V1 are scheduled, or all nodes in
V2 = cone(Gv; v2) are scheduled completely before the re-
maining nodes inV1 � V2 are scheduled.

First, let us consider the special case that the DAG is a tree.

2.3.1 Computing Space-Optimal Schedules for Trees

Definition 2.7 (tree node)
(1) Each leaf is a tree node.
(2) An inner node is a tree node iff all its children are tree nodes and none of them has
outdegree> 1.

Any tree nodev has thus the property that its cone DAGconeDAG(G; v) is a tree. For tree
nodes we compute labels recursively by a postorder tree traversal as follows:

Definition 2.8 (label values for the nodesv of a tree)
(1) For every leafv, label(v) = 1.
(2) For unaryv, label(v) = maxflabel(child(v)); 1g.
(3) For binaryv, label(v) = maxf2; maxflabel(lchild(v)); label(rchild(v))g+ qg
whereq = 1 if label(lchild(v)) = label(rchild(v)), and0 otherwise.

The Labeling algorithm ofSethiandUllman [SU70], see algorithmtreeSchedulein Fig-
ure 2.4, generates a space-optimal schedule for a labeled tree by traversing, for each binary
node, the subtree of the child node with the greater label value first. The algorithm exploits
the fact that all registers used for the subtree evaluated first, except of that subtree’s root node,
can be reused for the nodes in the other subtree. One more register is thus only needed if
the label values of both subtrees are identical. Hence, computing the labels by a bottom–up
traversal of the tree and executingtreeSchedulecan be done in linear time.

The labeling algorithm can, with a minor modification to avoid duplicate evaluation of
common subexpressions, be applied to DAGs as well, but this does not result necessarily in
a space-optimal schedule. Indeed there are DAGs for which it produces suboptimal results
[D1]. In any cases,treeSchedulecan be used as a heuristic for DAGs [D1,C1].

2.3.2 Enumerating Contiguous Schedules for DAGs

Definition 2.9 A decision nodeis a binary node which is not a tree node.

Thus, all binary nodes that have at least one predecessor with more than one parent are
decision nodes. In a tree, there are no decision nodes. For a general DAG letd be the number
of decision nodes andb be the number ofbinary tree nodes. Thenk = b + d is the number

28 Chapter 2. Instruction Scheduling

NodeList labelfs(nodev)
if v is a leaf

then return new NodeList(v) fi
if v is a unary node

then return labelfs(lchild(v)) ./ new NodeList(v) fi
if label(lchild(v)) > label(rchild(v))

then return labelfs(lchild(v)) ./ labelfs(rchild(v)) ./ new NodeList(v)
else return labelfs(rchild(v)) ./ labelfs(lchild(v)) ./ new NodeList(v)

fi
end labelfs;

ScheduletreeSchedule(Tree T = (V;E))
ScheduleS new Schedule(jV j);
NodeListL labelfs(root(T));
for i from 1 to jV j do S(i) head(L); L tail(L) od
end treeSchedule

FIGURE 2.4: The labeling algorithm by Sethi and Ullman. When applied to a labeled tree
Tv rooted atv, labelfsgenerates a node list that, if interpreted bytreeScheduleas a schedule
of Tv, uses exactlylabel(v) registers [SU70], which is optimal. The./ operator denotes list
concatenation.

FIGURE 2.5: A DAG may have up ton� 2 decision nodes. Here
is an example forn = 9.

of binary nodes of the DAG. Note that a DAG may have up tod = n� 2 decision nodes, see
Figure 2.5. In practice it appears that0:5 � d=n � 0:75 for most cases, see Tables 2.3 and
2.4.

The following properties of contiguous schedules are formally proven in [D1]:

Lemma 2.1 For a treeT with one root andb binary nodes, there exist exactly2b different
contiguous schedules.

Lemma 2.2 For a DAG with one root andk binary nodes, there exist at most2k different
contiguous schedules.

Lemma 2.3 Let G be a DAG withd decision nodes andb binary tree nodes which formt
(disjoint) subtreesT1; : : : ; Tt. Letbi be the number of binary tree nodes inTi, i = 1 : : : t, withPt

i=1 bi = b. Then the following is true: If we fix an scheduleSi for Ti, then there remain at
most2d different contiguous schedules forG.

2.3. Contiguous Schedules 29

Corollary 2.4 If we schedule all the tree nodes in a DAGGwithd decision nodes by treeSched-
ule, there remain at most2d different contiguous schedules forG.

If we throw at each decision nodev a (0,1)-coin to determine which child ofv to traverse
first, and evaluate all the tree nodes in the DAG usingtreeSchedule, we obtain a random
schedule. Therandomized heuristicpresented in [D1,C1] generates a user-specified number
of such random schedules, plus the schedule that is implied by usinglabel values (computed
as above for the trees) as priorities. For each of these it determines the register need and
returns the best schedule encountered.

If k random schedules are tested, the randomized heuristic takes timeO(k � n logn) for
a DAG with n nodes. By choosingk suitably large, the probability that a bad schedule is
returned can be made arbitrarily small, while the probability for encountering an optimal
schedule increases accordingly.

In practice, this heuristic is probably sufficient. We have shown that for random DAGs,
it reduces the register need by 30% on the average [C1], compared with a single random
schedule of the DAG. The problem is, however, that in general one cannot know how far away
from the optimum solution the reported schedule actually is.

Nevertheless, from our definitions above we can immediately derive an exhaustive search
algorithm (see Figure 2.6) that enumerates all contiguous schedules of a DAGG by enumer-
ating all2d bitvectors and uses a fixed contiguous schedule for the tree nodes ofG.

While this algorithm still has exponential run time, for most practical cases the run time
appears to be much smaller after clever pruning of the search space [C3,C7,J1]. The pruning
strategy is based on the following observation: (consider the example DAG in Figure 2.7):
Assume that the algorithm to generate a contiguous schedule decides to evaluate the left child
f of the rooth first (i.e., the decision bit ofh is set to zero). Then nodee appears in the
schedule beforeg, sincee is in the cone off , butg is not. Therefore, there is no real decision
necessary when nodeg is evaluated, because the childe of g is already evaluated. But because
g is a decision node, the algorithm generates bitvectors containing 0s and 1s for the decision
bit of g, although bitvectors that only differ in the decision bit forg describe the same schedule.

We say thatg is excludedfrom the decision by setting the decision bit ofh to 0, because
the childe (andc) are already evaluated when the schedule ofg starts. We call the decision
bit of g redundantand mark it by an asterisk (�). 4

The algorithm given in Figure 2.8 computes only those bitvectors that yield different
schedules. We suppose again that tree nodes are evaluated by the labeling algorithmlabelfs.

Table 2.2 shows the application ofdescendto the example DAG of Figure 2.7.

Definition 2.10 LetN be the number of different contiguous schedules reported by the algo-
rithm descend. We calldeff = logN theeffective number of decision nodesof G. Further-
more, letd? be defined as

d? = min
P path from some leaf to the root

#decision nodes on P

4Technically, this means that we use here “extended bitvectors” where each entry may have a value 0, 1, or
�.

30 Chapter 2. Instruction Scheduling

NodeList dfs(Nodev, Bitvector �)
Let v1; : : : ; vd be the decision nodes of a DAGG, such that
bitvector� = (�1; : : : ; �d) 2 f0; 1gd represents the decisions made for them:
if v has already been visitedthen return the empty listfi
markv as visited;
if v is a leaf then return new NodeList(v) fi
if v is a tree nodethen return labelfs(v) fi
if v is a unary nodethen return dfs(lchild(v; �)) ./ new NodeList(v) fi
let i be the index withv = vi; // v is a decision node
if �i = 0

then return dfs(lchild(v)) ./ dfs(rchild(v)) ./ new NodeList(v)
else return dfs(rchild(v)) ./ dfs(lchild(v)) ./ new NodeList(v)

fi
end dfs

Schedulesimple(DAG G = (V;E) with root root)
ScheduleS 0 = NULL; m0 = jV j;
forall 2d different� 2 f0; 1gd do

NodeListL dfs(root ; �);
let S be the schedule corresponding toL;
determine register needm(S);
if m(S) < m0 then S 0 S; m0 = m(S) fi

od
return S 0

end simple;

FIGURE 2.6: Algorithmcompletesearchdetermines a space-optimal contiguous schedule.

q

q

q

q

q

q

q

q�
���
�
���
�
���

�
���
�
���6

@
@@I

@
@@I

@
@@I

@
@@I

a b c

d e

f g

h

FIGURE 2.7: Example DAG.

For the example DAG of Figure 2.7, we haveN = 7, hencedeff = log 7.
Obviouslydeff � d. Furthermore, we can show the following lower bound fordeff:

Lemma 2.5 d? � deff.

Proof: There must be at least as many bits set to 0 or 1 in each final bitvector as there are decision
nodes on an arbitrary path from some leaf to the root, because no exclusion is possible on the path from
the node being scheduled first to the root. The bitvector describing the path with the smallest number
of decision nodes is enumerated by the algorithm, so the lower bound follows.2

This lower bound may be used to get a lower bound (2d?) for the number of schedules
reported bydescend. In the example above, the lower bound fordeff is 2, since the path with

2.3. Contiguous Schedules 31

procedure descend(Bitvector �, int pos)
while �pos = � and pos < d do pos pos+ 1 od
if pos � d
then if �pos = �

then report(�) // new schedule found//
else // �pos is empty://
�d = 0; report(�); // new schedule found//
�d = 1; report(�); // new schedule found//

fi
else // (pos < d:)
�pos = 0;
mark exclusions of nodesvj , j 2 fpos+ 1; :::; dg by lchild(vpos) as�j �;
descend(�; pos+ 1);
�pos = 1;
mark exclusions of nodesvj , j 2 fpos+ 1; :::; dg by rchild(vpos) as�j �;
descend(�; pos+ 1);

fi
end descend;

FIGURE 2.8: The recursive functiondescendis the core of an algorithm that generates alldif-
ferentcontiguous schedules of a DAGG. As before,v1; : : : ; vd denote the decision nodes in re-
verse topological order (i.e., the root comes first). Functiondescendis called bydescend(0d; 1)
where0d is a bitvector of sized initialized by zeroes. Functionreport computes the actual
schedule from a bitvector� (in a similar way asdfs in Figure 2.6), compares it with the best
schedule reported up to then, and stores the better one.

decision nodesv1; v2; : : : ; v5: h f g d e

start at the root,pos = 1: 0 �
propagate bits and asterisks,pos = 2: 0 0 � �
all bits set: first schedule reported 0 0 � 0 � S1
for pos = 4 0 0 � 1 � S2
’backtrack’: 0 1 � �

0 1 � � 0 S3
0 1 � � 1 S4

’backtrack’: 1 � �
1 � 0 �
1 � 0 � 0 S5
1 � 0 � 1 S6

’backtrack’: 1 � 1 � � S7

TABLE 2.2: For the ex-
ample DAG of Figure 2.7,
the algorithmdescendex-
ecutes the above schedule
steps. Only 7 instead of
25 = 32 contiguous sched-
ules are generated.

32 Chapter 2. Instruction Scheduling

q

q

q

q

q

q

q

q�
���
�
���

....
....

..

�
���

....
....

..

....

....

....

....

....

@
@@I

@
@@I

@
@@I

@
@@I

a b c

d e

f g

h

q

q

q

q

q

q

q

q�
���

....
....

....
....

....

....
....

....
....

....

....

....

....

....

....

@
@@I

@
@@I

@
@@I

@
@@I

a b c

d e

f g

h

q

q

q

q

q

q

q

q....
....

....
....

....
....

....
..

....
....

....
....

....

....

....

....

....

....

@
@@I

@
@@I

@
@@I

@
@@I

a b c

d e

f g

h

FIGURE 2.9: The example DAG is split in three steps by setting�1 = 0, �2 = 0, �4 = 0. The
edges between the generated subtrees are shown as dotted lines.

the least number of decision nodes is (c; g; h) which has two decision nodes.

2.3.3 Further Reducing the Number of Schedules

We now construct an algorithm that reduces the number of generated schedules further. The
reduction is based on the following observation: Letv be a decision node with two children
v1 andv2. LetG(v) = (V (v); E(v)) = coneDAG(G; v) denote the cone DAG rooted atv, and
G(vi) = coneDAG(G; vi) the cone DAGs with rootvi, i = 1; 2. By deciding to evaluatev1
beforev2, we decide to evaluate all nodes ofG(v1) before the nodes inGrest = (Vrest; Erest)
with Vrest = V (v)�V (v1); Erest = E(v)\ (Vrest�Vrest). Let e = (u;w) 2 E(v) be an edge
with u 2 V (v1); w 2 Vrest. The functiondescendmarksw with a �. This can be considered
as eliminatinge: at decision nodew, we do not have the choice to evaluate the childu first,
becauseu has already been scheduled and will be held in a register untilw is scheduled.
Therefore,descendcan be considered as splitting the DAGG into smaller subDAGs. We will
see later that these subDAGs are trees after the splitting has been completed. The root of each
of these trees is a decision node.5 The trees are scheduled in reverse of the order in which they
are generated. For the example DAG of Figure 2.7, there are 7 possible ways of carrying out
the splitting. The splitting steps that correspond to scheduleS1 from Table 2.2 are shown in
Figure 2.9.

If we look at the subDAGs that are generated during the splitting operation, we observe
that even some of the intermediate subDAGs are trees which could be evaluated without a fur-
ther splitting. E.g., after the second splitting step (�2 = 0) in Figure 2.9, there is a subtree with
nodesa; b; d which does not need to be split further, because an optimal contiguous schedule
for the subtree can be found by a variant oflabelfs. By stopping the splitting operations in
these cases, the number of generated schedules can be reduced from 7 to 3 for the example
DAG.

Depending on the structure of the DAG, the number of generated schedules may be
reduced dramatically when splitting the DAG into trees. An example is given in Figure
2.10. In order to evaluate the generated trees we need a modified labeling algorithm that
is able to cope with the fact that some nodes of the trees must be held in a register until
the last reference from any other tree is resolved. Such an algorithm is given in Section
2.3.5. Before applying the new labeling algorithm, we explicitly split the DAG in subtrees
T1 = (V1; E1); : : : ; Tk = (Vk; Ek). We suppose that these subtrees must be evaluated in this
order. The splitting procedure is described in detail in the next section. After the splitting, we

5As we will see later, the root of the last generated tree is not a decision node.

2.3. Contiguous Schedules 33

FIGURE 2.10: The DAG to the left has 8 decision nodes.
When using the functiondescend, only one node gets an
asterisk, i.e.27 schedules are generated. When using the
improved algorithmdescend2presented in this section,
only 2 schedules are generated: the first one evaluates the
left child of the root first, the second one evaluates the
right child first.

q

q

q

q

q

q

q

q

q

q

q

q

�
�

�
�

�
�

�
�

�
�

@
@I

@
@I

@
@I

@
@I

@
@I

a b

cd

e

f

g

h

e

e

e

e e

FIGURE 2.11: The example DAG is split
into 3 subtrees by setting�1 = 0, �2 = 0,
�4 = 0. The newly introduced import nodes
are marked with a circle. They are all non-
permanent.

introduce additional import nodes which establish the communication between the trees. The
resulting trees to the second DAG in Figure 2.9 are given in Figure 2.11.

We present the modified labeling algorithm in Section 2.3.5 with the notion of import and
export nodes:

Definition 2.11 Anexport nodeof a treeTi is a node which has to be left in a register because
another treeTj(j > i) has a reference tov, i.e.,Tj has an import node which corresponds to
v.

An import nodeof Ti is a leaf which is already in a registerR because another tree
Tj(j < i) that has been evaluated earlier has left the corresponding export node inR.

Therefore, an import node needs not to be loaded in a register and does not appear again
in the schedule. For each import node, there exists a corresponding export node. Note that
two import nodesv1 6= v2 may have the same corresponding export node.

We distinguish between two types of import nodes:

� A permanent import nodev can be evaluated without being loaded in a register.v
cannot be removed from the register after the parent ofv is evaluated, because there is
another import node ofTi or of another treeTj that has the same corresponding export
node asv and that has not been evaluated yet.

� A nonpermanent importnodev can also be evaluated without being loaded into a
register. But the register that containsv can befreed after the parent ofv has been

34 Chapter 2. Instruction Scheduling

evaluated, because all other import nodes that have the same corresponding export node
asv are already evaluated.6

Let the DAG nodes beV = V1[: : :[Vk. We describe the import and export nodes by the
characteristic functionsexp, impp andimpnp that mapV to f0; 1g, and the functioncorr that
mapsV to V . These are defined as follows:

exp(v) =

(
1 if v is an export node
0 otherwise

impp(v) =

(
1 if v is a permanent import node
0 otherwise

impnp(v) =

(
1 if v is a nonpermanent import node
0 otherwise

corr(v) = u; if u is the corresponding export node tov

The definition of import and export nodes implies

exp(v) + impp(v) + impnp(v) � 1 for eachv 2 Vi

2.3.4 Splitting the DAG into Subtrees

We now describe how the DAGs are split into subtrees and how the import and export nodes
are determined. We derive a recursive proceduredescend2that is a modification ofdescend.
descend2generates a number of schedules for a given DAGG by splittingG into subtrees and
evaluating the subtrees with a modified labeling scheme. Among the generated schedules are
all optimal schedules. We first describe how the splitting is executed.

Let d be the number of decision nodes. The given DAG is split into at mostd subtrees to
generate an schedule. After each split operation, export nodes are determined and correspond-
ing import nodes are introduced as follows: Letv = vpos be a decision node with childrenv1
andv2 and letG(v); G(v1) andGrest be defined as in the previous section. We consider the
case thatv1 is evaluated beforev2 (�pos = 0). Let u 2 V (v1) be a node for which an edge
(u;w) 2 E(v) with w 2 Vrest exists. Thenu is an export node inG(v1). A new import node
u0 is added toGrest by settingVrest = Vrest [fu0g andErest = Erest [f(u0; w)g. u0 is the
corresponding import node tou. If u has already been marked inG(v1) as export node, then
u0 is a permanent import node, because there is another reference tou (from another tree)
that is evaluated later. Otherwise,u0 is a nonpermanent import node. If there are other edges
ei = (u;wi) 2 E(v) with i = 1; : : : ; k andwi 2 Vrest, then new edgese0i = (u0; wi) are added
toErest. If k � 1, Grest is not a tree and will be split later on.

One splitting step is executed by the functionsplit dagwhose pseudocode is given in [J1].
We omit the details here because this method is only applicable to register space optimization
and hence an in-depth description is beyond the scope of this book. It is sufficient to note that

6This partitioning of the import nodes is well defined, since the order of theTi is fixed.

2.3. Contiguous Schedules 35

the worst-case time complexity ofsplit DAG is linear in the DAG size.split dag is called by
the recursive proceduredescend2that visits the decision nodes in reverse topological order
(in the same way asdescend). For each decision nodev (not yet marked by a�) with children
v1 andv2, descend2executes the two possible split operations by two calls tosplit dag, which
build, for each of the two possible orderings of the children, the two (remaining) cone DAGs
Gleft andGright (see Figure 2.12) and also compute the values ofexp, impp, impnp andcorr
for each node in these cone DAGs for each variant. If one of these cone DAGs is a tree, all
decision nodes in the tree are marked with a� so that no further split is executed for these
decision nodes. The root of the tree is added toroots, which is a set of nodes that is empty at
the beginning. If all decision nodes have been marked, i.e. a new schedule has to be reported,
the trees which have their roots inroots are evaluated according toord with the modified
labeling schemelabelfs2presented in Section 2.3.5.

The algorithm is started with a calldescend2(0d; 1; G) where again0d is a zeroed bitvector
with d positions, and the decision nodesv1; : : : ; vd of the DAGG are supposed to be sorted in
reversed topological order (the root first).

By fixing the traversal order of the trees in thetop sortcall (before computing and report-
ing the schedule), we also determine the type of the import nodes7, i.e., which import nodes
return a free register when being scheduled. An import node is nonpermanent if it is the last
reference to the corresponding export node. Otherwise it is permanent: The register cannot
be freed until the last referencing import node is computed.

2.3.5 Evaluating Trees with Import and Export Nodes

By repeatedly splitting a DAG,descend2generates a sequence of treesT1 = (V1; E1), : : :,
Tk = (Vk; Ek) with import and export nodes. It remains to describe how an optimal schedule
is generated for these trees. With the definitions from Section 2.3.3 we define two functions
occ andfreed:

occ : V ! f0; 1g with occ(v) =
X

w is a proper predecessor ofv

exp(w)

counts the number of export nodes in the subtreeT (v) with root v (excludingv), i.e. the
number of registers that remain occupied afterT (v) has been evaluated.

freed: V ! f0; 1g with freed(v) =
X

w is a proper predecessor ofv

impnp(w)

counts the number of import nodes of the second type inT (v), i.e. the number of registers
that are freed afterT (v) has been evaluated.

We define for each nodev of a treeTi, 1 � i � k, a labellabel(v) that specifies the
number of registers required to evaluatev as follows:

7If two import nodesv1 andv2 of the same treeTi have the same corresponding export node, then the type is
determined according to the traversal order ofTi as described in the nect section. For the moment we suppose
that both nodes are permanent; Appendix A.1 handles the other case.

36 Chapter 2. Instruction Scheduling

procedure descend2(Bitvector �, int pos, DAG G)
while �pos = � and pos � d do pos pos+ 1 od;
if pos = d+ 1
then ord top sort(roots); S new NodeList();

for i = 1 to d do S S ./ labelfs2(ord(i)) od; report(S);
else
�pos = 0; G1 = copy(G);
mark exclusions of nodesvj , j 2 fpos+ 1; :::; dg by lchild(vpos) as�j = �;
Gleft coneDAG(G1; lchild(vpos));
if Gleft is a tree
then mark all decision nodes inGleft with a�; roots = roots [flchild(vpos)g fi;
Gright split dag(vpos; lchild(vpos); rchild(vpos); G1);
if Gright is a treethen

mark all decision nodes inGright with a�; roots= roots[fvposg; fi;
descend2(�; pos+ 1; G1);
�pos = 1; G2 = copy(G);
mark exclusions of nodesvj , j 2 fpos+ 1; :::; dg by rchild(vpos) as�j = �;
Gright coneDAG(G2; rchild(vpos));
if Gright is a treethen

mark all decision nodes inGright with a�; roots= roots[frchild(vpos)g fi;
Gleft split dag(vpos; rchild(vpos); lchild(vpos); G2);
if Gleft is a treethen

mark all decision nodes inGleft with a�; roots= roots[fvposg fi;
descend2(�; pos+ 1; G2);

fi
end descend2;

FIGURE 2.12: The recursivedescend2routine. top sort is a function that sorts the nodes in
its argument set in topological order according to the global DAG. Hence, if there are nodes
v; v1; v2; w1; w2 wherev = vpos is a decision node with�pos = 0 and(v1; v); (v2; v) 2 E and
w1 is a predecessor ofv1 andw2 is a predecessor ofv2, thenord(w1) < ord(w2). Accordingly,
if �pos = 1, thenord(w2) < ord(w1). copy is a function that yields a copy of the argument
DAG.

If v is a leaf, then

label(v) = 2� 2 � (impp(v) + impnp(v)):

For an inner nodev with two childrenv1 and v2, let Sj denote the subtree with root
vj; j = 1; 2. Being restricted to contiguous schedules, we have two possibilities to evaluatev:
If we evaluateS1 beforeS2, we use

m1 = max(label(v1); label(v2) + occ(v1) + 1� freed(v1))

registers, provided thatv1 (v2) can be evaluated with label(v1) (label(v2)) registers. AfterS1 is
evaluated, we needocc(v1) registers to hold the export nodes ofS1 and one register to holdv1.

2.3. Contiguous Schedules 37

On the other hand, we freefreed(v1) registers when evaluatingS1. If we evaluateS2 before
S1, we use

m2 = max(label(v2); label(v1) + occ(v2) + 1� freed(v2))

registers. We suppose that the best traversal order is chosen and set

label(v) = min(m1;m2)

With this label definition, the labeling algorithm introduced above, now calledlabelfs2
[J1], can be reused for trees with import and export nodes.

Appendix A.1 proves that a calllabelfs2(v) generates an optimal contiguous schedule of
the subtree rooted atv that uses exactlylabel(v) registers. Hence, we conclude with the
following theorem:

Theorem 2.6 For a given DAG, the algorithm descend2 generates a contiguous schedule that
uses no more registers than any other contiguous schedule.

2.3.6 Experimental Results

We have implementeddescendand descend2and have applied them to a great variety of
randomly generated test DAGs with up to 150 nodes and to large DAGs taken from real
application programs, see Tables 2.3 and 2.4. The random DAGs are generated by initializing
a predefined number of nodes and by selecting a certain number of leaf nodes. Then, the
children of inner nodes are selected randomly. The following observations can be made:

� descendconsiderably reduces the number of contiguous schedules that would be enu-
merated by the naive algorithm.

� descend2often leads to a large additional improvement overdescend, especially for
DAGs wheredescendis not so successful in reducing the number of different contiguous
schedules.

� descend2works even better for DAGs from real application programs than for random
DAGs.

� In almost all cases, the computational effort ofdescend2seems to be justified. This
means that,in practice, anoptimalcontiguous schedule (and thus, contiguous register
allocation) can be computed in acceptable time even for large DAGs.

38 Chapter 2. Instruction Scheduling

n d Nsimple Ndescend Ndescend2

24 12 4096 146 5
25 14 16384 1248 3
28 16 65536 748 22
27 17 131072 744 15
28 19 524288 630 32
33 21 2097152 1148 98
36 24 16777216 2677 312
38 26 67108864 6128 408
39 27 134217728 1280 358
42 29 536870912 6072 64
42 31 231 2454 152
46 34 234 4902 707
54 39 239 30456 592
56 43 243 21048 4421

n d Nsimple Ndescend Ndescend2

20 14 16384 160 10
28 16 65536 784 8
29 18 262144 938 32
30 21 2097152 1040 64
37 23 8388608 13072 24
38 24 16777216 11924 56
45 27 134217728 100800 18
41 29 536870912 74016 364
41 31 231 3032 142
41 31 231 3128 180
44 33 233 40288 435
46 34 234 40244 1008
48 37 237 21488 1508
53 42 242 79872 3576

TABLE 2.3: Measurements excerpted from a test series for large random DAGs. The number
of contiguous schedules generated by the algorithmssimple, descendanddescend2are given
for typical examples.

Source DAG n d Nsimple Ndescend Ndescend2 Tdescend Tdescend2

LL 14 second loop 19 10 1024 432 18 0:1 sec.< 0:1 sec.
LL 20 inner loop 23 14 16384 992 6 0:2 sec.< 0:1 sec.
MDG calc.cos(�); sin(�); ::: 26 15 32768 192 96 < 0:1 sec.< 0:1 sec.
MDG calc. forces, first part 81 59 259 — 7168 — 13.6 sec.

subDAG of this 65 45 245 — 532 — 0.9 sec.
subDAG of this 52 35 235 284672 272 70.2 sec. 0.8 sec.
subDAG of this 44 30 230 172032 72 42.9 sec. 0.3 sec.
subDAG of this 24 12 4096 105 8 < 0:1 sec.< 0:1 sec.

SPEC77mult. FFT analysis 49 30 230 131072 32768 20.05 sec. 21.1 sec.

TABLE 2.4: Some measurements for DAGs taken from real programs (LL = Livermore Loop
Kernels; MDG = Molecular Dynamics, and SPEC77 = atmospheric flow simulation, both
from the Perfect Club Benchmark Suite). The table also gives the run times (1992) of the
algorithmsdescendand descend2, implemented on a SUN SPARC station SLC. The tests
show that for large DAGsdescendis too slow, but the run times required bydescend2remain
really acceptable.

2.3. Contiguous Schedules 39

2.3.7 Summary of the Algorithms for Contiguous Schedules

We started with the simple randomized heuristic and the simple enumeration algorithm that
evaluates only the tree nodes of the DAG by a labeling algorithm and generates2d contiguous
schedules, whered is the number of decision nodes of the DAG. We presented two refined
variants of the simple enumeration algorithm. The first variant is the exclusion of redundant
decision nodes as performed by proceduredescend. The second variant is the splitting of
the DAG in subtrees (performed bydescend2) and scheduling these by the modified labeling
algorithm labelfs2. The experimental results confirm that this variant generates only a small
number of contiguous schedules, even for large DAGs. Among the generated schedules are all
schedules with the least register need (with respect to contiguous schedules). Therefore, by
usingdescend2we find the optimal contiguous schedule in a reasonable time even for large
DAGs. The dramatic reduction in schedules generated makesdescend2suitable for the use in
optimizing compilers, especially for time-critical regions of the source program.

2.3.8 Weaknesses of Contiguous Schedules

However, the algorithms for computing an optimal contiguous schedule may not find an op-
timal schedule because it might be noncontiguous. There are DAGs for which a general
schedule exists that uses fewer registers than every contiguous schedule, e.g. the subDAG of
MDG in Table 2.4 with 24 nodes8 or the example DAG given in Figure 2.13.

Moreover, if the time behaviour of a schedule is to be considered in the presence of de-
layed instructions or multiple functional units, contiguous schedules tend to be inferior to
noncontiguous ones, because at contiguous schedules it is much more typical that a parent
node is scheduled directly after its child, which may cause a data hazard.

6

5

2 4

1 3

l

l

l l

ll

ia ib id

ic ie

if ig

ih

���
���

D
D
D
D
D
DD

��
��

PP
PP

��
�

HH
H

�
�

Q
Q

��ZZ

,��ZZ��ZZ

FIGURE 2.13: This DAG can be scheduled noncontigu-
ously (in the ordera; b; c; d; e; 1; f; g; 2; h; 3, 4, 5, 6)
using 4 registers, less than each contiguous schedule:
Any schedule using 4 registers must schedule the sub-
DAG with root 1 first. A contiguous schedule can do
this only by scheduling the left child of node 6, the right
child of node 5 and the left child of node 4 first. In a
contiguous schedule, nodesh and 3 must be scheduled
after 1 and thus the values of nodes 3 and 4 must be
held in two registers. But in order to schedule nodes
f; g and 2, three more registers are required, thus the
contiguous schedule uses at least five registers.

8For the subDAG of MDG withn = 24 nodes in Table 2.4, there is a noncontiguous schedule that uses 6
registers, while the computed contiguous schedule takes 7 registers.

40 Chapter 2. Instruction Scheduling

2.4 Computing Optimal Schedules

LetNG denote the number of different schedulesS for a DAGG with n nodes.NG obviously
depends on the structure of the DAG. ClearlyNG is less thann!, the number of permutations
of the instructions. Our hope is that this is a very coarse upper bound and thatNG is not
too high for small and medium-sized DAGs. Then we could just generateall NG possible
schedules for a given DAGG and select an optimal one among them.

2.4.1 Enumerating Schedules

Let us begin with a naive approach using an algorithm for topological sorting to generate these
schedules.Topological sortingperformsn steps. Each step selects one of the nodes, sayv,
with indegree zero, schedules it, and deletes all edges fromv to its parents. Note that some of
v’s parents may get indegree 0, thus they become selectable in the following step.

We use an arrayS[1:n] of nodes ofG to store the current (partial) scheduleS. Let z0 be
the set of all leaves ofG, i.e. the nodes with initial indegree zero, and letINDEG0 be an array
containing the initial indegree of every node. The callnce(z0; INDEG0; 1) of the recursive
algorithmncegiven in Figure 2.14 yields all possible schedules ofG.

It is easy to see that the algorithm has a recursive nesting depth ofn. For each recursive
call, a copy of the current setz and of the current arrayINDEG must be generated, so the
required space isO(n2). The iterations of thefor all loop overz could be executed in parallel,
if each processor has its own copy ofS. If this loop is executed in sequential, copying can
be avoided; thus spaceO(n) will suffice. The run time ofncedepends on the structure of the
given DAGG and of the number of possibilities for the choice of the next node forS, i.e. the
cardinality ofz in each step of the algorithm.

The total run time ofnceis proportional to the total number of generated schedules. Thus,
the run time is bounded byO(n!�n), because for each call we either update theINDEGarrayor
print a schedule.9 The real number of schedules generated will be considerably smaller than
the worst case boundn! because only a small fraction of the permutations are valid schedules.
Nevertheless, algorithmnceis impractical for DAGs with more than 15 nodes; our prototype
implementation ofncealready needs several days for DAGs of size around 20.

As a straightforward extension ofnce, the algorithm could check after each scheduling
decision whether the remaining DAG induced by the yet unscheduled nodes is a tree or forest
[Sei00]. In that case, we need no longer follow the recursive computation ofncebut can fall
back to our refined tree scheduling method withlabelfs2(see Section 2.3.5) and determine a
space-optimal remainder of the schedule in time polynomial in the size of the tree or forest.

In order to improve the exhaustive search performed bynce, we must have a closer look
at it. ncebuilds a decision tree, called theselection tree, T = (Z 0; H 0). The setZ 0 of nodes,
called theselection tree nodes, contains all theinstancesz0 of the zero-indegree sets of DAG
nodes that occur as the first parameterz in a call tonceduring the execution of the algorithm.
A directed edgeh = (z01; z

0
2) 2 H 0, calledselection tree edge, connects two selection tree

nodesz01; z02 2 Z 0 iff there is a step innce that directly generatesz02 from z01 by selecting

9We can easily eliminate a factor ofn if the DAG has only one rootr: This noder must always be the last
node in a schedule, i.e.S(r) = n, terminating the recursion at nesting leveln� 1.

2.4. Computing Optimal Schedules 41

ScheduleS new Schedule(jV j);
ScheduleSopt some arbitrary schedule ofG
int n jV j;
int mopt n; // upper bound for register need

function selection(Nodev, Setz, Array INDEG)
// select DAG nodev to be scheduled next in currentS:
let P be the set of all parent nodes ofv in G
for all w 2 P do INDEG0[w] INDEG[w]� 1 od;
for all u =2 P do INDEG0[u] INDEG[u] od;
let P 0 be the subset of those nodes ofP which have indegree 0;
z0 z � fvg [P 0;
return (z0; INDEG0);

end selection

function nce(setz, int[] INDEG, int pos)
if pos = n+ 1 // S is a complete schedule ofG
then if m(S) < mopt then Sopt S; mopt m(S) fi
else

for all v 2 z do
(z0; INDEG0) selection(v; z; INDEG);
S(pos) v;
nce(z0; INDEG0;pos+ 1);

od
fi

end nce

FIGURE 2.14: Algorithmnceenumerates all schedules of a DAGG = (V;E).

a DAG nodev from z01 and scheduling it. The selection tree edgeh is labeled`(h) = v
by the DAG nodev selected. Clearly, the selection tree has one root that corresponds to the
initial set z0 of zero-indegree DAG nodes. All leaves of the selection tree are instances of
the empty set of DAG nodes. The number of selection tree edges leaving a selection tree
nodez 2 Z 0 is equal to the cardinality ofz. According to the algorithmnce, the order of
the labels̀ ((zj�1; zj)) of the edges on any path� = (z0; :::; zn), read from the rootz0 to
a leafzn, corresponds one-to-one to a valid scheduleS� : V ! f1; :::; ng of the DAGG
with S�(`((zj�1; zj))) = j, j = 1; :::; n; and for each scheduleS of G there exists a unique
corresponding path�S in T from z0 to some leaf.

Let scheduled(z) denote the set of DAG nodes that have already been scheduled when
functionnceis called with first parameterz. In particular, all DAG predecessors of the DAG
nodes inz belong toscheduled(z), see Fig. 2.15. Furthermore, we denote byL(z) the length
of the path from the rootz0 to z, i.e.L(z) = jscheduled(z)j.

An already scheduled node of the DAG isaliveat the end of a partial schedule of the DAG
if it is an operand of a node that has not yet been scheduled, and must hence be held in a

42 Chapter 2. Instruction Scheduling

v

coneDAG(G,v)scheduled(z)

DAG nodes in z

the zeroindegree wavefront z

FIGURE 2.15: A snapshot of a DAG
being processed by algorithmnce.

register:

Definition 2.12 Theset of alive nodesof a scheduleS of a DAGG for a selection nodez is

alive(z) = fu 2 scheduled(z) : 9(u; v) 2 E; v =2 scheduled(z)g

and the number of alive nodes is occ(z) = jalive(z)j.

Hence,occ(z) denotes the number of values which are currently to be held in registers
(assuming as usually that an optimal register allocation is used). Note thatocc(z) is the same
for all schedules ofscheduled(z). Hence,occ(z) is a lower bound for the register need of a
schedule ofscheduled(z).

As example, for the DAG in Figure 2.16 we have
scheduled(fc; dg) = fa; bg, L(fc; dg) = 2, occ(fc; dg) = 2;
scheduled(fa; b; cg) = ;, L(fa; b; cg) = 0, occ(fa; b; cg) = 0;
scheduled(;) = V = fa; b; c; d; e; f; g; hg, L(;) = n = 8, occ(;) = 0.

We have observed that in such a selection tree, there occur generally several different
instancesz0 2 Z 0 of the same setz. We will modify the algorithmncein such a way that these
multiple occurrences ofz are eliminated and replaced by a single node namedz. Thus, the
computation of the modified algorithm will result in aselection DAGrather than a selection
tree. Let us first introduce some notation.

Definition 2.13 A selection DAGD = (Z;H) is a directed acyclic graph. The setZ of
selection nodescontains alldifferentsetsz generated by nce. Aselection edgeh = (z1; z2) 2
H connects two selection nodesz1; z2 2 Z iff there is a step in nce that directly generatesz2
fromz1 by selecting a DAG nodev 2 z1.

Note that a selection DAG has a single root, namelyz0, and a single sink, the empty set;.
Figure 2.16 shows an example DAGG and the selection DAG computed for it.
Each selection edge(z1; z2) is annotated with the DAG nodev = `((z1; z2)) that is selected

when going fromz1 to z2.
By Gz = (scheduled(z); E \ (scheduled(z) � scheduled(z))) we define for eachz 2 Z

the subgraph ofG induced byscheduled(z). Note thatG = G;.

2.4. Computing Optimal Schedules 43

r

r

r

r

r

r

r

r�
�
��
�
�
��
�
�
��

�
�
��
�
�
��6

@
@
@I

@
@
@I

@
@
@I

@
@
@I

a b c

d e

f g

h

FIGURE 2.16: An example DAG and its
selection DAG

a

h

f

e

{a,b,c}

{a,b}{a,c} {b,c}

{c,d}{b} {a,e}

{a,g}{c}{d,e}

{e} {d,g}

{d}

{a}

{f,g}

{g}

{h}

{f}

{}

acd e

c d

a
b

b ca

b a

d

f g

g

d

a

g

e

cc

b

g

Lemma 2.7 Each path� = (z0; z1; :::; zn�1; zn = z) of lengthn in the selection DAGD =
(Z;H) from the rootz0 to a selection nodez 2 Z corresponds one-to-one to a schedule of
scheduled(z) which is given by the mappingS : V ! f1; :::; ng with S(`((zj�1; zj))) = j for
j = 1; :::; n.

Proof: by induction on the lengthn of �. Initially, the path� = (z0) consists only of the rootz0 and
has lengthn = 0, with scheduled(z0) = ;. Clearly,� corresponds one-to-one to the empty schedule.
Now assumen > 0.
): Let z be an inner node ofD. z has some direct predecessory in D. In y a DAG nodè ((y; x)) =
v 2 y was selected bynce. Thus,scheduled(y) = scheduled(x)�fvg andL(y) = L(x)� 1 = n� 1.
Consider the prefix path�0 = (z0; :::; zn�1 = y) of � to y. We apply the induction hypothesis to�0,
yielding a scheduleS�0 for scheduled(y). We generate a scheduleS� for scheduled(z) by just adding
S�(v) = n to S�0 .
(: Consider a scheduleS of n DAG nodes. Letv = S�1(n). We defineVz = fS�1(1),...,S�1(n)g
andVy = Vz � fvg. LetSy be some arbitrary schedule forVy. By the induction hypothesis there is a
path�y = (z0; :::; zn�1) in D to some selection nodezn�1 = y with scheduled(y) = Vy. Sincev can
be scheduled next (i.e. at positionn), there must exist a selection edge(y; z) to some selection nodez
with `((y; z)) = v, scheduled(z) = Vz = scheduled(y)[fvg andL(z) = n. Thus,�S = (z0; :::; y; z)

44 Chapter 2. Instruction Scheduling

is the path corresponding to scheduleS. 2

This means that subpaths corresponding to different partial schedules of the same subsets
of DAG nodes end up in the same selection node. For instance, the paths inscripteda; b; c and
b; c; a in Figure 2.16 both end up in selection nodefd; eg. If we read the edge labels along
any path from the root to the sink of the selection DAG, we obtain a valid schedule ofG.

Corollary 2.8 All paths� in the selection DAGD = (Z;H) from the root to a selection node
z 2 Z have equal lengthL(z).

Corollary 2.9 D is leveled, i.e. the nodesz ofD can be arranged inn+1 levelsL0; L1; :::; Ln

such that the selection edges inD connect only selection nodes in neighbored levelsLi�1; Li,
i = 1; :::; n.

Proof: Seti = L(z) in corollary 2.8.2

Up to now, the selection DAG is nothing more than a compressed representation of the
selection tree, as it allows to reproduce all schedules generated by algorithmnce. Now we
will present and prove a key lemma that enables using the selection DAG as the underlying
structure of a dynamic programming algorithm to minimize the register need.

A direct consequence of Lemma 2.7 is that for a (partial) scheduleS of a DAG node
setscheduled(z), corresponding by Lemma 2.7 to a path� = (z0; z1; :::; zn = z), we may
exchange any length-k prefix of �, with k < n, by taking a different path towardszk+1,
resulting in a new path�0 = (z0; z

0
1; :::; z

0
k; zk+1; :::; zn = z), i.e. a new scheduleS 0 of

scheduled(z). A key observation is that for bothS andS 0, after executing thekth instruction
(and thus arriving at the same zeroindegree setzk+1), the same setalive(zk+1) of nodes will
be held in registers. Hence, it seems reasonable to change to a prefix path that minimizes the
register need for the resulting schedule. We exploit this property now to show that it suffices
to keeponearbitrary optimal schedule ofscheduled(z) for each selection nodez:

Lemma 2.10 Consider all direct predecessorsy1; :::; yq 2 Li�1 of a selection nodez 2 Li.
Let vj = `((yj; z)), j = 1; :::; q, and let Syj denote an arbitrary optimal schedule for
scheduled(yj), j = 1; :::; q. We construct schedulesS(j)

z for scheduled(z) by just adding
S(j)
z (vj) = i to scheduleSyj , j = 1; :::; q. Then, one of these schedules,S(j0)

z , withm(S(j0)
z) �

m(S(j)
z) for all j = 1; :::; q, is an optimal schedule of scheduled(z).

Proof: (indirect) It is sufficient to consider only the subsetJ consisting of just those indicesj where
Syj contributes to schedulesS(j) with minimal register need, i.e., for eachj 2 J we havem(S

(j)
z) =

m0 = min1�k�qm(S
(k)
z). We show: Ifm0 is not equal to the (global) optimumm� for scheduled(z),

i.e. if noS(j)
z is optimal forscheduled(z), then there is at least onej 2 J where the scheduleSyj used

to build S
(j)
z was not optimal. Comparing the register need ofSyj andS(j)

z , we classify the indices
j 2 J into two classes: those where the register need remains the same after schedulingvj , and those
where it has increased.

Class 1:m(Syj) = m0. For these cases, a register was reused to storevj . Hence, suboptimality of

S
(j)
z implies suboptimality ofSyj for eachj in class 1.

2.4. Computing Optimal Schedules 45

Class 2:m(Syj) = m0 � 1. In these cases, a new register had to be used forvj , as all other
m0 � 1 registers had been occupied, i.e.occ(yi) = m0 � 1 (because we always use an optimal register
allocation). Asocc(yi) is a lower bound for the register need, any scheduleS of scheduled(yj) that
uses onlym(S) = m0�1 registers would be optimal forscheduled(yj). (Note that, by the construction,
such a schedule exists for eachj in class 2, namelySyj .) But this cannot hold simultaneously for all
j in class 2, because then allS(j) must be optimal as well, which is a contradiction to our assumption
thatm0 > m�. 2

For each selection nodez we further define:
�z as the set of all schedules forGz;
Sz as one of the schedules in�z with minimal register need, and
mz = m(Sz) as this minimal register need. Note thatm; is then the register need of an
optimal schedule forG.

The definition of�z and the selection ofSz from �z is well-defined due to Lemma 2.7
and Lemma 2.10.

The new algorithmncc (see Figure 2.17) constructs the selection DAG instead of the
selection tree.ncc generates the selection nodes levelwise. At any creation of a new zero-
indegree setz0, it inspects whether a selection node for the same DAG node set has already
been created before. BecauseD is leveled (see corollary 2.9), the algorithm needs only to
inspect already generated selection nodes in the current levelLi+1. If such a selection node
z0 does not yet exist, a new selection nodez0 is created andSz0 is initialized to the current
scheduleS. Otherwise, if the selection nodez0 already exists,ncc computes whether the
current scheduleS or the scheduleSz0 uses fewer registers, and setsSz0 to the better schedule
of these two.

Finally, each selection nodez is annotated by an optimal scheduleSz of scheduled(z), and
consequentlyS; is an optimal schedule for the DAGG.

From Lemma 2.10 the correctness ofncc follows by induction:

Theorem 2.11 Algorithm ncc computes an optimal schedule for the DAGG.

Theorem 2.12 The worst-case time complexity of algorithm ncc isO(n22n).

Proof: The number of selection nodes is bound by the number of subsets ofV , which is2n. Each
zeroindegree set has at mostn elements. Hence, the call toselectionis executed at mostn2n times. The
functionselectionuses at most linear time to compute the new zeroindegree set and the update of the
indegree array. Assuming that we use, for each listLi, a binary search tree10 for storing the selection
nodes in lexicographic order of the zeroindegree sets, thelookupcall, executed at mostn2n times, takes
time logarithmic in the maximum number of items stored in listLi+1, which is less than2n, hence a
lookup call takes linear time in the worst case. The same holds for theinsert call. 2

In practice,ncc performs considerably better than this worst case scenario. One reason
for this is that not all2n subsets ofV can occur as zeroindegree sets. Also, the number of
possible selections for a zeroindegree set is just its size, which is usually much smaller than
our conservative estimationn.

10A naive linear search, as adopted in the prototype implementation, is only suitable for small sets of selection
nodes. In practice, searching in large sets of selection nodes could be additionally sped up by hashing.

46 Chapter 2. Instruction Scheduling

function ncc(DAG G with n nodes andsetz0 of leaves)
Li empty List8i > 0; L0 new List(z0); Sz0 ;;
for levelLi from L0 toLn�1 do

for all z 2 Li do
for all v 2 z do
(z0; INDEG0) selection(v; z; INDEG); // selectingv produces a selection nodez0

S Sz ./ fvg; // get scheduleS of scheduled(z0) from Sz by addingS(v)= i+1
z00 Li+1.lookup(z0);
if (z00) // z0 already exists inLi+1

then // compareS andSz0:
if m(S) < m(Sz00) then Sz00 S else forgetS fi

else Li+1.insert(z0); Sz0 S
fi

od
od

od
return S; in Ln.first()
end ncc

FIGURE 2.17: Algorithmncc constructs the selection DAG for a DAGG and computes an
optimal schedule.

The comparison for equality and for lexicographic precedence of zeroindegree sets can be
done very fast in practice by representing zeroindegree sets as bitvectors.

2.4.2 Improvement

We improve the algorithmnccby the following modification: Instead of entering all selection
nodes of the same level into the same setLi, we subdivideLi into setsL0

i , L
1
i , ...,LK

i where
K is some upper bound of the minimal number of registers required forG.11 Now we store
in Lk

i exactly those selection nodesz of Li that have register needmz = k. Now, we no
longer have to look up allLk

i , k = 1; :::;K when looking for equality ofz sets because of data
dependencies:

Lemma 2.13 The predecessors of a selection node inLk
i+1 are located in eitherLk�1

i or Lk
i .

Proof: Appending a DAG nodev to an existing scheduleS with register needm(S) giving a new
scheduleS0 yieldsm(S) � m(S0) � m(S) + 1 since we could be required to allocate a new register
for v that was previously unused, and a composed scheduleS0 can never take less registers than any of
its sub-schedules.2

This leads to the data dependencies in the selection graph illustrated in Figure 2.19.
We use this theorem to free storage for levels as soon as they are not required any more.

11K could be a priori determined by using contiguous schedule techniques or by just choosing a random
schedule ofG. If storage is not too scarce, we can conservatively chooseK = n.

2.4. Computing Optimal Schedules 47

function ncv(DAG G with n nodes andsetz0 of leaves)
Lk
i empty list8i 8k; L0

0 new List(z0); Sz0 = ;;
for k = 1; :::;K do // outer loop: over space axis

for level i from 0 to n� 1 do
for all z 2 Lk�1

i do
for all v 2 z do
(z0; INDEG0) selection(v; z; INDEG);
m m(S) with S Sz ./ v; // by addingS(v) = i+ 1
if (!Lk�1

i+1 .lookup(z0))
if m = k � 1
Lk
i+1.remove(z0); // (if any: movez0 fromLk

i+1 toLk�1
i+1)

Lk�1
i+1 .insert(z0); Sz0 S;

else if(! Lk
i+1.lookup(z0))

Lk
i+1.insert(z0); Sz0 S; fi

fi
fi

od
od

od
if Lk�1

n .nonempty()
then return the scheduleSz for somez 2 Lk�1

n fi
fi

od
end ncv

FIGURE 2.18: Algorithmncv.

The data dependencies impose a partial order of the selection steps. Hence, we can change
our algorithm’s order of constructing selection nodes as long as there is no conflict with these
data dependencies. For instance, we can change the priority of the time slot axis over the
register need axis, which corresponds, roughly speaking, just to a loop interchange. The
resulting algorithmncv (see Figure 2.18) can finish computing selection nodes as soon as
the (first) selection node is entered into levelLn, because it represents a valid schedule with
minimal register need—just what we want! Thus, expensive computation of later unused,
inefficient partial schedules is deferred as far as possible—if we are lucky, to a point that
needs not be considered any more because a solution has been found meanwhile.

2.4.3 Parallelization

There are several possibilities to exploit parallelism inncv:

� exploiting the structure of the data dependencies among the listsLk
i (see Figure 2.19):

all lists Lj�i
i , i = 1; 2; ::: (the lists on thejth “wavefront” diagonal) can be computed

concurrently in stepj, for j = 1; :::; n +K.

48 Chapter 2. Instruction Scheduling

L5

L5

L8 L8 L8 L8 L8 L8
L8

L6

L6

L6

L6

L6

L6

L6

L6

register need

time

slots

L0 L0 L0
L0 0

L
1

L
1L

1
L

1
L

1

L2 L2 L2 L2 L2

L3
L3L3

L3L3

4L 4L 4L 4L 4L

L5L5L5L5L5

L6
L6 L6 L6

L6

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

4

4

4

L

L5

L5

L5

L5

5

L5L
7

L
7

L
7

L
7 7

L
7

0 1 2 3 4

3

2

4

5

0

1

0 1 2 3 4 5 6

6
L

0

1

2

3

4

5

6

7

FIGURE 2.19: Data dependencies among the setsLk
i of selection nodes.

� further subdivision of a listLk
i into sublists of roughly equal size (hashing) and expand-

ing the selection nodes in these sublists concurrently. Note that this requires a parallel
list data structure that guarantees that the same selection node is not erroneously in-
serted twice at the same time.

� parallelization of the lookup routine (according to previous item).

� parallelization of the expansion step itself.

Particularly, the second and third item promise the exploitation of massive parallelism.

2.4.4 Experimental Results

We have implementednce, ncc and ncv, and have applied them to hundreds of randomly
generated test DAGs and to larger DAGs taken from real application programs. Some of the

2.4. Computing Optimal Schedules 49

n Tncv m;

24 0.8 sec 8
26 1.5 sec 7
26 0.8 sec 7
27 0.1 sec 8
28 1.4 sec 8
30 4.6 sec 8
31 22.5 sec 7
31 48.6 sec 7
32 17.5 sec 8
32 1:14.9 sec 8
33 4.6 sec 10
34 25.3 sec 7
34 54.3 sec 9
35 34.4 sec 10
36 14.9 sec 10

n Tncv m;

36 32.4 sec 10
37 3:00.8 sec 9
38 56.1 sec 10
38 2:38.8 sec 9
38 28.8 sec 9
38 7.0 sec 10
38 3:35.8 sec 9
39 10:01.7 sec 10
39 34.4 sec 9
39 43.1 sec 10
39 3:39.6 sec 9
39 1:44.8 sec 10
41 14:28.1 sec 9
41 1:48.6 sec 11
41 1:09.3 sec 10

n Tncv m;

42 23.4 sec 10
42 46.9 sec 11
43 43:30.6 sec 9
43 23:51.7 sec 9
44 3:44.6 sec 11
44 5:20.7 sec 12
44 18.9 sec 11
44 10:30.9 sec 10
45 58:01.7 sec 10
46 36:46.0 sec 12
46 55:59.8 sec 10
47 22:30.0 sec 11
49 1:09:37.2 sec 10
50 32:58,1 sec 12
51 19:01.2 sec 13

TABLE 2.5: ncv applied to some random DAGs. For all these DAGs,nce failed because of
running out of space and time. (Measurements taken 1996 on a SUN SPARC-10)

experimental results are shown in Tables 2.5 and 2.6. All measurements were taken on a SUN
SPARC-20.

The random DAGs are generated by initializing a predefined number of nodes and by
selecting a certain number of them as leaf nodes. Then, the children of inner nodes are selected
randomly. We observed:

� nceis not practical for DAGs with more than 20 nodes and often takes inacceptable time
for DAGs with 15 to 20 nodes.
� ncc reduces the number of different contiguous schedules considerably. It is, roughly

spoken, practical for DAGs with up to 40 nodes, sometimes also for larger DAGs,
stongly depending on the DAG’s structure. A timeout feature, controlled e.g. by a com-
piler option, should be provided for practical use that switches to a heuristic method if
the deadline is exceeded..
� ncc is particularly suitable for “slim” DAGs because the zero-indegree setsz always

remain small.
� ncv defers the combinatorial explosion to a later point of time but, of course, cannot

always avoid it for larger and more complex DAGs. For some DAGs in the range of
41...50 nodes and for nearly all DAGs with more than 50 nodesncv runs out of space
and time.

2.4.5 Simultaneous Optimization of Register Space and Execution Time

Up to now, we assumed that there are no delay slots to be filled since the result of an opera-
tion was available at the beginning of the next machine cycle. However, modern processors
often have delayed instructions with one or more delay slots. For instance, in most processors
theLoad instructions are delayed such that the processor may be kept busy while the value

50 Chapter 2. Instruction Scheduling

Source DAG n Tncv m;

LL 14 second loop 19 0.12 sec 4
LL 20 inner loop 23 0.48 sec 6
MDG calculation ofcos; sin,... 26 0.44 sec 7
SPEC77 spherical flow 27 0.93 sec 7
SPEC77 multiple FFT analysis 49 23:26.0 sec 7

TABLE 2.6: ncv applied to some DAGs taken from real programs (LL = Livermore Loop
Kernels; MDG = molecular dynamics, and SPEC77 = atmospheric flow simulation; the last
two are taken from the Perfect Club Benchmark Suite).nce failed for all DAGs because of
running out of space and time. (Measurements taken 1996 on a SUN SPARC-10)

is fetched from the slower memory. These delay slots may thus be filled by subsequent op-
erations that do not use the result of the delayed operation. If there are no such operations
available, aNOPinstruction has to be inserted to fill the delay slot. We will show how our
technique can be easily extended to cope with delay slots.

For each DAG nodev, let delay(v) = �(
ttype(v)) denote the number of delay slots required by the operation performed atv. For a
given scheduleS, we compute a mappingT of the DAG nodes to the setf1; 2; :::g of physical
time slots as given in Figure 2.20. The algorithm returns the timetime(S) which is required to
execute the basic block reordered according to scheduleS. The number ofNOPinstructions
implied byS is then justtime(S)� n.

A schedule is time-optimal if its execution on the target processor takes not more cycles
than any other schedule:

Definition 2.14 A scheduleS of a DAGG is calledtime-optimaliff time(S) � time(S 0) for
any scheduleS 0 ofG.

We are faced with the problem that we now get a second optimization goal: minimiz-
ing time(S), i.e. the number ofNOPs, in addition to minimizing the numberm(S) of reg-
isters. When minimizing simultaneously for space and time, comparing two schedulesS1

function time(ScheduleS of a DAG G with n nodes)
Initially we sett 1. Then,
for the DAG nodesui in the order induced byS, i.e.,ui = S�1(i); i = 1; :::; n do

if ui has a left childl then t = max(t; T (l) + delay(l) + 1) fi
if ui has a right childr then t = max(t; T (r) + delay(r) + 1) fi
T (ui) = t; t = t+ 1;

od
return maxi(T (ui) + delay(ui)); end time

FIGURE 2.20: Algorithmtimecomputes the time slots and the execution time of a scheduleS
on a single-issue pipelined processor. A similar formulation of this algorithm is given e.g. in
[Muc97, Chapter 17].

2.4. Computing Optimal Schedules 51

length

time

#regs

i

k
t

FIGURE 2.21: Three-dimensional ar-
rangement of the selection nodes,
with dependencies (shown for one
node only in each level) among the
lists Lk;t

i of selection nodes, here for
maxdelay= 2. This space may be
traversed in any order that does not
conflict with the dependencies.

andS2 becomes more difficult. Clearly, iftime(S1) < time(S2) andm(S1) � m(S2), or if
time(S1) � time(S2) andm(S1) < m(S2), we preferS1 overS2. In the context of our pre-
vious algorithm, this means thatS1 would be kept in the lists of schedules, andS2 would be
thrown away. But what happens ifS1 andS2 have both equal register need and equal num-
ber of NOPs, or, even worse, iftime(S1) > time(S2) but m(S1) < m(S2) (or vice versa)?
The only safe method is to keep bothS1 andS2 in the lists for later expansion. This clearly
increases the computational work.

But we apply the same trick as above to defer computationally expensive expansions to
a later point in time. In addition to the previous partition of the selection nodes into listsLk

i

(see Figure 2.19), we add a third dimension to the space of lists of selection nodesz, namely
execution timetime(Sz) (see Figure 2.21). Specifically, a listLk;t

i contains the selection nodes
z with jscheduled(z)j = i andmz = k andtime(Sz) = t. The structure of data dependencies
among theLk;t

i , as shown in Figure 2.21, results from

Lemma 2.14 Let maxdelay= maxv delay(v). The predecessors of a selection node inLk;t
i+1

are located inLk�1;#
i or Lk;#

i , with # ranging fromt�maxdelay tod.

Proof: Evidence regardingk was already given in Lemma 2.13. Appending a DAG nodev to an exist-
ing scheduleS with execution timetime(S), giving a new scheduleS0, yieldstime(S) � time(S0) �
time(S) + maxdelaysincev can be placed safelymaxdelaytime slots after the last time slot occupied
by S. 2

Another, even more problematic difficulty arises if the execution time is to be minimized.
For the previous algorithm,ncv, all space-optimal schedules for the same set of nodes were
equivalent also when later used as sub-schedules in subsequent stages of the selection DAG
(see Lemma 2.10). Thus,ncvneeded to keep only one optimal schedule for eachz 2 Lk

i . For
time optimization with delayed instructions, though, Lemma 2.10 does not hold: whether a

52 Chapter 2. Instruction Scheduling

scheduleS1 for a zeroindegree setz is superior to another scheduleS2 for z cannot be de-
cided immediately by comparing just the “current” time consumptiontime(S1) andtime(S2).
Instead, it depends onsubsequent, not yet scheduled instructions, whetherS1 or S2 or both
of them should be kept. Informally spoken, when optimizing execution time by just consid-
ering the “past”,ncvmay keep a “wrong” optimal schedule and may throw away the “right”
ones, but this will become apparent only in the “future”, i.e. at a later stage of the scheduling
algorithm.

This is illustrated in the following example (see Figure 2.16): When selection nodefd; eg
has been completed,ncvkeeps only one optimal schedule forscheduled(fd; eg) = fa; b; cg,
e.g. (b; c; a). The optimal solution found byncv may follow a path throughfd; eg. But if
the final schedule should still require only 4 registers,ncv mustcontinue with noded. But
the schedule(b; c; a; d) enforces aNOPafter issuinga if the DAG leaves have one delay slot
(delayedLoad). Thus the final schedule computed may be suboptimal w.r.t. execution time
because the decision to keep only(b; c; a) atfd; eg was made too early.

To repair this deficiency, we adopt a brute-force approach and simply keep, for each se-
lection nodez, all schedules that may still lead to a time-optimal schedule of the DAG, rather
than only one, and some of these may even be nonoptimal forscheduled(z). Clearly, this in-
creases optimization time (and space) considerably, since all these schedules forscheduled(z)
have to be taken into consideration now when expanding selection nodez. An improvement
of this straightforward strategy is discussed in Section 2.4.6.

As we have two different optimization goals (number of registers and number ofNOPs)
we have to consider trade-offs between them. We can select one of them as primary goal of
optimization and the other one as a secondary goal, which determines the order of stepping
through the search spacefLk;t

i gi;k;t. Or we formulate a mixed criterion (e.g., a weighted sum
of k andd) that results in the algorithm traversing the search space in a wavefront manner. It
is up to the user to formulate his favorite optimization goal.

We implemented algorithmncn, the modification ofncv for delayed instructions. The
delays can be defined arbitrarily. For instance, the processor of theSB-PRAM [KPS94] has
a delayedLoad with one delay slot; all other operations perform in one cycle. We decided
to minimize execution time as a primary goal and register need as a secondary goal. It is
very easy now to backtrack the algorithm if one is willing to trade moreNOPs for decreased
register space. The results for several DAGs at different delay configurations are given in
Table 2.7. It appears that the program runs quickly out of space forn > 25 in the case of
delayedLoad s of 1 delay slot, and forn > 20 if more delay slots are assumed. This is
due to the unavoidable (but perhaps optimizable) replication of schedules described above.
Nevertheless this is still better thanncc. Clearly, our test implementation ofncnstill wastes
a lot of space. Section 2.4.6 proposes the concept of time–space profiles, which may help
to reduce the space and thus time requirements ofncn, especially for the case that execution
time is to be minimized with higher priority. In any casencnappears to be feasible at least for
small DAGs.

In general, optimization seems to be the faster, the more limitations and dependencies
there are. Thus it is a straightforward idea to extend our method for processors with multiple
functional units.

In the presence of multiple functional units it becomes possible to exploit fine grained

2.4. Computing Optimal Schedules 53

delay avg. delay min. #nops at reg. need min.
DAG n slots for slots for Tncn reg. min. reg. at min. #nops

Load s compute need need #nops
LL 14 19 1 0 2.2 sec 4 4 5 0

2 0.5 15.2 sec 4 11 6 1
LL 20 23 1 0 18.5 sec 6 0 6 0

random 17 1 0 0.7 sec 5 1 6 0
random 19 1 0 6.4 sec 5 2 6 0
random 19 1 0 14.8 sec 5 4 6 0
random 20 1 0 30.3 sec 6 2 7 0
random 21 1 0 11.8 sec 8 0 8 0
random 25 1 0 10.4 sec 7 0 7 0
random 15 2 0.5 0.1 sec 5 3 6 1
random 16 2 0.5 4.1 sec 5 3 6 1
random 16 2 0.5 1.1 sec 6 1 7 0
random 17 2 0.5 10.2 sec 5 7 6 1
random 19 2 0.5 62.5 sec 5 9 8 0
random 21 2 0.5 5.5 sec 6 2 7 0
random 22 2 0.5 45.3 sec 6 5 7 0

TABLE 2.7: Real and random DAGs, submitted toncnwith two target machine constellations:
(1) delayedLoad with one delay slot, and (2) delayedLoad with 2 delay slots and delayed
Compute with 0 or 1 delay slots (randomly chosen with probability 0.5). Columns 6 and
7 show register need and number ofNOPs if register need is minimized; columns 8 and 9
show the results if the number ofNOPs is minimized. For DAGs of more than 25 resp. 22
nodes ourncn implementation ran out of space. Interesting tradeoffs between register need
and execution time occur mainly for small DAGs.

parallelism. Consider a scheduleS and two DAG nodesu, v such thatv is scheduled directly
afteru. If u is not a DAG predecessor ofv, u andv could be executed in parallel, provided
that both are ready to be issued and functional units are available for the operations to be
performed atu andv.

In contrast to VLIW machines, today’s superscalar microprocessors do not rely on com-
pilers to schedule operations to functional units. Scheduling is done on-line in hardware by
a dispatcher unit. The dispatcher is able to issue several subsequent instructions from the in-
struction stream in the same clock cycle as long as there are (1) enough functional units avail-
able to execute them, and (2) there are no structural hazards such as control dependencies or
data dependencies that would prohibit parallel execution These dependences are determined
on-line by the dispatcher. If a subsequent instructionv is control or data dependent on a pre-
vious one,u, that has just been issued in this cycle, or if all suitable functional units are busy,
the later instruction has to be delayed.

We see that this online scheduling performed by the dispatcher is indeed bounded by
the rather small lookahead. Thus, it is a reasonable idea to reorder the instruction stream
at compile time to facilitate the dispatcher’s job. In order to optimize the schedule in this
context, we need exact knowledge of the hardware features such as number, type, and speed
of functional units, and the dispatcher’s functionality which is then just simulated during

54 Chapter 2. Instruction Scheduling

optimization, as we already did for the pipeline behaviour in the previous section.

We have extended algorithmncn for this case. Only functiontimemust be adapted. The
result is an optimal scheduleS with issuing-time slotsT and a mappingF of the DAG nodes
to the functional units, such that the overall time required byS is minimized. T andF are
computed as side-effects of the modified functiontime which just imitates the dispatcher’s
functionality.12

Nevertheless, care must be taken for superscalar processors where the order of instructions
given by the list schedule may be reversed by the dispatcher (out-of-order issue) or the result
writing phases may be interchanged (out-of-order completion). For instance, if a nodevj
that occurs in the list scheduleS later than a nodevi but is executed earlier (because the
functional unit forvj is free whilevi must wait), it may happen thatvj overwrites a register
that was not yet freed as it is an operand ofvi, i.e. a conflict of the time schedule with the
register allocation. In that case, the register allocation and the time schedule cannot longer
be computed independently of each other from the list schedule. Either the register allocation
must be computed as a function of the time schedule (if the first optimization goal is time) or
the time schedule as a function of the register allocation (otherwise), such that execution of
vj (as mentioned above) writing to registerr can start only after all instructionsvi occurring
earlier inS reading an operand from registerr have read them (in-order issue). In general, it
is sufficient to consider these constraints just for the cycle wherevj writes tor, usually in its
last delay slot (in-order completion).

In practice, it is thus not always possible to exactly predict the execution time for ad-
vanced superscalar processors, because the hardware may internally allow out-of-order issue,
out-of-order execution, or out-of-order completion of instructions and applies on-line depen-
dence analysis, reorder buffers and hidden registers to reestablish the semantics implied by the
program, such that the actual execution time may differ from the idealized processor model
used by the compiler for the prediction in thetime function. In our implementation oftime
for superscalar processors and the measurements in Tables 2.12 and 2.13 we assumed a target
processor with (from the assembler programmer’s point of view) in-order issue and in-order
completion. The results apply as well to out-of-order issue architectures as long as there are
enough internal registers to buffer results so that these can be written back in program order.

12Additional choices may exist here for multi-issue architectures where the instructions may be placed ex-
plicitly by the programmer at arbitrary time slots, such as for VLIW architectures. For example, consider two
instructionsu andv whereu precedesv immediately in a scheduleS, andu andv are to be executed on different
units,Uu andUv . If u is a child ofv, there is no choice,v must be executed when the result computed byu is
available. Instead, ifv does not depend onu, they may be (in an in-order issue system, see the following discus-
sion) issued simultaneously if both units are free. For that case, a scheduleS0 derived fromS by interchangingu
andv would result in the same time schedule. On the other hand, there is no means to express that one ofu or v
should be delayed to the latest time slot where it can still be issued without changing the overall execution time,
with the goal of reducing register pressure between the issue slots ofu andv. As bothS andS0 are considered
by the optimization algorithm, this “flushright” option could be exploited by installing an arbitrary total orderto

among the functional units. Ifto(Uu) < to(Uv), S implies thatu andv are issued in the same time slot, while
S0 implies thatu is flushed to the right after the overall schedule has been computed. Otherwise,S implies that
v is flushed to the right, whileS0 implies thatu andv are issued in the same time slot.

2.4. Computing Optimal Schedules 55

2.4.6 Time–Space Profiles

The naive strategy of keeping all optimal schedules for a selection node described above can
be improved if we summarize all schedules that are “compatible” with respect to their time
behaviour and keep a single schedule for them, as they are all equivalent if used as subsched-
ules for subsequent selections. This “compatibility” is formally defined bytime profiles, as an
extension of the selection node concept.

Definition 2.15 A time profileof a scheduleS for anout-of-order multi-issuepipelined pro-
cessor, consisting off functional unitsU1,...,Uf where unitUj has maximum delayDj, is a
tuple

P (S) = (t1; u1;t1�D1+1; :::; u1;t1 ;

t2; u2;t2�D2+1; :::; u2;t2 ;

: : : ;

tf ; uf;tf�Df+1; :::; uf;tf)

that consists of thef time profiles for each unitUj, wheretj is the time slot where the last
DAG node assigned to unitUj is scheduled inS, anduj;i denotes the DAG node executed by
unit Uj in time sloti, for tj � Dj + 1 � i � tj . Some of theuj;i entries may be NULL (–)
where no node could be executed byUj at timei. For a zero-delay unitUj, only thetj entry is
stored.

A time profile of a scheduleS for a single-issueor in-order multi-issuepipelined pro-
cessor, consisting off functional unitsU1,...,Uf where unitUj has maximum delayDj, is a
tuple

P (S) = (t; u1;t�D1+1; :::; u1;t; u2;t�D2+1; :::; u2;t; : : : ; uf;t�Df+1; :::; uf;t)

that consists of thef time profiles for each unitUj, wheret is the time slot where the last DAG
node inS is scheduled, anduj;i denotes the DAG node executed by unitUj in time sloti, for
t � Dj + 1 � i � t. Again, some of theseuj;i may be NULL (–) where no node could be
executed byUj at timei. For a zero-delay unitUj, nouj;i entry is stored.

The time profile of a scheduleS is extended to atime–space profileof S by adding the
register needm of S as another component of the tuple.

Hence, a time profile contains all the information required to decide about the earliest time
slot where the instruction selected next can be scheduled. All schedules for a selection node
(up to now characterized by a zeroindegree set only) with the same time profile are equivalent
if used as a prefix subschedule in subsequent selections. Note also that by a zero-indegree set
z, its “space profile”occ(z) is implicitly given.

For retrieving selection nodes, the zeroindegree set is now no longer sufficient as a unique
key:

Definition 2.16 Anextended selection nodeis a pair(z; P), consisting of a zero-indegree set
z and a (time or time–space) profileP .

56 Chapter 2. Instruction Scheduling

If the register need is used as an optimization criterion, it must be a key component of
extended selection nodes as well. Hence, when solving RCMTIS or SMRTIS, an extended
selection node covers only schedules with the same time and space consumption.

Not all possible combinations of zero-indegree sets and time profiles occur in practice.
Technically, extended selection nodes can be retrieved efficiently e.g. by hashing.

The previous algorithmncc can now be generalized to extended selection nodes as fol-
lows: For each extended selection node(z; P), only one scheduleS, which is optimal for
that node, needs to be stored. When creating a new scheduleS 0 from a scheduleS stored
in an extended selection node(z; P) by appending a DAG nodev, its profileP (S 0) can be
computed incrementally fromP = P (S). If an extended selection node for the new zero-
indegree set with the same key(z0; P (S 0)) does already exist,S 0 can be ignored. Otherwise, a
new extended selection node(z0; P (S 0)) is created and annotated withS 0 as the currently best
schedule for that node.

Note that the extended selection nodes can again be arranged in lists, like theLk;t
i defined

above forncn. Hence, the dependency structure and traversal strategy used forncv is now
applied to the extended selection nodes accordingly.

As an example, consider again the DAG of Figure 2.16. Let us assume now that we have
an single-issue target processor withf = 2 functional units, where unitU1 is not delayed
and unitU2 is delayed by one cycle. For our example we assume that operationsb ande are
delayed by one CPU cycle, i.e. to be executed on unitU2, while the other operations are to
be executed on unitU1. The six possible schedules for the selection nodefd; eg have the
same register need (3), and there exist just two different time profiles, namely(3; b) if b was
scheduled third, and(3;�) if b was scheduled first or second. Hence, it is sufficient to store
only the two extended selection nodes(fd; eg; (3; b; 3)) and(fd; eg; (3;�; 3)), and keep just
one schedule in each of them.

The extension ofncc for extended selection nodes is based upon two key observations.
First, the correctness of the algorithm is installed by the following equivalent of Lemma 2.10:

Lemma 2.15 All schedules whose corresponding paths in the extended selection DAG end up
in the same extended selection node(z; P) are equivalent with respect to their time and space
consumption if used as a prefix of schedules derived in subsequent scheduling decisions.

Second, the algorithm can safely ignore extended selection nodes with an inferior time
profile, as long as only time consumption is considered as optimization goal. For simplicity
we definetime-inferiorityof a time profile here only for a single-issue architecture:

Definition 2.17 An extended selection node(z; P) with time profileP = (t; u1;t1 ; :::; uf;t)
is time-inferior iff there exists an extended selection node(z;Q) with time profileQ =
(t0; v1;t1 ; :::; vf;t) for the samezeroindegreez, such thatt0 < t and ui;j = vi;j for all i; j,
1 � i � f , ti � j � t.

Definition 2.18 An extended selection node(z; P) with time–space profileP = (t; u1;t1 ; :::;
uf;t; mu) is space-inferioriff there exists an extended selection node(z;Q) with time–space
profileQ = (t0; v1;t1 ; :::; vf;t;m

0) for thesamezeroindegreez, such thatm0 < m.

2.4. Computing Optimal Schedules 57

Lemma 2.16 When optimizing execution time only, time-inferior extended selection nodes
need not be further expanded and can be ignored.

This is intuitively clear: Consider two schedulesS1 for z with time profileP andS2 for z
with time profileQ. Assume that(z; P) is time-inferior to(z;Q). All schedules generated in
later scheduling stages that haveS1 as prefix will have a higher execution time than schedules
with the same suffix that haveS2 as prefix, because empty delay slots withinS1 or S2 cannot
be filled with subsequent instructions.

Lemma 2.16 allows the algorithm to prune irrelevant paths as early as possible.
When optimizing execution time and register space simultaneously, inferiority of a selec-

tion node must take the register need into account as well. Pruning(z; P) is then only safe if
P is time-inferiorandspace-inferior.

Figure 2.22 shows a run of the extendednccalgorithm for a single-issue architecture with
two units, as in the example above. Only the execution time is optimized. We see that the
number of generated extended selection nodes remains reasonably small in this case.

The generalization of our method for extended selection nodes, as described in this section,
is very new and has not yet been implemented; this is left for future work.

2.4.7 A Randomized Heuristic

As a byproduct of the optimization algorithms considered so far, we can easily derive a ran-
domized heuristic, in the same way as we did for the contiguous schedules in Section 2.3.2.

A random scheduleis obtained by selecting, in each step of the basic topological search
mechanism, one of the nodes from the zeroindegree wavefront randomly. As usual, its register
need and execution time can be determined in timeO(n). In the random scheduling heuristic
ncrand, we repeat this processk times, for a user-specified constantk, and return the best of
the schedules encountered. Ifk is large enough, the quality of the computed schedule is in
most cases quite close to the optimum, although the computation also for very large DAGs
andk in the order of some 1000 takes only a few seconds on an ordinary workstation.

For largek, ncrandmay be parallelized in a straightforward way by assigning the com-
putation ofk=p random schedules to each ofp available processors, and determining the best
schedule encountered by a global minimum reduction over integer pairs consisting of register
need and execution time.

As far as time optimization is desired, we can, unfortunately, compare with the optimal
solution computed byncnonly for rather small DAGs (up to about 22 instructions). On the
other hand, for very small DAGs (withn < 12) ncv is even faster than the heuristic with
k = 4096.

Tables 2.8 and 2.9 show the results produced byncrand for randomly generated DAGs
for two types of target processors, with different optimization priorities. We have focused on
DAGs with up to 25 nodes because otherwisencn runs out of space and time, and we could
then not tell how far away the reported solutions are from the optimum.

Tables 2.10 and 2.11 show the results delivered byncrand for some DAGs taken from
scientific application programs, again with different optimization priorities. Some results for
the same DAGs with a target processor with multiple functional units are given in Tables 2.12
and 2.13.

58 Chapter 2. Instruction Scheduling

a c

b c bac a

b

bc d
c

a
e ea

d

d

de e c ga

e d

fg

g

dg

g

h

a

f

g

f

h

g

ed

cba

d

f

(b,c,e,g)
(5,−)

5cc
{a}

(b,c,e,a)

(5,e)
6cc

(4,−)
4cc

5cc

{d,g}

6cc
{f,g}

{a,g}

(b,c,e,a,d)(a,b,c,d,e) 5cc
{f,g}{f,g}

(a,b,c,d,e,f)
(7,−)

7cc
{g}

(a,b,d)
(4,−)

(b,a,d)
(4,e)

(a,b,c,e,d)

(c,b,e)

(6,−)

(6,−)
6cc

{f}
(a.b,c,d,e,g)

(7,−)
7cc

{f}

(5,−)
(a,b,c,e,g)

(6,−)
6cc

{d}
(b,c,e,a,g)

(5,−)
5cc

{d}

(b,c,e,a,d,f)

(b,c,e)

=1
delay

=1
delay

4cc
{a,g} (3,e)

3cc
{c} (3,−)

4cc
{c}

()

(a,c,b) 4cc
{d,e} (3,b)

{d,g}

0cc
{a,b,c}

(a,b,c)

(a,b,c,e)(a,c,b,d) 6cc
(5,e)

(b,c,e,a,d,g)

(a,c,b,e)
{e}

5cc
(5,−) {d,g}

5cc
(4,e){e}

4cc
(4,−)

(a,b,c,d)

{d,e}
3cc

(3,−)

3cc
{c,d} (2,b)

{g}

(a,b)

(0,_)

(6,−)
6cc

{h} (7,−)

(b)
(1,b)

(c) 1cc
{a,b} (1,−){a,c}

2cc

8cc
{} (8,−)
(b,c,e,a,d,f,g,h)

7cc

(pruned)

(pruned)

(a) 1cc
{b,c} (1,−)

(b,a)
{c,d} (2,−) (2,−) {a,e} (2,−) (2,b){b} {a,e}

2cc 2cc(a,c) (b,c) (c,b)2cc 3cc

(pruned) (pruned)

(pruned)

(pruned)

(pruned)

(pruned)

(b,c,e,a,d,f,g)

FIGURE 2.22: The extended selection DAG constructed by the generalization ofncc for ex-
tended selection nodes if applied to the example DAG in the bottom right corner (instructions
b ande are delayed by one cycle). The schedule stored in each extended selection node and
its execution time are also shown.

2.4. Computing Optimal Schedules 59

DAG register need,#nops of best random schedule,optimum
size k = 1 4 16 64 256 1024 4096 (by ncn)
15 7,5 6,4 6,4 6,3 5,3 5,3 5,3 5,3
16 7,3 7,2 6,3 6,2 5,6 5,3 5,2 5,1
18 5,3 5,3 5,3 5,3 5,3 5,1 5,1 5,1
18 7,4 7,3 6,3 6,3 6,1 5,5 5,4 5,4
19 7,2 7,2 7,1 6,0 5,4 5,3 5,1 5,1
19 8,4 6,5 6,5 6,3 6,3 6,2 6,2 6,1
20 9,4 8,2 8,2 7,3 7,3 7,2 7,1 7,1
20 7,3 7,3 7,3 7,2 6,3 6,1 6,1 5,2
22 9,4 9,4 8,3 7,3 7,2 7,2 7,2 7,1
22 8,3 7,4 7,2 7,2 7,1 6,6 6,6 6,5
22 7,4 7,4 7,3 7,1 7,0 6,2 6,2 6,0
24 9,5 9,2 8,3 8,3 7,4 7,2 7,0 7,0
24 11,4 10,5 6,6 6,6 6,6 6,6 6,3 —

TABLE 2.8: Optimiza-
tion of register need be-
fore execution time by
ncrand, for randomly
generated DAGs. The
target is a RISC proces-
sor with delayed load
with latency 1.

DAG #nops,register need of best random schedule,optimum
size k = 1 4 16 64 256 1024 4096(by ncn)
12 6,7 2,7 2,6 1,7 1,7 1,7 0,7 0,7
12 6,8 2,10 2,9 1,9 1,9 0,9 0,9 0,6
13 6,7 5,6 3,7 3,7 2,7 2,7 2,6 2,5
14 4,6 4,6 3,8 1,8 1,7 1,7 1,6 1,6
15 5,7 3,8 1,8 1,8 1,8 1,8 1,7 1,6
16 4,8 3,8 2,8 2,8 2,8 1,8 1,8 1,6
17 7,7 3,7 1,8 0,8 0,8 0,7 0,7 0,7
19 2,9 2,9 1,9 1,9 0,8 0,8 0,8 0,7
20 8,7 7,9 4,9 3,9 2,8 2,8 2,8 2,7
21 2,11 2,11 2,10 2,10 2,9 0,9 0,9 0,7
21 5,8 5,8 5,8 3,8 1,8 1,8 1,8 0,7
22 6,9 6,9 2,9 2,8 1,8 1,8 0,9 0,6
22 10,10 6,9 4,10 2,10 2,10 1,100,10 0,8
22 7,8 3,7 3,7 2,8 2,8 1,7 1,7 1,6
23 5,9 5,9 2,11 1,11 1,9 0,9 0,9 0,7
24 6,11 5,11 5,10 2,10 2,10 1,9 1,9 —
25 5,10 5,10 3,11 2,10 2,9 1,10 1,10 1,8
26 6,12 3,12 3,12 1,12 1,12 1,11 1,11 —
27 5,12 5,11 2,11 1,11 1,11 1,10 1,10 0,8

TABLE 2.9: Optimiza-
tion of execution time
before register need by
ncrand, for randomly
generated DAGs. The
target is a RISC proces-
sor with delayed com-
pute instructions with
latency 0 or 1 (de-
termined randomly by
coin flipping) and de-
layed load with latency
2.

We can see from these data that in many cases the best of up tok = 4096 random schedules
is already optimal with respect to the first-priority optimization goal, while in most cases the
heuristic fails to report a solution that is optimal with respect to both the first-priority and the
second-priority optimization goal.

2.4.8 Heuristic Pruning of the Selection DAG

The disadvantage of the randomized method just presented is that it is completely unaware
of locally optimal partial solutions, as e.g. explored in the algorithmsdescend2or ncv. If
the DAG is very large, the probability of encountering an optimal schedule by chance is very
small if only a fixed number of schedules is generated and tested. On the other hand, the

60 Chapter 2. Instruction Scheduling

DAG register need,#nops of best random schedule, withoptimum
name size k = 1 4 16 64 256 1024 4096 (by ncn)

LL14 19 9,8 8,6 8,6 7,10 7,5 6,5 6,5 6,1
LL20 23 9,9 9,8 8,7 8,6 8,5 8,5 7,8 —
INTRAF 26 10,7 10,6 9,7 8,5 7,9 7,8 7,8 —
SPEC77 49 12,10 12,10 12,10 12,10 12,6 12,6 12,4 —
SPHER 27 8,9 8,9 8,5 7,10 7,10 7,10 7,5 —

TABLE 2.10: Optimization of register need before execution time byncrand, for DAGs taken
from some scientific codes. The target is a RISC processor with delayed load with latency 1.

DAG #nops,register need of best random schedule, withoptimum
name size k = 1 4 16 64 256 1024 4096 (by ncn)

LL14 19 8,9 6,8 6,8 5,8 4,8 4,8 3,8 1,6
LL20 23 9,9 5,10 5,9 4,9 4,9 4,9 3,9 —
INTRAF 26 7,10 6,10 4,10 4,10 2,10 2,9 1,9 —
SPEC77 49 10,12 5,13 4,13 4,13 4,13 2,14 2,13 —
SPHER 27 9,8 7,9 4,9 2,9 2,9 1,9 1,9 —

TABLE 2.11: Optimization of execution time before register need byncrand, for DAGs taken
from some scientific codes. The target is a pipelined RISC processor with delayed compute
instructions with latency 0 or 1 (determined randomly by coin flipping) and delayed load with
latency 2.

optimization algorithmncv turned out to be impractical for medium-sized and large DAGs
(with more than 22 or 23 nodes).

We propose a heuristic which is a compromise between these two extremal approaches.
This heuristic is based on a divide-and-conquer approach.

The given DAGG is split “horizontally” into two subDAGsG1 andG2 of approximately
half the size ofG (see Figure 2.23. Each subDAG is scheduled separately. The lower subDAG
G1 is handled first, such that the list scheduleS2 being computed for the upper subDAGG2 is

DAG register need,time of best random schedule, with optimum
name size k = 1 4 16 64 256 1024 4096 (by ncn)

LL14 19 8,23 6,24 6,24 6,21 5,23 5,23 4,24 4,24
LL20 23 9,25 8,24 8,23 7,26 7,24 7,23 6,28 —
INTRAF 26 9,27 7,29 7,29 7,27 6,25 6,25 6,21 —
SPEC77 49 13,47 12,39 12,39 12,39 11,44 11,44 11,37 —
SPHER 27 8,27 8,24 7,27 6,25 6,25 6,25 6,25 —

TABLE 2.12: Optimization of register need before execution time byncrand, for DAGs taken
from some scientific codes. The target is a superscalar processor with three different func-
tional units, where the delays are 2 for load, 0 and 1 for arithmetics. For LL14,ncnran about
twice as long as the heuristic algorithm with 4096 random schedules (4 seconds on a SUN
SPARC-10).

2.4. Computing Optimal Schedules 61

DAG time,register need of best random schedule, with optimum
name size k = 1 4 16 64 256 1024 4096 (by ncn)

LL14 19 23,8 19,7 19,7 19,7 19,7 18,6 18,6 17,6
LL20 23 25,9 24,8 23,8 23,8 22,8 22,8 21,7 —
INTRAF 26 27,9 27,9 22,9 22,9 21,9 21,8 20,9 —
SPEC77 49 47,13 39,12 39,12 39,12 38,13 36,13 36,12 —
SPHER 27 27,8 24,8 23,8 23,8 22,9 21,9 21,8 —

TABLE 2.13: Optimization of execution time before register need, for DAGs taken from some
scientific codes. The target is a superscalar processor with three functional units: delayed
compute instructions with latency 0 and 1, and delayed load with latency 2.

G

G2

1

FIGURE 2.23: Splitting a DAG into two sub-
DAGs along a bisector defined by a zeroin-
degree setb.

just appended to the best scheduleS1 found for the lower subDAGG1, resulting in a merged
scheduleS for G. Hence, the time and space requirements at the merge point of the two
subschedules are properly taken into account.

The splitting and merging method can be applied recursively to each subDAG until the
resulting subDAGs reach a handy size that can be managed byncv. A similar recursive DAG
splitting approach has been used by Paul et al. [PTC77] to derive an upper bound on the
minimum register need.

The bisector between the two subDAGs must be some zeroindegree setb generated by a
top-sort traversal of the DAG. If register space is the first optimization criterion, a zeroindegree
setb with smallalive(b) set is preferable because the size ofalive(b) is a lower bound for the
register need of the overall schedule. On the other hand, a small zeroindegree set may not
necessarily be the best choice as a bisector with respect to the execution time of the resulting
schedule. Instead, a larger zeroindegree set may allow to keep more functional units busy at
the merge point ofS1 andS2. Also, a small execution time ofS1 will probably lead to a rather
small total execution time. We conclude that the quality ofb strongly depends on the primary
optimization goal desired by the user. It is exactly this heuristic choice ofb which may cause
the overall algorithm to return a suboptimal solution. In other words, if we knew an optimal
bisector in advance (i.e., a zeroindegree set appearing in the middle of an optimal schedule
that we cannot compute because the DAG is too large), this divide-and-conquer method would
produce an optimal solution as well.

Splitting the DAGG with bisectorb and applyingncv resp.ncn recursively to the sub-
DAGs corresponds to an aggressive pruning of the original selection DAGD: At level kb =

62 Chapter 2. Instruction Scheduling

D’

D’

D
b

2

1 ρ

ρn−

FIGURE 2.24: Bisecting a DAGG with bi-
sectorb prunes the selection DAGD for G
such that it gets the shape of an hourglass
with b as articulation point.

jscheduled(b)j there is only one single selection node, namely for the zeroindegree setb. The
pruned selection DAGD0 contains only those nodes ofD that are in the lower cone or in the
upper cone ofb in D:

D0 = (Z 0; E 0) with Z 0 = cone(D; b) [uppercone(D; b); E 0 = E \ (Z 0 � Z 0)

The resulting selection DAG has thus the shape of an hourglass, whereb is the articulation
point (see Figure 2.24). The lower partD0

1 of the pruned selection DAGD0 is induced by
cone(D; b) and the upper partD0

2 by uppercone(D; b).
In our implementation of this divide-and-conquer approach, we split the DAG implicitly

in several horizontal subDAGs with a fixed size� for each subDAG, based on the pruning
mechanism mentioned above applied to thencn implementation.13 It appears that the space
and time consumption of the modified algorithm, now calledncsplit, strongly depends on�
but also on the structure of the DAG being processed. For instance, for the 49-node DAG in
SPEC77 we obtain a fairly good schedule in only 6 seconds for� = 4, but already for� = 6
our implementation runs out of space, where the problem occurs already in the bottommost
subDAG. The explanation for this behaviour is that larger DAGs have more leaves and hence
yield many selection nodes in the first� levels. Nevertheless, we found that solving the space
problem by splitting the DAG unevenly (according to the expected load), by starting with a
small� value and stepwise increasing it while working upwards in the DAG, does not produce
good schedules on the average. On the other hand, a larger value of� does not generally imply
a better result or a slower optimization, because the DAG is split differently. Table 2.14 shows
some results.

Comparing the results delivered and optimization time and space consumed byncsplit
and byncrand, we find thatncrandwith suitably largek produces results of similar quality
asncsplit, but is more economic and predictable with respect to optimization time and space.
On the other hand, for large DAGs a run ofncspliteven with a very small� value appears to
be more successful than many random schedules.

13In contrast to the explicit splitting described above, we simply throw, after reaching a pruning level�, all
selection nodes of that level away except for an optimal one (with regard to the primary optimization goal).

2.5. Extension for Optimal Scheduling of Spill Code 63

DAG time,register need :ncsplitoptimization time , with optimum
name size � = 6 � = 8 � = 10 � = 12 � = 16 (by ncn)

LL14 19 18,5 : 3s 17,7 : 9s 17,6: 18s 17,7 : 13s 17,6 : 13s17,6 : 23s
LL20 23 22,8 : 9s 20,8 : 90s 20,7 : 183s — — —
INTRAF 26 20,10 : 1s 18,7 : 37s 17,8 : 94s 17,8 : 14s 17,9 : 60s —
SPEC77 49 34,13 : 6s� — — — — —
SPHER 27 22,8 : 4s 20,9 : 10s 20,8 : 17s 20,10 : 31s 21,7 : 54s —
random 30 26,9 : 14s 26,10 : 77s 22,10 : 683s — — —

TABLE 2.14: Results and optimization times of thencsplit algorithm, optimizing execution
time as primary and register need as secondary goal, applied to some DAGs taken from sci-
entific codes, for a superscalar target processor with three functional units, where load has 2
delay slots and arithmetics has zero or one delay slot.� The only run for the SPEC77 DAG
that did not run out of space used� = 4. The best random schedule for the random DAG
with 30 nodes, needing 25 cycles and 10 registers, was computed byncrand in 12s (with
k = 4096).

t()
.......u1 2 3 4

4321 k
kuuu uuv

t() t() t()t() t() uuuuv u

I I I I I I...
2 3 4 5 k1

FIGURE 2.25: The live range of a virtual register withk uses can be structured intok intervals.

2.5 Extension for Optimal Scheduling of Spill Code

As each instruction in a basic block produces at most one result value, a DAG node corre-
sponds to a virtual register containing this result value. The virtual register is set once when
the instruction is executed, and used as many times as there are DAG nodes that reference it.
The time schedule determines for each DAG nodev the time slott(v) where its virtual register
will be set, and the order and the time slotst(u1),...,t(uk) of thek parent nodesu1; :::; uk of
v that usev, if there are any. For simplicity of presentation, we number the parent nodesuj
as they appear in the schedule, such thatt0 < t(u1) < ::: < t(uk). Hence, thelive range
of v is the interval[t(v); t(uk)[which can be partitioned ink intervalsI1 = [t(v); t(u1)[,
...,Ik = [t(uk�1); t(uk)[, as shown in Figure 2.25.

Graph coloring methods for register allocation build aregister interference graph, where
the nodes are the live ranges of the virtual registers, and an edge connects two live ranges if
they overlap in time. If the interference graph can be colored withc colors such that no two
live ranges connected by an edge have the same color, thenc physical registers (corresponding
to the different colors) are sufficient to store the virtual registers of the program. In some
cases, register allocation can be used to avoid unnecessarymove instructions by assigning
the source and the target virtual register of themove to the same physical register (register
coalescing[CAC+81, Cha82, GA96]).

The classical graph coloring approach to register allocation appliedspilling to the entire
live range of a virtual register: This means that it is keet permanently in the main memory

64 Chapter 2. Instruction Scheduling

instead of in a register; it is stored (more or less) immediately after the definition pointt(v)
and reload (more or less) immediately before each uset(uj) (which again requires an avail-
able register for a very short time if the target machine does not offer instructions with direct
addressing of operands residing in memory, which is the common case today.) and these
load and store instructions must be inserted into the existing schedule. Spilling heuristics like
[CAC+81, Cha82, CH84, BGM+89] classify live ranges by a cost estimate that considers the
execution frequency (frequent reloading is less acceptable in inner loops where instructions
are frequently executed) and the degree of the live range in the register interference graph
(with how many other live ranges it overlaps) which may be related to its lengtht(uk)� t(v).
The ideal spilling candidate has a low execution frequency and a high degree in the interfer-
ence graph. After a spill has been executed, the corresponding store and load instructions are
generated, and the register interference graph is rebuilt.

Advanced variants of graph coloring [BCT92] do not consider entire live ranges of virtual
registers as atomic units for spilling but split them up into smaller parts; in the extreme case
we arrive at the single intervalsIj .

In any case, the problem is that a-posteriori scheduling of the spill code may compromise
the quality of the given schedule, which would not be the case if the necessary addtional load
and store instructions would have been already known before scheduling.

We do not go into further details here, because this problem is not within the focus of
this book, but we would like to mention that the computation ofoptimalspill code for basic
blocks is possible as a straightforward extension of our algorithms given above. The idea is
as follows:

In addition to investigating just all the different possibilities for selecting a node from the
zeroindegree list, additional selection nodes corresponding to schedules for variants of the
DAG with inserted store and load nodes are also generated. For a DAG node with outdegree
k, this will produce2k different selection nodes, because there are2k different possibilities of
spilling or not spilling thek intervalsI1, ...,Ik. An example fork = 2 is shown in Figure 2.26.

Hence, a selection node stores not only the zeroindegree list and the array of current
indegrees, but also a list of nodes that have been spilled and a list of additional reload nodes
that are conceptually added to the zeroindegree list. The test for equality of selection nodes
has to be adapted accordingly.

From a heuristic point of view, splitting long live ranges into just two subranges, with
a single additional store and reload node per spilled live range, could be sufficient in many
cases, as it is up to the subsequent scheduling decisions to keep the uses within each subrange
closely together in order to make the two new subranges substantially smaller than the original
live range.

Due to the addition of store and reload nodes, the termlist schedulemust be redefined
as a sequence containing then DAG nodes and some store and reload instructions in some
topological order. The definition of the levels of the selection DAG must be slightly adapted
by introducing intermediate levels that contain the selection nodes with schedules that end
with a store or reload operation of a spilled node, while the “classical” levels still contain
the selection nodes where an “ordinary” DAG node was selected last.scheduled(z) denotes
(as before) only the ordinary DAG instructions scheduled so far, whilespillinst(z) contains
the spill-caused store and reload instructions selected since the last “ordinary” DAG node has

2.5. Extension for Optimal Scheduling of Spill Code 65

1 2u u

vv v

1u u2

Store(v)

Load(v)

v

Load(v)

1u

Store(v)

Load(v)

u2 u2

Store(v)

Load(v)

u1

FIGURE 2.26: If all possibilities for spilling single intervals should be considered, for se-
lecting a DAG node with outdegreek from the zeroindegree wavefront2k different selection
nodes will be created. This is an example fork = 2. The newly generated nodes and edges
are not part of the DAG but stored implicitly in the corresponding selection node. The shaded
area contains the new zeroindegree nodes. The first variant is the usual one generated by
standardncv; no interval is spilled. The second one means that both intervalsI1 andI2 are
spilled; hence, two reload instructions are necessary. In the third and fourth variant, only
one interval is spilled, while the other one is not, hence only one reload instruction must be
inserted. The store instruction is not necessary for leaves. Note that the newly introduced
edges from Store to Reload nodes specify precedence constraints caused by data flow in the
main memory rather than in the registers, and must thus be handled differently by the register
allocation functionget reg.

been selected inscheduled(z).

Spilling increases thus the length and (maybe) the execution time of a schedule, while
a possible gain in reduced register need will become visible only later when scheduling the
parent nodes; hence the selection nodes corresponding to spillings will be considered inncv
andncn later than the “classical” selection nodes that contain no spillings. This delay of the
combinatorial explosion due to the added possibilities is highly desirable, because the spilling
variants should only be taken into consideration if the finally determined optimum schedule
does exceed the number of available registers.

The effect of postponing the spilling variants may be enforced if another dimension is
added to structure the domain of selection nodes, namely the size ofspillinst(z), the number
of spill-caused store and reload instructions selected since the last “ordinary” DAG node has
been selected. This solves also the problem of how to organize the intermediate levels of
the selection DAG. The “classical” selection nodesz with jscheduled(z) = kj are entered in
the zero-spill-instructions entry(k; 0) of the new two-dimensional level structure. Selection
nodes created by selecting a spill-caused instruction at level(k; s) are now entered in level
(k; s+1), while a selection node created by selecting an ordinary instruction is added to level
(k + 1; 0). The other two axes for register need and execution time can again be used for a
further structuring of the solution space, as in the original algorithm.

66 Chapter 2. Instruction Scheduling

1u u21u u2

v v v’

w w w w1 12 2

FIGURE 2.27: Recomputing for a live range
interval of a single DAG nodev corresponds
to a conceptual replication ofv.

c

g

d

ba

e

f
FIGURE 2.28: By recomputing (or spilling)b after its second use,
the register need is reduced from 3 to 2 registers if the nodes of
this DAG are scheduled in the ordera, b, c, d, e, b, f , g.

2.6 Extension for Partial Recomputations

2.6.1 Recomputing Single DAG Nodes

Before discussing the general problem of recomputing entire sets of DAG nodes, we have a
look at the simpler problem of recomputing a single DAG nodev where the children ofv (if
there are any) are not being recomputed. Obviously, recomputingv makes only sense if the
outdegreek of v is larger than 1. Recomputingv after its ith use,1 � i < k, means that
the children ofv cannot free their registers even ifv is their last use. Instead, their values
must remain in their registers untilv has been recomputed for the last time. As with spilling,
recomputation refers to the live range intervals of DAG nodes with more than one parent. The
recomputation is equivalent to a restructuring of the DAG such that the node to be recomputed
is duplicated (see Figure 2.27).

Recomputing a single DAG nodev can be, at some extent, regarded as a generalization of
spilling v, where the repetition of the instructionv corresponds to the reload instruction while
the equivalent of the store instruction is the fact that the registers of nodes whose parents are
recomputed cannot be freed before the last recomputation of these nodes. Recomputing and
spilling of a leaf node has the same effect, as can be seen from the example in Figure 2.28.

With the described extension for generating optimal spill code, we get also a mechanism
for integrating partial recomputation of single DAG nodes. The idea is again that the con-
ceptual introduction of new DAG nodes and edges to account for the recomputation is coded
internally in the selection nodes.

2.6.2 Recomputing for Sets of Instructions

Nevertheless, the technical integration of recomputing for multiple nodes as an entity in our
framework is harder, because the leveling structure of the selection DAG is now compromised,
as either zero-indegree sets are no longer unique, or the selection DAG becomes cyclic. More-
over, recomputing may be nested if, in a set of nodes to be recomputed, one of these nodes
is selected again for recomputation. This nesting of recomputation makes the technical rep-

2.7. Related Work 67

resentation of the current status of the DAG (indegrees, conceptually replicated nodes and
edges) difficult, and will additionally blow up the number of alternatives for scheduling. It
is not only this combinatorial explosion that caused us to refrain from further developing this
extended form of recomputing. We are also in doubt whether recomputing of larger sets of
instructions will be of any use to remarkably improve the register need if the considerable in-
crease in execution time (which is exponential in the worst case [PT78]) is taken into account.
If the memory latency is not extraordinarily high, spilling is probably the better alternative to
reduce the register need.

2.7 Related Work

2.7.1 Approaches to Optimal Instruction Scheduling

There exist several polynomial-time algorithms for the optimal solution of restricted schedul-
ing problems, such as scheduling trees and / or for very specific target architectures. Surveys
of early work on scheduling for pipelined processors are given in Lawler et al. [LLM+87] and
Krishnamurthy [Kri90].

For the general problem formulation, one may adopt branch-and-bound methods based on
list scheduling, as we did in our first approach (nce), and exploit structural properties of the
DAG to prune the search space. An alternative consists in modeling the desired scheduling
problem as an integer linear program. Both strategies take exponential time in the worst case.

Optimal scheduling for trees Hu [Hu61] developed an algorithm that determines a time-
optimal schedule of a tree for ak-issue architectures withk identical units. For each node
of the tree, itslevel denotes its distance from the root of the tree. Ak-way topological sort
is now performed, where as many as possible (up tok) instructions are taken simultaneously
from the current zeroindegree set and issued together in the same cycle. If there are more than
k instructions in the zeroindegree set, the level values are used as priorities, i.e.k instructions
with higher level are selected first. If there arek0 < k instructions in the current zeroindegree
set,k � k0 units will be idle in that cycle.

For processors with two functional units, one for arithmetics and one for loads, Bernstein,
Jaffe, and Rodeh [BJR89] propose a dynamic programming algorithm based on [AJ76] for
approximatively solving the MTIS problem for trees. Their algorithm runs in timeO(n log n)
and produces a schedule that is within a factor ofmin(1:091; 1 + (2 logn)=n) off the optimal
execution time. Register need is not considered.

For pipelined RISC processors with a delayed load of 1 delay cycle, Proebsting and Fraser
[PF91] solve the MTIS problem for trees where loads (and only loads) occur only at the
tree leaves. Spill code is generated if necessary. The algorithm can be used as a heuristic
for processors with delays greater than 1. An extension of [PF91] for the case where leaves
may contain values already residing in registers has been proposed by Venugopal and Srikant
[VS95]. They give an approximation algorithm that delivers a schedule that takes at most
one more cycle and one more register than the optimum schedule. For the same processor
type, Kurlander, Proebsting, and Fraser [KPF95] give a variation of the Sethi–Ullman labeling

68 Chapter 2. Instruction Scheduling

algorithm [SU70]. Their algorithm runs in linear time and produces optimal results (both for
register need and execution time) for trees. It can be used as a heuristic for DAGs. Spill code
is generated where the number of available registers is exceeded.

Optimal scheduling for DAGs Vegdahl [Veg92] applies an idea similar tonccfor combin-
ing all schedules of the same subset of nodes, to solve the MTIS problem. He first constructs
the entire selection DAG, which is not leveled in his approach, and then applies a shortest path
algorithm. Obviously this method is, in practice, applicable only to small DAGs. In contrast,
we compute also partial schedules with partial costs (space and time) and thus construct only
those nodes of the selection DAG which may belong to an optimal path (schedule). Vegdahl’s
method directly generalizes to Software Pipelining in the presence of loops. However, register
requirements are not considered at all. But in particular for the register space axis, our pruning
strategy appears to be most successful (see the run times ofncvcompared to these ofncn).

Chou and Chung [CC95] consider the MTIS problem for a superscalar target processor.
They construct and traverse a solution space that corresponds to our selectiontree. In contrast
to our nce formulation, they do not use list schedules as an intermediate representation of
schedules, but proceed processor-cycle-wise, selecting in each cycle as many instructions as
possible in a greedy manner. Multiple possibilities for selection occur as soon as there are
for a class of instructions more selectible instructions than there are units available for them.
In these situations, all possibilities are considered. Several relations that are derived from the
DAG structure are used for pruning the selection tree. They report results for random DAGs
with up to 20 nodes.

For pipelined RISC processors with a maximum delay of one cycle, Bernstein and Gertner
[BG89] give an algorithm for solving the MTIS problem for DAGs. It is based on a reduction
of the problem to scheduling tasks on two parallel processors which is solved optimally by
the Coffman–Graham algorithm [CG72] in timeO(n�(n)) [Set76] where� is the inverse of
the Ackermann function, an extremely slowly growing function that is smaller than five for all
practical applications. Spill code is not generated. The problem for delays greater than one is
NP-complete [HG83].

Yang, Wang, and Lee [YWL89] use a branch-and-bound method with pruning strategies
for the MTIS problem for DAGs and multiple functional units, for the special case that all
functional units are identical and all instructions take unit time with no delays. They addition-
ally assume that the number of available units varies over time but are explicitly given.

Scheduling methods based on integer linear programming Zhang [Zha96] provided the
first formulation of instruction scheduling as an integer linear programming problem (SILP)
whose number of variables and number of inequalities is, in the worst case, quadratic in the
number of instructions in the basic block, but can usually be reduced substantially by exploit-
ing properties of the DAG structure. Kästner [K̈as97] integrates register allocation into the
SILP framework and implements a system for instruction scheduling and register allocation
for the digital signal processor ADSP-2106x. He compares this approach to another variant
[GE92, GE93] of modeling instruction scheduling and register allocation as an integer linear
programming problem called OASIC. The OASIC modeling method incurs in the worst case
a quadratic number of binary variables and a cubic number of inequalities for the instruction

2.7. Related Work 69

scheduling part and, depending on the DAG structure, an up to exponential number of inequal-
ities for the register allocation part. For both SILP and OASIC modeled scheduling problems,
the resulting integer linear program instances are solved using the commercial solver CPLEX.
By using approximations, e.g. by rounding, the complexity of solving the integer linear pro-
gram can be reduced at the cost of a reduction of the quality of the resulting schedule. It
appears that for small DAGs an exact solution can be computed (within a few minutes up to
a few hours of CPU time). However, the solvability and the solution times depends consider-
ably on the DAG structure; it varies much more with the DAG size than does our own method
for optimal instruction scheduling. For instance, one 16-instruction basic block is scheduled
within a few seconds, while the optimal solution of a 18-instruction problem must be aborted
after 24 hours. Generally the SILP modeling approach appears to be faster in practice than the
OASIC approach. An empirical comparison with several heuristics for instruction scheduling
based on list scheduling is given by Langenbach [Lan97]. It turns out that approaches based
on integer linear programming are only practical for small basic blocks if an optimal solution
is to be found.

At about the same time, integer linear programming has also been used by Leupers and
Marwedel [LM97] to solve the MTIS problem for multiple-issue DSP processors.

Another approach based on integer linear programming, applied to solve the MRIS prob-
lem, has been reported in [GYZ+99], mainly in order to evaluate a heuristic scheduling algo-
rithm.14

In a recent paper [WLH00] on optimal local instruction scheduling by integer linear pro-
gramming, Wilken, Liu, and Heffernan propose several simplifications of the DAG before
deriving the ILP formulation.

2.7.2 Heuristics for Instruction Scheduling

Various heuristic methods have been proposed in the literature.
Lawler et al. [LLM+87] generalize Hu’s algorithm [Hu61] for time-optimal scheduling

of trees tok-issue architectures withk identical pipelined units. They show also that for a
DAG and a machine with one or more identical pipelines, any list scheduling heuristic that
prioritizes the nodes by their level in the DAG, such as Hu’s algorithm [Hu61] if applied to
a DAG, produces (in linear time) a schedule whose execution time is within a factor 2 of
the optimum. This is a generalization of a result by Coffman and Graham [CG72] on time-
optimal scheduling for a 2-issue architecture with two identical processors. Based on the
NP-completeness of time-optimal scheduling fork identical machines wherek > 1 is part
of the input [GJ79] and on the fact that scheduling a DAG for a (single-issue) pipeline of
lengthk + 1 is at least as hard as scheduling it for a (k-issue) architecture withk identical
units [LVW84], they also provide an NP-completeness result for time-optimal scheduling for
pipelines of depthk > 1. Moreover, they show that time-optimal scheduling for a multi-
issue architecture with two typed pipelines (each instruction is to be executed on a uniquely

14Although the experimental results in [GYZ+99] do not explicitly mention this, one can conclude that their
method, implemented using the commercial solver CPLEX, seems to cope with DAGs of size up to about 20 to
25.

70 Chapter 2. Instruction Scheduling

determined pipeline) is NP-complete as well, even if both pipelines are of length one and the
DAG consists only of linear chains of instructions.

Palem and Simons [PS90, PS93] give anO(n2) time algorithm for time-optimal schedul-
ing the instructions of a DAG for a single-issue, two-unit processor whereU1 is not delayed
andU2 is delayed by one cycle. The algorithm can be used as a heuristic for other configura-
tions. Sarkar and Simons [SS96] propose an extension of this algorithm that allows for a better
connection of the schedule of a basic block with the schedules of its successor basic blocks
in a restricted global scheduling framework. They add the preference to move idle cycles
as far as possible toward the end of the schedule within each basic block, without changing
its execution time. The algorithm produces time-optimal global schedules for single-issue
processors with instructions delayed by at most one cycle, and can be used as a heuristic,
otherwise.

Motwani, Palem, Sarkar and Reyen [MPSR95] present an integrated approach to solve the
RCMTIS problem for DAGs heuristically in polynomial time. Their method is applicable to
pipelined RISC processors and superscalar processors. Spill code is generated and scheduled
if necessary.

Another heuristic method for solving the MTIS problem for a superscalar or VLIW pro-
cessor has been proposed by Natarajan and Schlansker [NS95]. It applies a heuristic top-sort
traversal based on a critical path length criterion.

Kiyohara and Gyllenhaal [KG92] solve the RCMTIS problem for superscalar and VLIW
processors with arbitrary delays heuristically. They consider the special case of DAGs in
unrolled loops. Spill code is generated if necessary.

Goodman and Hsu [GH88] try to break the phase-ordering dependence cycle and solve
the RCMTIS problem by a mix of several heuristics and switching back and forth between
different optimization goals (MTIS and MRIS) depending on the current register pressure.
Freudenberger and Ruttenberg [FR92] extend this approach to trace scheduling for pipelined
VLIW processors.

Brasier, Sweany, Beaty and Carr [BSBC95] propose a framework for combining instruc-
tion scheduling and register allocation. They consider the register interference graph before
instruction scheduling (early register assignment) and the register interference graph after in-
struction scheduling (late register assignment). The former is generally a subgraph of the lat-
ter, as scheduling may add edges due to increased operand lifetimes in a total execution order.
Their algorithm adds to the former graph the edges of the difference graph in a heuristically
chosen order step by step and observes a cost function which is a combination of execution
time and register pressure. When the overall cost gets too high, they fall back to early register
assignment.

Silvera, Wang, Gao and Govindarajan [SWGG97] propose a list scheduling heuristic for
out-of-order multi-issue superscalar processors with a given size of the instruction lookahead
window. The method tries to rearrange the instructions and reuse registers without decreasing
the parallelism available to the processor in the instruction lookahead window, compared with
the default order of the instructions in the original intermediate representation. For most of
their test programs their technique results in improvements of register need or execution time
(or both); in some cases, however, the computed schedule needs even more space or time than
the default schedule.

2.8. Summary 71

Govindarajan, Zhang and Gao [GZG99] et al. [GYZ+99] propose a heuristic algorithm
for the MRIS problem that exploits the observation that in node chains in a DAG the register
of an operand can be reused for the result and hence such chains can be handled as an entity
for register allocation. The idea is to split the DAG in a set of linear chains, assign registers to
chains, and then solve for the MTIS problem with a modified list scheduling algorithm. The
scheduling algorithm may deadlock for the minimum amount of registers; in that case, it must
try again with one more register.

Gibbons and Muchnick [GM86] give a heuristic for the harder problem wherestructural
hazards(pipeline interlocks) can occur also between data-unrelated instructions if the same
functional sub-unit is needed in some pipeline stage at the same time by two instructions. The
algorithm is based on a heuristic backwards top-sort traversal of the DAG, starting with the
root nodes as zerooutdegree set, and using critical path analysis to minimize the execution
time. At each selection step, the nodes ready to be scheduled in the zerooutdegree set are or-
dered by a heuristically defined priority value that depends on possible interlocks with already
scheduled instructions, time behaviour etc.; the node with highest priority is selected. Ertl and
Krall [EK92] propose a hybrid list scheduling algorithm that switches back and forth between
two heuristics, depending on the currently available amount of instruction-level parallelism.
A generative approach for fast detection of pipeline interlocks in superscalar processors for a
given program has been described by Proebsting and Fraser [PF94].

Kerns and Eggers [KE93] propose a technique called balanced scheduling, which is an
extension of list-scheduling based heuristics like [GM86] for architectures whereLoad in-
structions may have variable latency. The priority weight for selection of aLoad instruction
is increased by a value that accounts for the number of instructions that may be executed con-
currently with that instruction, in order to provide for sufficent padding of subsequentLoad
delay slots. An improvement is given by Lo and Eggers [LE95].

Further scheduling heuristics developed for specific compilers are given e.g. by Warren
[War90] for the IBM R-6000 system and Tiemann [Tie89] for the GNU C compiler.

2.8 Summary

We have presented several algorithms for solving the NP-complete optimization problem of
computing a schedule of a basic block whose precedence constraints are given in the form
of a DAG. The initial goal was to minimize the number of registers used. Later on we also
considered to minimize the execution time on the target processor, or a combined criterion of
register need and execution time.

We have demonstrated two fundamental ways of traversing the space of possible sched-
ules. The first one restricts the solution space to contiguous schedules, which are generated
by depth-first-search traversals of the DAG. We have developed an exhaustive search strategy
that prunes the search space to generate only the schedules that are most promising (with re-
gard to register need). In practice, the method can be applied to DAGs with up to 80 nodes.
Hence, in nearly all cases that occur in practice, a space-optimal contiguous schedule can be
computed in a reasonable time, and a contiguous schedule is sufficient for space optimization.
As a byproduct we also obtained anO(n log n) time randomized heuristic that may be applied

72 Chapter 2. Instruction Scheduling

for very large DAGs. On the other hand, focusing on contiguous schedules seems to be a too
large restriction as soon as delayed instructions or multiple functional units do matter.

The second way considers all schedules as permitted by the DAG edges, which are gener-
ated by topological ordering of the DAG nodes. The basic method,nce, naively enumerates
all topological orderings. It is made more practical by several refinement steps. First, the
solution space is constructed bottom–up by a dynamic programming method, where partial
solutions for the same subsets of nodes are combined (ncc). The search space can be pruned
further (ncv) by discretizing it according to schedule length, register need, and execution time
(ncn) of the locally best partial schedule computed so far, and traversing it in a way that is
most promising for the desired optimization goal. In order to speed up the optimization of ex-
ecution time or the combined optimization of execution time and register need, the concept of
time profiles and time–space profiles has been introduced as a generalization of the previous
algorithms.

With these improvements, our method becomes practically feasible for the first time to
solve this classical optimization problem for small and also for medium-sized DAGs. Hence,
the algorithms may be used in optimizing compiler passes for important basic blocks. Re-
garding DAGs of medium size, a timeout should be specified, depending on the DAG size and
the importance of this particular DAG for the overall execution time of the program. If the
algorithm exceeds this deadline without the solution being completed, one may, for the MRIS
problem, still switch to the optimal algorithm for contiguous schedules or to one of the heuris-
tics based on generating and testing random schedules (randomized contiguous scheduling for
MRIS, and random scheduling byncrandfor MTIS and MRIS). If solving the MRIS problem,
we should immediately restrict ourselves to contiguous schedules for DAGs with more than
50 nodes, since it is not very probable that the solution can be completed before the deadline
is met.

Fortunately, nearly all the DAGs occurring in real application programs are of small or
medium size and can thus be processed by thencv algorithm. Note also that for test com-
pilations, any legal schedule is sufficient, which can be determined in linear time. The opti-
mization algorithms presented here need only be run in the final, optimizing compilation of
an application program. Moreover, they need only be applied to the most time-critical parts
of a program, e.g. the bodies of innermost loops.

We have also proposed several ideas how to exploit massive parallelism inncv.
Furthermore, we have proposed and examined several heuristics to allow handling also

large DAGs.
In principle it is possible to integrate optimal spilling of register values and recomputations

of individual DAG nodes into our framework. Nevertheless the straightforward generalization
of our method to computing optimal schedules including optimal spill code blows up the time
and space requirements dramatically; some heuristic restrictions seem to be unavoidable here.

Future research based upon our enumeration approach may address global scheduling
techniques, other than trace scheduling [Fis81], that extend our method beyond basic block
boundaries. For instance, it may be interesting to combine our algorithms with software
pipelining techniques in the presence of loops, maybe in a way similar to [Veg92]. We expect
the concept of time-space profiles to be useful in this context, as it allows to describe precisely
the time and register requirements at the basic block boundaries. A global scheduling method

2.8. Summary 73

could hence switch back and forth between local and global levels of optimization, maybe
even in a multi-level hierarchical way, following the control dependence structure of the input
program.

Thencrandheuristic may be extended by a greedy method like [GM86] that uses a critical
path analysis and priority estimations to generate one more list schedule, maybe also in the
reverse direction, i.e. starting with the DAG roots as the last nodes in the schedule and working
backwards towards the leaves.

Finally, the integration of instruction scheduling and register allocation with the—up to
now, separate—instruction selection phase could be an interesting topic of future research.

All these issues will be further developed in a long-term follow-on project starting in Jan-
uary 2001 at the University of Link̈oping, Sweden. This project, led by the author, will focus
on code generation problems for digital signal processors (DSPs), especially for DSPs with
an irregular architecture where standard heuristics and the state-of-the-art, phase-decoupled
methods produce code of poor quality. The main solution engine will be based upon the time-
space profile method introduced in this chapter, extended by further new techniques that allow
to cope with non-homogeneous register sets and similar constraints imposed by irregular hard-
ware. A long-range goal of this project is to actually build a retargetable code generation and
optimization system for a wide range of standard and DSP processors, which also includes
irregular architectures. Another goal of this project is to establish our dynamic programming
approach as a powerful antagonist to the approaches based on integer linear programming
described in Section 2.7.1.

Acknowledgements

The modified labeling algorithm presented in Sections 2.3.3 to 2.3.5 was jointly developed
with Thomas Rauber [C3,C7,J1].

For helpful comments on earlier versions of the description of the dynamic programming
algorithmsncvandncn [C12,J4], which are given in Section 2.4, the author thanks Anton M.
Ertl, Arno Formella, and Helmut Seidl.

74 Chapter 2. Instruction Scheduling

Chapter 3

Automatic Comprehension and
Parallelization of Sparse Matrix Codes

3.1 Introduction

Matrix computations constitute the core of many scientific numerical programs. A matrix is
calledsparseif so many of its entries are zero that it seems worthwhile to use a more space-
efficient data structure to store it than a simple two-dimensional array; otherwise the matrix is
calleddense. Space-efficient data structures for sparse matrices try to store only the nonzero
elements. This results in considerable savings in space for the matrix elements and time for
operations on them, at the cost of some space and time overhead to keep the data structure
consistent. If the spatial arrangement of the nonzero matrix elements (thesparsity pattern) is
statically known to be regular (e.g., a blocked or band matrix), the matrix is typically stored
in a way directly following this sparsity pattern; e.g., each diagonal may be stored as a one-
dimensional array.

Irregular sparsity patterns are usually defined by runtime data. Here we have only this
case in mind when using the term “sparse matrix”. Typical data structures used for the rep-
resentation of sparse matrices in Fortran77 programs are, beyond adata arraycontaining the
nonzero elements themselves, severalorganizational variables, such as arrays with suitable
row and/or column index information for each data array element. Linked lists are, if at all,
simulated by index vectors, as Fortran77 supports no pointers nor structures. C implemen-
tations may also use explicit linked list data structures to store the nonzero elements, which
supports dynamic insertion and deletion of elements. However, on several architectures, a
pointer variable needs more space than an integer index variable. As space is often critical in
sparse matrix computations, explicit linked lists occur rather rarely in practice. Also, many
numerical C programs are written in a near-Fortran77 style because they were either directly
transposed from existing Fortran77 code, or because the programming style is influenced by
former Fortran77 projects or Fortran77-based numerics textbooks.

Matrix computations on these data structures are common in practice and often paralleliz-
able. Consequently, numerous parallel algorithms for various parallel architectures have been
invented or adapted for sparse matrix computations over the last decades.

Bik and Wijshoff [BW96] suggested that the programmer expresses, in the source code,

75

76 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

parallel (sparse) matrix computations in terms of dense matrix data structures, which are more
elegant to parallelize and distribute, and let the compiler select a suitable data structure for the
matrices automatically. Clearly this is not applicable to (existing) programs that use hardcoded
data structures for sparse matrices.

While the problems of automatic parallelization fordensematrix computations are, mean-
while, well understood and sufficiently solved, (e.g. [BKK93, ZC90]), these problems have
been attacked forsparsematrix computations only in a very conservative way, e.g., by run-
time parallelization techniques such as the inspector–executor method [MSS+88] or runtime
analysis of sparsity patterns for load-balanced array distribution [UZSS96]. This is not as-
tonishing because such code looks quite awful to the compiler, consisting of indirect array
indexing or pointer dereferencing which makes exact static access analysis impossible.

In this chapter we describe SPARAMAT, a system for concept comprehension that is par-
ticularly suitable tosparsematrix codes. We started the SPARAMAT project by studying
several representative source codes for implementations of basic linear algebra operations
like dot product, matrix–vector multiplication, matrix–matrix multiplication, or LU factor-
ization for sparse matrices [Duf77, Gri84, Kun88, SG89, Saa94, ZWS81] and recorded a list
of basic computational kernels for sparse matrix computations, together with their frequently
occurring syntactical and algorithmic variations.

3.1.1 Basic Terminology

A conceptis an abstraction of an externally defined procedure. It represents the (generally
infinite) set of concrete procedures coded in a given programming language that have the
same type and that we consider to be equivalent in all occurring calling contexts. Typically
we give a concept anamethat we associate with the type and the operation that we consider
to be implemented by these procedures.

An idiom of a conceptc is such a concrete procedure, coded in a specific programming
language, that has the same type asc and that we consider to implement the operation ofc.

An occurrenceof an idiom i of a conceptc (or short: an occurrence ofc) in a given
source program is a fragment of the source program that matches this idiomi by unification
of program variables with the procedure parameters ofi. Thus it is legal to replace this
fragment by a call toc, where the program objects are bound to the formal parameters of
c. The (compiler) data structure representing this call is called aninstanceI of c; the formal
parameters, that is, the fields inI that hold the program objects passed asparametersto c are
called theslotsof I. Beyond the Fortran77 parameter passing, SPARAMAT allows procedure-
valued parameters as well as higherdimensional and composite data structures to occur as slot
entries.

After suitable preprocessing transformations (inlining all procedures) and normalizations
(constant propagation), the intermediate program representation—abstract syntax tree and/or
program dependence graph—is submitted to the concept recognizer. The concept recognizer,
described in Section 3.4, identifies code fragments as concept occurrences and annotates them
by concept instances.

When applied to parallelization, we are primarily interested in recognizing concepts for
which there are particular parallel routines available, tailored to the target machine. In the

3.1. Introduction 77

back-end phase, the concept instances can be replaced by suitable parallel implementations.
The information derived in the recognition phase also supports automatic data layout and
performance prediction [D2,J2].

3.1.2 Problems in Program Comprehension for Sparse Matrix Compu-
tations

One problem we were faced with is that there is no standard data structure to store a sparse
matrix. Rather, there is a set of about 15 competing formats in use that vary in their advantages
and disadvantages, in comparison to the two-dimensional array which is the “natural” storage
scheme for a dense matrix.

The other main difference is that space-efficient data structures for sparse matrices use
either indirect array references or (if available) pointer data structures. Thus the array access
information required for safe concept recognition and code replacement is no longer com-
pletely available at compile time. Regarding program comprehension, this means that it is no
longer sufficient to consider only the declaration of the matrix and the code of the computa-
tion itself, in order to safely determine the semantics of the computation. Code can only be
recognized as an occurrence of, say, sparse matrix–vector multiplication, subject to the con-
dition that the data structures occurring in the code really implement a sparse matrix. As it is
generally not possible to statically evaluate this condition, a concept recognition engine can
only suspect, based on its observations of the code while tracking the live ranges of program
objects, that a certain set of program objects implements a sparse matrix; the finalproof of
this hypothesis must either be supplied by the user in an interactive program understanding
framework, or equivalent runtime tests must be generated by the code generator. Unfortu-
nately, such runtime tests, even if parallelizable, incur some overhead. Nevertheless, static
program flow analysis (see Section 3.4.5) can substantially support such aspeculativecom-
prehension and parallelization. Only at program points where insufficient static information
is available, runtime tests or user prompting is required to confirm (or reject) the speculative
comprehension.

3.1.3 Application Areas

The expected benefit from successful recognition is large. For automatic parallelization, the
back-end should generate two variants of parallel code for the recognized program fragments:
(1) an optimized parallel library routine that is executed speculatively, and (2) a conservative
parallelization, maybe using the inspector–executor technique [MSS+88], or just sequential
code, which is executed nonspeculatively. These two code variants may even be executed
concurrently and overlapped with the evaluation of runtime tests: If the testing processors
find out during execution that the hypothesis allowing speculative execution was wrong, they
abort and wait for the sequential variant to complete. Otherwise, they abort the sequential
variant and return the computed results. Nevertheless, if the sparsity pattern is static, it may
be more profitable to execute the runtime test once at the beginning and then branching to the
suitable code variant.

78 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

Beyond automatic parallelization, the abstraction from specific data structures for the
sparse matrices also supports program maintenance and debugging, and could help with the
exchange of one data structure for a sparse matrix against another, more suitable one. For
instance, recognized operations on sparse matrices could be replaced by their counterparts on
dense matrices, and thus, program comprehension may serve as a front-end to [BW96]. Or, the
information derived by concept recognition may just be emitted as mathematical formulas, for
instance in LATEX format, typeset in a mathematical textbook style, and shown in a graphical
editor as annotations to the source code, in order to improve human program understanding.

The SPARAMAT implementation focuses on sparse matrix computations coded by indi-
rect array accesses. This is because, in order to maintain an achievable goal in a university
project, it is necessary to limit oneself to a language that is rather easy to analyze (FOR-
TRAN), to only a handful of sparse matrix formats (see Section 3.2), and to a limited set of
most important concepts (see Section 3.3.1. For this reason, pointer alias analysis of C pro-
grams, as well as concepts and matching rules for pointer-based linked list data structures,
are beyond the scope of this project. Due to the flexibility of the generative approach, more
concepts and templates may be easily added by any SPARAMAT user. Furthermore, it ap-
pears that we can reuse some techniques from our earlier PARAMAT project [D2,J2,J6] more
straightforwardly for indirect array accesses than for pointer accesses.

3.1.4 Overview of the Chapter

This chapter is structured as follows: Section 3.2 contains a guided tour of common sparse
matrix storage schemes. Section 3.3 summarizes concepts for (sparse) matrix computations.
Section 3.4 discusses the concept recognition strategy, and Section 3.5 describes our imple-
mentation. The concept specification language CSL is presented in Section 3.6. We briefly
review related work in Section 3.7, identify possible directions for future work in Section 3.8,
and conclude with Section 3.9. Further examples are given in Appendix B.

3.2 Vectors and (Sparse) Matrices

3.2.1 Basic Terminology: Vectors and Matrices

It is important for the following discussion to distinguish between program data structures,
such as multidimensional arrays, and mathematical entities that correspond to bulk accesses
to these data structures, such as vectors and matrices. In particular, the extent and/or dimen-
sionality of an access may differ from the extent or dimensionality of the data structure being
accessed.

A vector is an object in the intermediate program representation that summarizes aone-
dimensional view of some elements of an array. For instance, a vector of reals accessing
the first 5 elements in column 7 of a two-dimensional arraya of reals is represented as
V(a,1,5,1,7,7,0) . For ease of notation we assume that the “elements” of the vector
itself are consecutively numbered starting at 1.IV(...) denotes integer vectors.

An indexed vectorsummarizes a one-dimensional view of some elements of an array
whose indices are specified in a second (integer) vector, e.g.VX(a,IV(x,1,n,2)) .

3.2. Vectors and (Sparse) Matrices 79

A matrix summarizes atwo-dimensional view of an arrayaccording to the conventions of
a specific storage format. Dense matrices appear as a special case of sparse matrices.

3.2.2 An Overview of Data Structures for Sparse Matrices

Now we summarize some general storage formats for sparse matrices based on index vectors,
which are the most frequently occurring in Fortran77 codes. Formats for special, more regular
sparsity patterns, such as for band matrices, block sparse matrices, or skyline matrices, are
not considered here. The abbreviations of format names are partially adapted fromSPARSKIT

[Saa94]. More details can be found, for instance, in theSPARSKIT documentation [Saa94],
the TEMPLATES collection of linear algebra algorithms [BBC+94], and in Zlatev’s textbook
on algorithms on sparse matrices [Zla91].

� DNS (dense storage format): uses a two-dimensional arrayA(N,M) to store all ele-
ments. Due to the symmetric access structure of the two-dimensional array, aleading
dimensionflag ld tells us whether the matrix access is transposed or not. In the follow-
ing notation, we summarize all data referring to the dense matrix access as an object

DNS(a, 1,n,1, 1,m,1, ld)

Example: In FORTRAN, DNS-matrix–vector multiplication may look like

DO i = 1, n
b(i) = 0.0
DO j = 1, m

b(i) = b(i) + a(i,j) * x(j)
ENDDO

ENDDO

� COO (coordinate format): A data arraya stores thenz nonzero matrix elements in
arbitrary order, and integer vectorsrow(nz) and col(nz) hold for each nonzero
element its row and column index. The object representing the matrix access is summa-
rized as

COO(V(a,1,nz,1), IV(row,1,nz,1), IV(col,1,nz,1), nz)

Example: COO-Matrix–vector multiplication may look like

DO i = 1, n
b(i) = 0.0

ENDDO
DO k = 1, nz

b(row(k)) = b(row(k)) + a(k) * x(col(k))
ENDDO

The COO format occurs, for instance, in the SLAP package [SG89].

80 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

1

3

2

1

4

Row

0

0 0

0 0

0 0

22

11 13

31

43

13

11

31

22

43

1 3 64FirstInCol

A

1 3 4

11 2213 31 43

Col 1 3 2 1 3

65FirstInRow

uncompressed row-compressed column-compressed

A

FIGURE 3.1: Row-compressed (CSR) and column-compressed (CSC) storage formats for
sparse matrices.

� CSR (row-compressed sorted storage format): A data arraya stores thenz nonzero
matrix elementsaij in row-major order, where within each row the elements appear in
the same order as in the dense equivalent. An integer vectorcol(1:nz) gives the
column index for each element ina, and an integer vectorfirstinrow(1:n+1)
gives indices toa such thatfirstinrow(i) denotes the position ina where rowi
starts,i = 1; :::;n and firstinrow(n+1) always containsnz+1 (see Figure 3.1).
Thus,firstinrow(i+1)-firstinrow(i) gives the number of nonzero elements
in row i. A CSR matrix object is summarized as

CSR(V(a,firstinrow(1),firstinrow(n+1)-1,1),
IV(firstinrow,1,n+1,1),
IV(col,firstinrow(1),firstinrow(n+1)-1,1),
n,
nz)

Example: An idiom of a matrix vector multication for CSR format may look like

DO i = 1, n
b(i) = 0.0
DO k = firstinrow(i), firstinrow(i+1)-1

b(i) = b(i) + a(k) * x(col(k))
ENDDO

ENDDO

Such storage formats are typical for Fortran77 implementations. CSR is used, for in-
stance, in the SLAP package [SG89].

� CUR (row-compressed unsorted storage format): like CSR, but the order of nonzeros
within each row is not important. CUR is used e.g. as the basic format inSPARSKIT

[Saa94]. CUR matrix–vector multiplication looks identical to the CSR version.

3.2. Vectors and (Sparse) Matrices 81

� XSR / XUR: an extension of CSR / CUR that additionally stores in ann-element integer
arraylastinrow for each compressed row its last index within the data arrayA. This
makes row interchanges and row reallocations due to fill-in more efficient. XUR is used
e.g. in Y12M [ZWS81].

� MSR (modified row-compressed storage format): like CSR, but the elements of the
main diagonal of the matrix are stored separately and regardless of whether they are
zero or not. This is motivated by the fact that, often, most of the diagonal elements are a
priori known to be nonzero, and are accessed more frequently than the other elements.
Typically the diagonal elements are stored in the firstn elements ofa anda(n+1)
is unused. The column indices of the diagonal elements need not be stored, thus the
elements of the arrayfirstinrow of CSR are stored in the firstn+1 entries of a
two-purpose integer arrayfircol . The remaining nonzero elements are stored in
a(n+2:nz+1) and their column indices infircol(n+2:nz+1) . A MSR matrix
object is thus given as

MSR(V(a,1,fircol(n+1)-1,1), IV(fircol,1,n+1,1), n, nz)

MSR is used, for instance, in the sparse matrix routines of theNumerical Recipes
[PTVF92].

Example: Matrix–vector multiplication may look as follows (routinesprsax() from
[PTVF92]):

DO i = 1, n
b(i) = a(i) * x(i);
DO k = fircol(i), fircol(i+1)-1

b(i) = b(i) + a(k) * x(fircol(k))
ENDDO

ENDDO

� CSC (column-compressed format): similar to CSR where thea contains the nonzero
elements in column-major order and the other two arrays are defined correspondingly
(see Figure 3.1). Thus, CSC format for a matrixA is equivalent to the CSR format for
AT , and vice versa. A CSC matrix object is summarized by

CSC(V(a, firstincol(1), firstincol(n+1)-1, 1),
IV(firstincol, 1, n+1, 1),
V(row, firstincol(1), firstincol(n+1)-1, 1),
n, nz)

Example: CSC-Matrix–vector multiplication may look like

DO i = 1, n
DO k = firstincol(i), firstincol(i+1)-1

b(row(k)) = b(row(k)) + a(k) * x(i)
ENDDO

ENDDO

82 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

CSC is used, for instance, in the HarwellMA28package [Duf77].

� MSC (modified column-compressed storage format): A MSC matrix object is similar to
the CSC representation, but the elements of the main diagonal of the matrix are stored
separately, as for MSR.

� JAD (jagged diagonal format): First the rows of the matrix are permuted to obtain de-
creasing numbersni of nonzero elements for each rowi. The data arraya(1:nz)
is filled as follows: The first nonzero element of each rowi (the first “jagged diago-
nal”) is stored ina(i) , the second nonzero element of each rowi in a(n+ i) etc. The
overall numbernjd of jagged diagonals is at mostn. An integer arraycol(1:nz)
holds the column index of each element ina. An integer arrayfirstinjdiag(1:n)
holds indices intoa resp.col indicating the beginning of a new jagged diagonal; thus
firstinjdiag(k+1)-firstinjdiag(k) gives the numbernk of elements be-
longing to thekth jagged diagonal. Thus, a JAD matrix object is given by

JAD(V(a,firstinjdiag(1), firstinjdiag(njd+1),1),
IV(firstinjdiag,1,njd+1,1),
V(col,firstinjdiag(1),firstinjdiag(njd+1)-1,1),
n, nz, njd)

Example: JAD-Matrix–vector multiplication may look like

DO r = 1, n
b(r) = 0.0

ENDDO
DO k = 1, njd

DO i = firstinjdiag(k), firstinjdiag(k+1)-1
r = i - firstinjdiag(k)
b(r) = b(r) + a(i) * x(col(i))

ENDDO
ENDDO

followed by re-permutation of vectorb if necessary.

� LNK (linked list storage format): The data arraya(1:maxnz) holds thenz nonzero
elements in arbitrary order, the integer arraycol(1:maxnz) gives the column in-
dex of each nonzero element. An integer arraynextinrow(1:maxnz) links the
elements belonging to the same row in order of increasingcol index. A zeronex-
tinrow entry marks the last nonzero element in a row. The list head element of each
row i is indexed by theith element of the integer arrayfirstinrow(1:n) . Empty
rows are denoted by a zerofirstinrow entry. If required by the application, a simi-
lar linking may also be provided in the other dimension, using two more index vectors
nextincol(1:nz) and firstincol(1:n) . Thus, a singly-linked LNK matrix
object is summarized by

3.2. Vectors and (Sparse) Matrices 83

LNK(VX(a, IV(firstinrow,1,n)),
IV(firstinrow,1,n), IV(nextinrow,1,n),
VX(col, IV(firstinrow,1,n)), n, nz, maxnz)

Example: LNK-Matrix–vector multiplication may look like

DO i = 1, n
b(i)=0.0
k = firstinrow(i)
WHILE (k.GT.0)

b(i) = b(i) + a(k) * x(col(k))
k = nextinrow(k)

ENDWHILE
ENDDO

The LNK format requires more space than the previously discussed sparse matrix for-
mats, but it supports efficient dynamic insertion and deletion of elements (provided that
a andnextinrow have been allocated with sufficient space reserve,maxnz).

While matrix–vector multiplication codes for a sparse matrix look quite simple and seem
to be somehow identifiable by concept matching techniques, implementations of matrix–
matrix multiplication or LU decomposition look quite unstructured. This is mainly due to
the fact that in the course of these algorithms, some matrix elements may become nonzero
which were originally zero (fill-in), and thus additional storage has to be allocated for insert-
ing them. Thus, the sparsity pattern may change in each step of these algorithms, while at
matrix–vector multiplication, the sparsity pattern (and thus, the organizational variables) is
read-only.

A simple work-around to cope with a limited number of fill-ins is to store fill-ins in a
separate temporary data structure, or respectively, to allocate slightly more space for the data
array and the index vectors. This is e.g. applied inSPARSE[Kun88].

There are also many possibilities for slight modifications and extensions of these data
structures. For instance, a flag may indicate symmetry of a matrix. Such changes are quite
ad-hoc, and it seems generally not sensible to define a new family of concepts for each such
modification. For instance, in the Harwell routinesMA30, the sign bit of the row resp. column
indices is “misused” to indicate whether a new column or row has just started, thus saving
thefirstinrow resp.firstincol array when sequentially scanning through the matrix.
Clearly such dirty tricks make program comprehension more difficult.

A main consequence that arises from these data structures is that the comfortable symme-
try present in the two-dimensional arrays implementing dense matrices (DNS) is lost. Hence,
we must explicitly distinguish between transposed and nontransposed matrix accesses, and be-
tween rowwise and columnwise linearization of the storage for the nonzero matrix elements.

Linked list data structures (e.g., the LNK format) cause operations on them, such as traver-
sal or insert/delete, to be inherently sequential. Thus they are particularly good candidates to
be completely replaced by other data structures that are more suitable for exploiting paral-
lelism, e.g. linked lists with multiple heads for parallel access. Data structure replacement for

84 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

a sparse matrix is possible if all operations on it have been recognized and if alias analysis can
guarantee that there are no other variables which may be used to access one of these linked
list elements in an unforeseen way.

3.3 Concepts

This section gives a survey of concepts that are frequently encountered in sparse matrix codes.
Although this list is surely not exhaustive, it should at least illustrate the application domain.
The extension of this list by more concepts to cover an even larger part of numerical software
may be a subject for future work.

We have developed a concept specification language that allows one to describe concepts
and matching rules on a level that is (more or less) independent from a particular source lan-
guage or compiler. A concept specification consists of the following components: its name
(naming conventions are discussed below), an ordered and typed list of its parameters, and
a set of matching rules (calledtemplates). A matching rule has several fields: a field for
structural pattern matching, specified in terms of intermediate representation constructs (loop
headers, conditions, assignments, and instances of the corresponding subconcepts), fields
specifying auxiliary predicates (e.g., structural properties or dataflow relations), fields for
the specification of pre- and postconditions for the slot entries implied by this concept (see
Section 3.4), and a field creating a concept instance after successful matching. For an ex-
ample specification see Figure 3.2. The details of the concept specification language will be
described in Section 3.6.

Naming conventions for concepts Our naming conventions for concepts are as follows:
Theshapeof operands is denoted by shorthandsS (scalar),V (vector),VX (indexed vector),
andYYY(matrix in some storage format YYY). The result shape is given first, followed by
a mnemonic for the type of computation denoted by the concept, and the shorthands of the
operands. Most concepts are type-polymorphic, that is, they are applicable to computations on
real or integer data. Where an explicit type specification is necessary, special integer concepts
and objects are prefixed with anI while their real counterparts are not.

Basic conceptsinclude memory access concepts and constant constructor concepts.
Memory access conceptsinclude all accesses to variables or scalar, vector or matrix ac-

cesses to arrays.Constant constructor conceptsrepresent scalar-, vector- or matrix-valued
compile-time constant expressions.

We extend our earlier PARAMAT approach [D2,J2,J6] to representing concepts and con-
cept instances in several aspects.

Automatic type inference The basic concepts are typed: the integer versions of these con-
cepts are prefixed with anI , while the real versions are not.

Nonbasic concepts are not typed. The type (integer or real) of a nonbasic concept instance
is automatically inferred from the memory access concepts occurring as concept instance
parameters by obvious type inference rules.

3.3. Concepts 85

concept SDOTVV {
param(out) $r: real;
param(none) $L: range;
param(in) $u: vector;
param(in) $v: vector;
param(in) $init: real;

templateVertical {
pattern {

node DO_STMT $i = $lb:$ub:$st
child INCR($rs,MUL($e1,$e2))

}
where {

$e1->isSimpleArrayAccess($i)
&& $e2->isSimpleArrayAccess($i)
&& $s->isVar()
&& $i->notOccurIn($s)

}
instance SDOTVV($rs, newRANGE($i,$lb,$ub,$st),

newVector($e1,$i,$lb,$ub,$st),
newVector($e2,$i,$lb,$ub,$st),
$rs)

}
templateHorizontal {

pattern {
sibling($s) SINIT($x,$c)

fill($f)
node($n) SDOTVV($r1,$L1,$u1,$v1,$init1)

}
where($s) { $x->array() == $init1->array() }
where($f) {

notOutSet = $x;
notInSet = $x;
inSet = $init1;

}
instance($s) EMPTY()
instance($n) SDOTVV($L1, $u1, $v1, $r1, $c)

}
}

FIGURE 3.2: A CSL specification for theSDOTVVconcept (simple dot product) with two
templates.

Operator parameters Some concepts likeVMAPVV(elementwise application of a binary
operator to two operand vectors) take an operator as a parameter. This makes hierarchical pro-
gram comprehension slightly more complicated, but greatly reduces the number of different
concepts, and allows for a more lean code generation interface.

Functional composition As a generalization of operator parameters, we allow, to some
extent, the arbitrary functional composition of concepts to form new concepts. This idea is
inspired by the work of Cole on algorithmic skeletons [Col89]. Nevertheless, it turned out
to be useful if there exist at least some “flat” concepts for important special cases, such as
SDOTVVfor dot product,VMATVECMVfor matrix–vector multiplication, etc. These may be
regarded as “syntactic sugar” but are to be preferred as they enhance readability and speed up
the program comprehension process.

86 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

No in-place computations Most of our concepts represent not-in-place computations. In
general, recognized in-place computations are represented by using temporary variables, vec-
tors, or matrices. This abstracts even further from the particular implementation. It is the
job of the back-end to reuse (temporary array) space where possible. In other words, we try
to trackvaluesof objects rather than memory locations. Where it is unavoidable to have ac-
cumulating concepts, they can be specified using accumulative basic operations likeINCR
(increment) orSCAL(scaling).

Concept instances as parameters Nesting of concept instances is a natural way to represent
a treelike computation without having to specify temporary variables. As an example, we may
denote aDAXPY-like computation,~b ~b+ 3:14 � ~c, as

VMAPVS(V(tmp,1,n,1), MUL, V(c,1,n,1), VCON(3.14,n))
VINCRV(V(b,1,n,1), V(tmp,1,n,1))

which is closer to the internal representation in the compiler, or as

VINCR(V(b,1,n,1), VMAPVS(, MUL, V(c,1,n,1), VCON(3.14,n)))

which is more readable for humans. If the computation structure is a directed acyclic graph
(DAG), then we may also obtain a DAG of concept instances, using temporary variables and
arrays for values used multiple times. In order to support nesting, our notation of concept
instances allows to have the result parameter (if there is exactly one) of a concept instance
appear as the “return value” of a concept instance, rather than as its first parameter, following
the analogy to a call to a function returning a value.

Nesting of concept instances is important to simplify and reduce the number of concepts.
Hence, a concept instance may occur as a parameter in a slot of another concept instance,
provided that the type of the concept instance matches the slot type.

Without the nesting feature, the addition of multiple sparse matrix formats would have
significantly increased the complexity and number of concepts. For instance, each combina-
tion of a matrix computation and a format for each of its matrix parameters would result in a
different concept. Instead, the format particulars are gathered into a special memory access
concept instance and stored as a parameter to the concept instance for the matrix operation.

3.3.1 Some Concepts for Sparse Matrix Computations

We give here an informal description of some concepts.v, v1, v2 denote (real or integer)
vectors,rv a real vector,a a (real or integer) array,iv an integer vector,m, m1, m2 matrices
in some format andr a range object.i, i1,...,i5 denote integer valued concept instances.

Memory access concepts

� VAR(a; i1; :::; i5) — access to the real variablea. For scalar real array accesses, up to five index
expressions can be specified. If no index expressions are given,a must be a scalar real variable.

3.3. Concepts 87

� IVAR(a; i1; :::; i5) — access to the integer variablea. For scalar integer array accesses, up to
five index expressions can be specified. If no index expressions are given,a must be a scalar
integer variable.

� V(a; l1; u1; s1; :::) — real vector access to real arraya, wherelj , uj , sj hold concept instances
for the expressions for the lower bound, upper bound, and stride in dimensionj. The number of
expressions depends on the dimensionality ofa; hence,j varies from 1 to the maximum number
of dimensions, which is 5 in FORTRAN.

� IV (a; l1; u1; s1; :::) — similar, for integer array arraya

� VX(a;IV (:::)) — real indirect access of real arraya, indexed by the integer vector in the second
slot.

� IVX (a;IV (:::)) — integer indirect access of integer arraya, indexed by the integer vector in the
second slot.

� STRIP(a;IVX (fa; iv)) — compose a vector as concatenation of rows of a CSR sparse matrix
with work arraya and first-in-row arrayfa. The rows are selected according to the row indices
given in the integer vectoriv. See Appendix B.2 for an example.

In the following presentation, we sometimes omit the formal notationVAR(a,i) for
array accesses and use instead the sloppy notationa(i) to enhance readability.

Constant constructor concepts

� RANGE(i; l; u; s) — variablei ranging across an interval defined by lower boundl, upper bound
u, and strides.

� CON(c) — real constantc

� ICON(c) — integer constantc

The following concepts are used for lifting scalar expressions to the vector domain:

� VCON(r; n) — vector constant of extentn, each element containing the real constantr

� IVCON(i; n) — integer vector constant of extentn, each element containing the integer constant
i

� VEXP(e; n) — real vector of extentn, each element containing the same real-valued scalar
expressione

� IVEXP(e; n) — integer vector of extentn, each element containing the same integer-valued
scalar expressione

� VTAB(e;RANGE(i; l; u; s)) — creates a real-vector-valued expression by substituting all occur-
rences ofi in expressione by the sequence of values specified in the range parameter.i must
not occur ine as an index of an array access.

Concepts for scalar computations

There are concepts for binary expression operators, likeADD, MUL, MAX, EQetc., for unary ex-
pression operators likeNEG(negation),ABS(absolute value),INV (reciprocal),SQR(squar-
ing) etc., The commutative and associative operators,ADD, MUL, MAXetc.,MIN, OR, ANDmay
also have more than two operands.STARis a special version of a multi–operandADDdenot-
ing difference stencils [D2,J2]. The increment operatorsINCR (for accumulating addition)

88 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

andSCAL(for accumulating product) are used instead ofADDor MULwhere the result vari-
able is identical to one of the arguments. Assignments to scalars are denoted by theASSIGN
concept.

For technical reasons there are some auxiliary concepts likeEMPTY(no operation).

Vector and matrix computations

� VMAPVV(v;�; v1; v2) — elementwise application of binary operator�, results stored inv

� VMAPV(v;	; v1) — elementwise application of unary operator	, results stored inv

� VMAPVS(v;�; v1; r) — elementwise application with a scalar operandr, results stored inv

� VINCR(v; v1) — v(i) = v(i) + v1(i); i = 1; :::; jv1j
� VASSIGN(v; v1) — assign real-vector-valued expressionv1 to v

� SREDV(r;
; v) — reductionr =
Njvj

j=1 v(j)

� SREDLOCV(k;�; v) — compute somek with v(k) =
Jjvj

j=1 v(j)

� VPREFV(v;
; v1) — prefix computationv(i) =
Ni

j=1 v1(j), i = 1; :::; jv1j
� VSUFFV(v;
; v1) — suffix computationv(i) =

Ni
j=jv1j v1(j), i = jv1j; :::; 1

Searching and sorting on a vector

� SRCH(k; v1; r) — computek = rank ofr in v1

� VSORT(v; v1) — sortv1 and store the result inv

� VCOLL(v; v1; v2) — extract all elementsv2(i) wherev1(i) 6= 0, with i = 1:::jv1j, and store the
result vector inv.

� VSWAP(v; v1) — elementwise swap the vectorsv andv1

Elementwise matrix computations

In the following list,mi for i = 0; 1; 2; ::: stands for matrix objectsXXX(...) in some
format XXX.

� MMAPMM(m;�;m1;m2) — elementwise application of binary operator�. The result matrix is
stored inm.

� MMAPM(m;	;m1) — elementwise application of unary operator	. The result matrix is stored
in m.

� MMAPMV(m;�;m1; v1; d2) — map� across dimensiond2 of matrixm1. The result matrix is
stored inm.

� MMAPMS(m;�;m1; r) — elementwise apply� to r and all elements ofm1. The result matrix
is stored inm.

� MMAPVV(m;�; v1; d1; v2; d2) — map� acrossv1 � v2, spanning dimensionsd1; d2 of m. The
result matrix is stored inm.

� MASSIGN(m;m1) — assign the matrix-valued expressionm1 to the matrixm. m andm1 must
have the same format.

3.3. Concepts 89

� MCNVTM(m;m1) — like MCOPYM, but the formats ofm andm1 differ.

� MEXPV(m; v; d) — blow up vectorv to a matrixm along dimensiond

� MTRANSPM(m;m1) — transpose matrixm1. The result matrix is stored inm.

� MTAB(m; RANGE(i; :::); RANGE(j; :::) — like VTAB, for matrices.

Note that outer product (MOUTERVV) is a special case ofMMAPVV.

Searching and sorting on a matrix

In the following list,rv1 denotes a matrix row, that is, a vector access.

� MCOLLM(m;m1; f; i; j)— filter out all elementsm1(i; j) fulfilling a boolean conditionf(m1; i; j),
parameterized by formal row indexi and/or formal column indexj. The result matrix is stored
in m.

� MGETSUBM(m;m1; s1; t1; s2; t2) — extract a rectangular submatrix ofm1 defined by the index
intervals(s1 : t1; s2 : t2). The result matrix is stored inm.

� MSETSUBM(m1; s1; t1; s2; t2;m2) — replace submatrixm1(s1 : t1; s2 : t2) bym2

� GETELM(m; i; j) — return the elementm(i; j) if it exists, and 0 otherwise.

� MSETELM(m; i; j; r) — set elementm(i; j) to r

� VGETROW(m; i) — return rowi from matrixm,

� MSETROW(m; i; rv) — set rowi in matrixm to rv

� VGETCOL(m; i) — return columni of matrixm

� MSETCOL(m; i; cv) — set columni in matrixm to cv

� VGETDIA(m; i) — return the vector of elements in the diagonali of matrixm.

� MSETDIA(m; i; v) — set the elements in diagonali of matrixm to the elements inv

� MGETL(m) — return the left lower triangular matrix ofm (including the main diagonal)

� MGETU(m) — return the right upper triangular matrix ofm (including the main diagonal)

� MPRMROW(m; iv) — permute the rows of matrixm according to permutation vectoriv

� MPRMCOL(m; iv) — permute the columns ofm according to permutation vectoriv

Matrix–vector and matrix–matrix product, decompositions

� VMATVECMV(v; r;m; v1; v2) — return the matrix–vector productv = m � v1 + v2.

� VVECMATMV(v;m1; v1; v2) — return the vector–matrix productv = mT
1 � v1 + v2.

� MMATMULMM(m;m1;m2;m3) — return the matrix–matrix productm = m1 �m2 +m3

� VUSOLVEMV(v;m1; v2) — solve a system by backward substitutionv = m�1
1 � v2, wherem1

is upper triangular.

� VLSOLVEMV(v;m1; v2) — solve a system by forward substitutionv = m�1
1 � v2, wherem1 is

lower triangular.

� VROT(v; v1;m2) — Givens rotation

� MMLUD(m;m1;m2; p; t) — LU decomposition ofm2, pivot strategyp, drop tolerancet. The
triangular result matrices are stored inm andm1

90 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

� VUPDROW(v;�;m1; pr; i; c; space; t) — update rowi of m1 in LU decomposition for pivot
row pr, start columnc, drop tolerancet, dense result vector of sizespace. The result vector is
stored inv.

In order to express a transposed matrix–matrix product, theMTRANSPconcept has to be
applied to the operand matrix to be accessed in transposed order1. For dense matrices this
can be skipped by toggling the leading dimension index in theMDNSinstance.

It is interesting to note that a matrix–vector multiplication for a matrix in CSR format

VMATVECMV(..., CSR(...), ...)

looks exactly like a transposed matrix–vector multiplication for CSC format

VVECMATMV(..., CSC(...), ...)

and vice versa. Furthermore, for matrix–vector product the order of nonzero elements within
the same row resp. column is not important here, thus the concept variants for CSR and CUR
resp. CSC and CUC matrices are equivalent. Thus, for each such pair of equivalent concept
variants only one common implementation is required for the back-end.

I/O concepts

READandWRITEare the concepts for reading and writing a scalar value to a file.

� VREAD(v; F) — read a vectorv from fileF

� VWRITE(v; F) — write a vectorv to fileF

� MREAD(m;F; f) — readm from fileF in file storage formatf

� MWRITE(m;F; f) — writem to fileF in file storage formatf

There are various file storage formats in use for sparse matrices, e.g. the Harwell–Boeing
file format, the array format, or coordinate format [BPRD97].

3.3.2 Exception Slots

For some of the concepts listed above there exist additional slots containing actions specified
by the programmer to cover cases when possible exceptions occur. For example, theINV
concept (scalar reciprocal) offers a “catch” slot to enter a statement that handles the “division
by zero” exception. As another example, for LU decomposition (LUD) on a sparse operand
matrix an exception slot indicates what should be done if the allocated space is exceeded.

1The reason why we do not define three more concepts for the combinations of transposed operand matrices
is that executing a transpose, if not avoidable, is one order of magnitude less costly than a matrix–matrix product,
while the execution time of a transpose is in the same order as a transposed matrix–vector product.

3.4. Speculative Concept Recognition 91

3.4 Speculative Concept Recognition

Safe identification of a sparse matrix operation consists of (1) a test for the syntactical proper-
ties of this operation, which can be performed by concept recognition at compile time, and (2)
a test for the dynamic properties which may partially have to be performed at run time. Re-
garding (parallel) code generation, this implies that two versions of code for the corresponding
program fragment must be generated: one version branching to an optimized sparse matrix
library routine if the test is positive, and a conservative version (maybe using the inspector–
executor technique, or just sequential) that is executed otherwise.

3.4.1 Compile-Time Concept Matching

The static part of our concept matching method is based on a bottom-up rewriting approach
using a deterministic finite bottom-up2 tree automaton that works on the program’s intermedi-
ate representation (IR) as an abstract syntax tree or control flow graph, augmented by concept
instances and dataflow edges computed during the recognition. Normalizing transformations,
such as loop distribution or rerolling of unrolled loops, are done whenever applicable.

The matching rules for the concept idioms to be recognized, calledtemplates, are speci-
fied as far as possible in terms of subconcept occurrences (see Fig. 3.2), following the natural
hierarchical composition of computations in the given programming language, by applying
loops and sequencing to subcomputations. Since at most one template may match an IR node,
identification of concept occurrences is deterministic. For efficiency reasons the applicable
templates are selected by a hashtable lookup: each rule to match an occurrence of a concept
c is indexed by the most characteristic subconceptc0 (called thetrigger concept) that occurs
in the matching rule. The graph induced by these edges(c0; c) is called thetrigger graph3.
Hence, concept recognition becomes a path finding problem in the trigger graph. Matched
IR nodes are annotated with concept instances. If working on an abstract syntax tree, a con-
cept instance holds all information that would be required to reconstruct an equivalent of the
subtree it annotates.

Vertical matching

Vertical matchingproceeds along the hierarchical nesting structure (statements, expressions)
of the program. It uses only control dependence information which may be explicitly given by
a hierarchically structured IR, or derived from the abstract syntax tree.4 Let us, for simplicity,
assume in the following that the IR has the form of a tree that corresponds more or less to the
abstract syntax tree.

Vertical matching is applied at an IR nodev after the post-order traversals of all subtrees
rooted at the children ofv are finished. If not all children ofv are annotated by a concept in-
stance, then matching forv immediately terminates, as complete information on all children’s

2To be precise, for the unification of objectswithin a matching rule we apply a top-down traversal of (nested)
concept instances for already matched nodes.

3An example of a trigger graph will follow in Section 3.5.1
4For languages with strictly block-structured control flow, control dependence information can be directly

obtained from the abstract syntax tree.

92 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

concepts is essential for each matching rule. If a matching rule fails, it aborts. Otherwise,v is
matched and annotated with a concept instance.

A program fragment for which one of the matching rules of a conceptP matches, is
annotated by a concept instance, a summary node that looks, if printed, similar to a call to
an externally defined functionP() . The slots (i.e., the formal parameters) of the concept
instance are bound to the corresponding program objects occuring in the code fragment. If we
are working on a hierarchically structured intermediate program representation, this summary
node holds all information that would be required to reconstruct an equivalent of the subtree
it annotates. In short, a concept instance completely describeswhat is being computed in a
subtree, but abstracts fromhow it is computed.

As an example, consider the following program fragment:

DO i = 1, N
S1: b(i) = 0.0

DO j = first(i), first(i+1)-1
S2: b(i) = b(i) + A(j) * x(col(j))

ENDDO
ENDDO

The syntax tree is traversed bottom-up from the left to the right. StatementS1 is recognized
as a scalar initialization, summarized asASSIGN(VAR(b(i)),CONST(0.0)) . Statement
S2 is matched as a scalar update computation, summarized asINCR(b(i), MUL(A(j),
x(col(j))) . Now the loop aroundS2 is considered. The index expressions ofA andcol
are bound by the loop variablej which ranges from some loop-invariant valuefirst(i)
to some loop-invariant valuefirst(i+1)-1 with step size 1. Hence, the set of accesses to
arraysA andcol during thej loop can be summarized as vector accessesV(A, RANGE(,
first(i), first(i+1)-1),1) andIV(col,RANGE(,first(i),first(i+1)-
1,1)) , respectively. The access to arrayx is an indexed vector access. The entirej loop is
thus matched as

INCR(VAR(b,i),
SREDV(ADD,

VMAPVV(MUL,
V(A, RANGE(,first(i),first(i+1)-1,1)),
VX(x, IV(col,RANGE(,first(i),first(i+1)-1,1))))

For this particular combination of a scalar reductionSREDVwith a two-operand elemen-
twise vector operationVMAPVVexists a special flat concept, namelySDOTVVX, describing a
dot product with one indexed operand vector. The unparsed program is now

DO i = 1, n
S1’: ASSIGN(VAR(b,i), CONST(0.0));
S2’: SDOTVVX(VAR(b,i),

V(A, RANGE(,first(i),first(i+1)-1,1)),
VX(x, IV(col, RANGE(,first(i),first(i+1)-1,1))),
VAR(b,i))

ENDDO

3.4. Speculative Concept Recognition 93

Although all statements in the body of thei loop are matched, there is no direct way to match
the i loop at this point. We must first address the dataflow relations betweenS1’ andS2’ ,
which is discussed in the following paragraph.

Horizontal matching

Horizontal matching tries to merge several matched IR nodesv1, v2, ... belonging to the body
of the same parent node which is, mostly, a loop header. If there is a common concept that
covers the functionality of, say,vi andvj, there is generally some data flow relation betweenvi
andvj that can be used to guide the matching process. For each concept instance we consider
the slot entries to be read or written, and compute data flow edges (also calledcross edges)
that connect slots referring to the same value. Most frequently, these edges correspond to data
flow dependences5, and are thus denoted asFLOW cross edges6. These cross edges guide the
pattern matching process and allow to skip unrelated code that may be interspersed between
two statements belonging to the same thread of computation.

Continuing on the example above, we obtain that the same value ofb(i) is written (gen-
erated) by theASSIGNcomputation inS1’ and consumed (used and killed) by theSDOTVVX
computation inS2’ . Note that it suffices to consider the current loop level: regarding cross
matching, the values of outer loop variables can be considered as constant.

Horizontal matching, following the corresponding template (similar to the second template
in Fig. 3.2), “merges” the two nodes and generates a “shared” concept instance:

DO i = 1, N
S’’: SDOTVVX(VAR(b,i),

V(A, RANGE(,first(i),first(i+1)-1,1)),
VX(x, IV(col, RANGE(,first(i),first(i+1)-1,1))),
CONST(0.0))

ENDDO

3.4.2 Speculative Concept Matching

In order to continue with this example, we now would like to apply vertical matching to thei
loop. The accesses toa andcol are supposed to be CSR matrix accesses because the range of
the loop variablej binding their index expressions is controlled by expressions bound by the
i loop. Unfortunately, the values of thefirst elements are statically unknown. Thus it is
impossible to definitively conclude that this is an occurrence of a CSR matrix vector product.

Nevertheless we continue, with assumptions based on syntactic observations only, concept
matching in aspeculativeway. We obtain (see also Fig. 3.3)

5More specifically, they correspond tovalue-basedflow dependences. A data flow dependence from a state-
mentS1 to a statementS2 is calledvalue-based, if it is not killed by statements interspersed betweenS1 and
S2.

6Further types of cross edges that are, for instance, induced by value-based anti-dependences or immediate
neighborhood of array accesses have been introduced in [D2,J2], but these do not play a major role in the cases
considered in this chapter.

94 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

S1

VMATVECMV(V(b,1,n,1), CSR(a,IV(first,1,n+1,1), IV(col,first(1),first(n+1)-1,1), n, first(n+1)-1), V(x,1,n,1))

EMPTY() SDOTVVX(VAR(b,i), V(a,first(i),first(i+1)-1,1), VX(x,IV(col,first(i),first(i+1)-1,1)),0)

INCR(b(i), MUL(a(j),x(col(j)))

FIGURE 3.3: The program graph (abstract syntax tree) of the CSR matrix–vector multiplica-
tion code after concept recognition, generated by DOT. As a side-effect of horizontal match-
ing a pseudoconcept “EMPTY” is generated to hide a node from code generation but allow
reconstruction of children concepts if desired.

<assume first(1)=1>
<assume monotonicity of V(first,1,n+1,1)>
<assume injectivity of V(col,first(i),first(i+1)-1,1)

forall i in 1:n>
S: VMATVECMV(V(b,1,n,1),

CSR(a, IV(first,1,n+1,1),
IV(col,first(1),first(n+1)-1,1),
n, first(n+1)-1),

V(x,1,n,1),
VCON(0.0,n));

where the first three lines summarize the assumptions guiding our speculative concept recog-
nition. If they cannot be statically eliminated, these three preconditions would, at code gen-
eration, result in three runtime tests being scheduled before or concurrent to the speculative
parallel execution ofS as a CSR matrix vector product. The range of the values incol needs
not be bound-checked at runtime since we can safely assume that the original program runs
correctly in sequential.

Now we have a closer look at these conditions for speculative recognition.

Definition 3.1 (monotonicity) We call an integer vectoriv monotonicover an index range
[L : U] at a program pointq iff for any control flow path throughq, iv(i) �iv(i+1) holds
at entry toq for all i 2 [L : U � 1].

Definition 3.2 (injectivity) We call an integer vectoriv injectiveover an index rangeL:U at
a program pointq iff for any control flow path throughq, for all i; j 2L:U holdsi 6= j =)
iv(i) 6= iv(j) at entry toq.

Monotonicity and injectivity of a vector are usually not statically known, but are important
properties that we need to check at various occasions.

3.4. Speculative Concept Recognition 95

We must verify the speculative transformation and parallelization of a recognized compu-
tation on a set of program objects which are strongly suspected to implement a sparse matrix
A. This consists typically of a check for injectivity of an index vector, plus maybe some other
checks on the organizational variables. For instance, for nontransposed and transposed sparse
matrix–vector multiplication in CSR or CUR row-compressed format, we have to check that

(1) first(1) equals 1,
(2) vectorIV(first,1, n+1,1) is monotonic, and
(3) vectorsIV(col,first(i),first(i+1)-1,1) are injective for alli 2 f1; :::; ng.

These properties may be checked for separately.

3.4.3 Speculative Loop Distribution

Loop distribution is an important normalization applied in the concept recognizer. As an ex-
ample, consider the following code fragment taken from theSPARSE-BLAS[Gri84] routine
DGTHRZ:

DO 10 i = 1, nz
x(i) = y(indx(i))
y(indx(i)) = 0.0D0

10 CONTINUE

In order to definitely recognize (and also in order to parallelize) this fragment, we need to
know the values of the elements of arrayindx . Unfortunately, this information is generally
not statically available. But similar as for the speculative recognition of sparse matrix opera-
tions we speculatively assume thatindx is injective in the range1:nz . As now there remain
no loop-carried dependencies, we can apply loop distribution [ZC90] to thei loop:

<assume injectivity of INDX(1:NZ)>
DO i = 1, nz

x(i) = y(indx(i))
ENDDO
DO i = 1, nz

y(indx(i)) = 0.0D0
ENDDO

Applying concept matching to each loop separately makes the speculatively matched copy
of the program segment look as follows:

<assumes injectivity of indx(1:nz)>
VASSIGN(V(x,1,nz,1), VX(y, IV(indx,1,nz,1)))
VASSIGN(VX(y,indx(1,nz,1)), VCON(0.0,n))

Speculative loop distribution saves the original program structure for the code generation
phase. This allows to generate also the conservative code variant.

96 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

3.4.4 Preservation and Propagation of Format Properties

Even if at some program point we are statically in doubt about whether a set of program
objects really implements a sparse matrix in a certain storage format, we may derive static
information about some format properties of a speculatively recognized concept instance.

For any concept (or combination of a concept and specific parameter formats) the format
property preconditions for its parameter matrices are generally known. If an instanceI of a
conceptc generates a new (sparse) result matrixm, it may also be generally known whetherm
will have some format properties after execution ofI (i.e., apostcondition). Such a property�
ofmmay either hold in any case after execution of an instance ofc, that is,�(m) is installed by
c. Or,� may depend on some of the actual format properties�1; �2; ::: of the operand matrices
m1;m2; :::. In this case,�(m) will hold after execution ofI only if �1(m1), �2(m2) etc.
were valid before execution ofI. In other words, this describes a propagation of properties
�1(m1) ^ �2(m2) ^ ::: ! �(m): Also, it is generally known which properties of operand
matrices may be (possibly) deleted by executing an instance of a conceptc.

The assumptions, preservations, propagations and deletions of format properties associ-
ated with each concept instance are summarized by the program comprehension engine in the
form of pre- and postcondition annotations to the concept instances. Note that the preserva-
tions are the complementary set of the deletions; thus we renounce on listing them. If existing
program objects may be overwritten, their old properties are conservatively assumed to be
deleted. Note that theinstall andpropagate annotations are postconditions that refer
to the newly created values. The shorthandall stands for all properties considered.

For example, Figure 3.4 shows how annotations are (conceptually) inserted before the
concept instance where a certain piece of program has been speculatively recognized as an
occurrence of a CSC to CSR conversion concept.

If applied to an interactive program comprehension framework, these runtime tests corre-
spond to prompting the user for answering yes/no questions about the properties.

Once the static concept recognition phase is finished, these properties, summarized as pre-
and postconditions for each concept instance in the (partially) matched program, are optimized
by a dataflow framework as described in the following section. This method allows to elim-
inate redundant conditions and to schedule the resulting runtime tests (or user interactions)
appropriately.

3.4.5 Placing Runtime Tests

Program points are associated with each statement or concept instance, that is, with the nodes
in the control flow graph after concept matching. In an implementation all properties� of
interest for all arrays or array sectionsA of interest may be stored for any program pointq in
bitvectors

ASSUME�;A(q) = 1 iff �(A) is assumed to hold at entry toq,

DELETE�;A(q) = 1, iff �(A) may bedelete d by execution ofq, and

3.4. Speculative Concept Recognition 97

<assume FirstB(1)=1>
<assume monotonicity of IV(FirstB,1,M,1)>
<assume injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)

forall i in 1:M>
<delete all of FirstA>
<delete all of ColA>
<install FirstA(1)=1>
<propagate (monotonicity of IV(FirstB,1,M,1))

then (monotonicity of IV(FirstA,1,N,1))>
<propagate (monotonicity of IV(FirstB,1,M,1)

and (injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)
forall i in 1:M)

then(injectivity of IV(ColA,FirstA(i),FirstA(i+1),1)
forall i in 1:N)>

MCNVTM(CSR(V(A,1,NZ,1), IV(FirstA,1,N+1,1),
IV(ColA,1,N,1), N, NZ),

CSC(V(B,1,NZ,1), IV(FirstB,1,M+1,1),
IV(RowB,1,M,1), M, NZ))

FIGURE 3.4: A recognized matrix conversion computation, where the preconditions and post-
conditions on the format properties are explicitly displayed in the annotated intermediate rep-
resentation.

INSTALL�;A(q) = 1 iff �(A) is install ed by execution ofq.

Propagations are represented by sets

PROPAGATE�;A(q)

containing all properties�j of arraysAj that must hold at entry toq in order to infer�(A) at
exit of q.

Moreover, we denote by

TEST�;A(q)

whether a runtime test of property� of array sectionA has been scheduled immediately before
q. When starting the placement of runtime tests, allTEST�;A(q) are zero.

For the placement of runtime tests we compute an additional property
HOLD�;A(q) which tells whether�(A) holds at entry ofq. We compute it by a standard

data flow technique (see e.g. [ZC90]) iterating over the control flow graphG = (V;E) of the
program, using the following data flow equation:

HOLD�;A(q) = TEST�;A(q) (3.1)

_ ^
(q0;q)2E

(HOLD�;A(q
0) ^ :DELETE�;A(q0) _ INSTALL�;A(q

0))

_ ^
(q0;q)2E

^
(�0;A0)2PROPAGATE�;A(q0)

HOLD�0;A0(q0)

98 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

For the data flow computation ofHOLD, we initialize allHOLD entries by 1. Since the
DELETE, INSTALL, PROPAGATEand TEST entries are constants for each�, A, andq,
the sequence of the values ofHOLD�;A(q) during the iterative computation is monotonically
decreasing and bounded by zero, thus the data flow computation converges.

Clearly, after all necessary runtime tests have been placed,HOLD�;A(q) must fulfill

HOLD�;A(q) � ASSUME�;A(q) for all �;A; q

in order to ensure correctness of the speculative program comprehension. Thus we arrive, as a
very general method, at the following simple nondeterministic algorithm for placing runtime
tests:

Algorithm: placing runtime tests
(1) for all � andA of interestdo
(2) for all q do TEST�;A(q) = 0;
(3) forever do
(4) initialize HOLD�;A(q

0) = 1 for all program pointsq0

(5) recomputeHOLD�;A(q) for all program pointsq according to equation (3.1)
(6) if HOLD�;A(q) � ASSUME�;A(q) for all q then break;
(7) setTEST�;A(q0) = 1 for some suitably chosen program pointq0

od
od

The goal is to place the runtime tests in step (7) in such a way that the total runtime
overhead induced by them in the speculatively parallelized program is minimized. A very
simple strategy is to place a test for�(A) immediately aftereach statementq0 killing property
� of A, that is, whereKILL �;A(q

0) = 1, which is defined as follows:

KILL �;A(q
0) := DELETE�;A(q

0) ^ :INSTALL�;A(q
0)

^ : ^
(�0;A0)2PROPAGATE�;A(q0)

HOLD�0;A0(q0)

Of course, this initial setting will typically introduce superfluous tests. For instance, for a
sequence of consecutive killings of�(A) it is sufficient to schedule a test for�(A) only after
the last killing program point, provided that�(A) may not be assumed to hold at some point
within this sequence. Also, a test for�(A) after program pointq0 is superfluous if�(A) is not
assumed at any pointq00 that may be executed afterq0. These optimizations can be carried out
in a second phase by another data flow framework.7

Ideally, there are, once a sparse matrix has been constructed or read from a file, no changes
to its organizational variables any more during execution of the program, i.e., its sparsity pat-
tern remains static. In that case SPARAMAT can completely eliminate all but one test on

7Alternatively, one may as well start with a test of�(A) being inserted immediately before each program
point q with ASSUME�;A(q) ^ :HOLD�;A(q), and then eliminating all tests in a sequence of uses of�(A)
but the first one (provided that no kill of�(A) may occur in between), which is just symmetric to the strategy
described above.

3.4. Speculative Concept Recognition 99

monotonicity and injectivity, which is located immediately after constructing the organiza-
tional data structures. An example program exhibiting such a structure is shown in the neural
network simulation code given in Appendix B.1.

More formally spoken, if a property�(A) is needed at many places in the program but the
sparsity pattern associated withA remains static, only the first<assume ... of A ...>
produces really a test, while at all other places the result of this can be reused.

Note that, due to speculative execution, a test can be executedconcurrentlywith the sub-
sequent concept implementation even if that is guarded by this test. In particular, possible
communication delays of the test can be filled with computations from the subsequent con-
cept implementation, and vice versa. The results of the speculative execution of the concept
implementation are committed only if the test process accepts.

If applied to an interactive program comprehension framework, these runtime tests cor-
respond to prompting the user for answering yes/no questions about the properties. Static
optimization thus corresponds to reusing such user information.

Optimization of runtime tests in practice The data flow framework above with the nonde-
terministic placement algorithm can rather be used to verify a given placement of tests, but is
hardly helpful to derive a good placement efficiently. In practice, one would instead use stan-
dardcode motiontechniques [KRS98]. The simplest and most-investigated variant of code
motion is syntactic code motion, which is based on the structural equivalence of subexpres-
sions.

Starting with a conservative placement of tests such as the one proposed in the previous
paragraph, our optimization problem could be solved by applyingpartial redundancy elimina-
tion. A partial redundancyis a computatione (such as a subexpression or subcondition in an
assumed condition) for which a path in the program flow graph exists such thate is computed
more than once on that path. Partial redundancy elimination, introduced by Morel and Ren-
voise [MR79], performs a global common subexpression elimination and places instructions
such that their execution frequency is minimized, which includes hoisting loop-invariant code
out of loops and some other optimizations. Motion-based approaches to partial redundancy
elimination have been proposed, for instance, by Dhamdhere [Dha88, Dha91] and by Knoop,
Rüthing, and Steffen [KRS92, KRS94]. A good introduction to this topic can be found in the
textbook by Muchnick [Muc97, Chap. 13.3].

Code motion for a given terme (the motion candidate) works by inserting statements of the
form t e at some points in the program, wheret is a new temporary variable, and replacing
occurrences ofe by references tot where this preserves the program semantics, that is,e is
never introduced in a control flow path on that it was absent before. This motion ofe is only
done if it actually decreases the execution time of the program, that is, it reduces the number
of computations along at least one control flow path. The preservation of program semantics,
that is, the safety of a placement oft e at a program point, is determined by a dataflow
framework similar to the one given in the previous paragraph.Busy code motionachieves this
goal by placinge as early as possible in the program. However, this strategy tends to produce
long live ranges of the new temporary variables, which constrain the register allocator (see
Chapter 2). This problem is mitigated by the so-calledlazy code motion[KRS92], which
places computations as early as necessary, but as late as possible to keep the live ranges short.

100 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

As code motion techniques are now considered as state-of-the-art compiler technology, a
further description and implementation of the optimization of the placement of runtime tests
is not necessary here.

Note, however, that neither syntactic nor the more powerful semantic code motion tech-
niques are able to derive anoptimal code placement, as they are limited to a local scope of
moving to the next control flow predecessor. A discussion of the limitations and differences
of code motion and code placement is given by Knoop, Rüthing, and Steffen [KRS98].

Beyond optimizing the placement of the runtime tests, we should also optimize the tests
themselves. The runtime tests on monotonicity and injectivity can be parallelized, as we shall
see in the following paragraphs.

3.4.6 A Parallel Algorithm for the Monotonicity Tests

Monotonicity of a vectorx(1 : n) is very easy to check in parallel. Each of thep processors
considers a contiguous slice ofx of size at mostdn=pe. The slices are tested locally; if
a processor detects nonmonotonicity in its local part, it signals aFAIL and aborts the test
on all processors. Otherwise, the values at the boundary to the next upper slice ofx are
checked concurrently. The test passes if no processor detects nonmonotonicity for any pair of
neighboring elements.

On a distributed memory architecture, the latter, global phase of this algorithm requires
each processor (but the first one) to send the first element of its slice ofx to the processor
owning the next lower slice; thus each processor (but the last one) receives an element and
compares it with the element at the upper boundary of its slice.

3.4.7 A Parallel Algorithm for the Injectivity Tests

A parallel algorithm may reduce the overhead of the injectivity test. For a shared memory
parallel target machine we apply an algorithm similar to bucket sort8 to test injectivity for
an integer arraya of n elements, as it is likely that the elements ofa are within a limited
range (say,1 : m).9 We hold a shared temporary arraycounter of m counters, one for
each possible value, which are (in parallel) initialized by zero. Each processork, k = 1; :::; p
increments10 the corresponding counters for the elementsa((k � 1)n=p + 1 : kn=p). If a
processor detects a counter value to exceed 1, it posts aFAIL signal, the test returnsFALSE.
Otherwise, the test accepts. The test requiresm additional shared memory cells. Concurrent
write access to the same counter (which may sequentialize access to this location on most
shared memory systems) occurs only if the test fails. Thus, the runtime isO((m+ n)=p).

On a distributed memory system, we use an existing algorithm for parallel sorting of an
integer array of sizen on a processor network that may be appropriately embedded into the
present hardware topology. As result, processori holds theith slice of the sorted array, of size

8A similar test was suggested by Rauchwerger and Padua [RP94].
9m is to be chosen as a conservative overestimation of the extent of the compressed matrix dimension which

is usually not statically known.
10This should be done by an atomic fetch&increment operation such asmpadd(&(counter[a[j]]),1)

on theSB-PRAM, cf. Chapter 4.

3.5. SPARAMAT Implementation 101

Concept

Driver
Recognition OptimizerFlow

Control

Graph

Polaris

Generator

CSL parser

code
source
Fortran

front end

Concept Specification

TemplatesTrigger
graph

Control Flow
Graph annotated

by concept
instances

Modified
Control
Flow

Graph
Back−end

Recognizer

Concept

FIGURE 3.5: SPARAMAT implementation.

n=p. Furthermore, each processori > 0 sends the first element of its slice to its predecessor
i� 1 who appends it as(n=p + 1)st element to its local slice. Each processor now checks its
extended slice for duplicate entries. If the extended slices are injective, then so is the original
array. The runtime is dominated by the parallel sorting algorithm.

3.5 SPARAMAT Implementation

The SPARAMAT implementation uses the Polaris Fortran compiler [Blu94, FWH+94] as
front-end and technical platform. Its intermediate program representation (IR) is a hierar-
chically structured control flow graph, where loop headers and if headers are still explicitly
given; hence, control dependence information, which is required for the matching process,
can be easily inferred from the IR, at least as long as arbitrary jumps do not occur in the input
program.

SPARAMAT is conceptually broken up into two major systems, the concept recognizer
and the code generator (see Figure 3.5 and Figure 3.6). When configuring the SPARAMAT
system, the generator accepts specification files describing concepts and templates, and creates
C++ files containing the trigger graph and the template matching functions. These are then
linked with the SPARAMAT concept matching core routines to form the driver.

The analysis of the program begins when the control flow graph of the specified program
is passed from the Polaris front-end to the driver. The driver, upon completion of analysis,
passes to the optimizer the control flow graph annotated with concept instances. The runtime
tests are optimized in a separate pass. This optimizer passes the modified control flow graph
to the back-end.

If the intended application purpose is automatic parallelization, the back-end uses the
attached concept instances and remaining conditions to insert runtime checks and replace
matched code with calls to parallel implementations of the concepts (see Figure 3.6).

102 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

concept
implementations

Library of Implementation
of parallel

run−time tests

executable
target code

Code Generator

Linkingmatched IRConcept

Recognizer with run−
time tests

Code Generation
Extensions

back−end
Polaris

FIGURE 3.6: SPARAMAT code generator implementation for an automatic parallelization
system.

If applied in an interactive framework, SPARAMAT could instead compute and present
a certainty factor for specific matrix formats and then ask the user, displaying the code, if
the detected format is correct. This requires a user interface to display the code highlighting
matched concepts, such as in the PAP Recognizer [J6].

Due to the generative approach, the implementation can be easily extended for further
formats, concepts, and templates by any user of the SPARAMAT system.

3.5.1 Static Concept Matching

The driver algorithm of the pattern matcher traverses the treelike IR recursively, applies at
each IR node the templates that may match according to the inspection of the trigger graph,
and, if one of these matches, annotates the node with an instance of the recognized concept.
Normalizing transformations, such as loop distribution or rerolling of unrolled loops, are done
whenever applicable.

Vertical matching

Vertical matching uses only control dependence information and equality checks on variable
occurrences. Data flow information is not required for vertical matching. The possible candi-
date matching rules, derived from the trigger graph, are tested one after another; only one of
them can match the IR node under consideration. Hence, the recognition process is determin-
istic. Note that it is a concept or template design error if two different templates match the
same subtree.11

11In some cases, there are flat, “syntactic sugar” concepts for special combinations of generic concepts, for
instanceSDOTVV (dot product), which may be expressed usingSREDV and VMAPVV. For these special
cases it is important that their templates are matched prior to the templates for the general case. In the current
implementation, this ordering of templates is still left to the SPARAMAT user.

3.5. SPARAMAT Implementation 103

Horizontal matching

When horizontal matching succeeds, two IR nodes are virtually merged to a single node.
Technically, the IR structure remains unchanged in order to allow later for a potential undo of
this recognition step. Instead, the relevant summary information for the new concept covering
both nodes is annotated with one of the two nodes while the other node is hidden from further
pattern matching steps by annotating it with theEMPTYconcept, so the code generator will
ignore it, and vertical matching can later continue at the shared parent node. The old, now
overwritten concept instances are internally saved.

Trigger concepts and trigger graph

Narrowing the scope of searching for the set of candidate templates is essential for horizontal
as well as for vertical matching, because a naive application of all existing template functions
to a particular node is impractical and unnecessary.

For vertical matching, SPARAMAT uses the concept matched for the child node12 as trig-
ger concept. For horizontal matching, the trigger concept is likewise defined as (usually) the
concept annotating the target node of a cross edge.

SPARAMAT represents the trigger graph internally as a table indexed by the trigger con-
cept that yields a list of all promising template functions. The trigger graph is generated
automatically when the generator processes the concept specifications. Figure 3.7 shows the
trigger subgraph for the conceptSDOTVV(ordinary dot product of two vectors). Note that the
“leaf” conceptsIVAR andRVAR(integer and real variable accesses) never have child nodes
in the syntax tree, therefore an artifical conceptNONEis inserted as an artificial source node
of the trigger graph in order to serve as an implicit trigger concept for leaf concepts. Each
edge is labeled with the name of the corresponding template function. A dotted edge denotes
a template for horizontal matching.

Note that the trigger graph does not represent all the concepts that are required for a con-
cept to match. Rather, it shows the concepts that have a more or less characteristic relationship
with the concept of an already matched child or sibling node.

3.5.2 Delayed Format Resolution

In some situations the matrix format might not be clear until a discriminating piece of code is
encountered. Until then, it may be necessary to store a set of possible formats in the concept
instance and postpone the final identification of the format to a later point in the matching
process. In order to support this, we use a special, variant concept that summarizes the same
matrix object in a set of different possible formats within the same slot of the concept instance.

3.5.3 Descriptors

A key operation in finding cross edges for horizontal matching is computing the intersection
of two (bulk) memory accesses. There are two types of intersection that are of interest here.

12If the child node is annotated with a concept instance that has further concept instances as parameters, only
the topmost concept in this hierarchy is used as trigger concept.

104 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

RVAR fRVAR_Array

SINIT

fSINIT

INCR

fINCR

IVAR fIVAR_Array

fSINIT fINCR

VINIT

fVINIT

SDOTVV

fSDOTVV

fSDOTVV_CE

VMATVECMV

fVMATVECMV

NONE

fRVAR fIVAR

fVMATVECMV_CE

FIGURE 3.7: Trigger graph as far as used for matching the matrix–vector multiplication con-
cept.

For instance, a write accessw to an arraya in statementS1 that updates all elements read in
a subsequent read accessr to a in statementS2 may result13 in a FLOW cross edge(S1; S2).
Hence, a safe underestimation (must-intersect) is required for determining the source of a
cross edge in horizontal matching (see Section 3.6.5).

In contrast, a write accessw0 in a statementS 0 located betweenS1 andS2 may kill the
cross edge if it updates some of the elements read byr, that is, the set of elements accessed in
w0 has a nonempty intersection with these accessed inr. Hence, for the nodes spanned by data
flow cross edges in horizontal matching (i.e., fill nodes, see Section 3.6.5), a safe overestimate
of the intersection (may-intersect) is necessary when checking that the cross edge is not killed
by w0. If an intersection cannot be statically excluded, it must be conservatively assumed to
exist, hence the horizontal matching will fail, unless speculation is explicitly desired.

Assuming that all aliasing relations are explicitly given, this is, as far as scalar variables
are concerned, just common data flow analysis.14 The problem becomes hard for (bulk) array
accesses, such as vector and matrix accesses, where aliasing information may be partially
unknown at compile time.

Often it is sufficient to know that two bulk accesses to the same array are disjoint, that is,
they are addressed at runtime by disjoint index subsets. This is quite straightforward to test
for nonindirect, rectangularly shaped bulk array accesses [CK87, HK91]. Two array accesses
may intersect if they have matching identifiers and the index expression ranges intersect in all
dimensions. Note that index expressions can be constants variables, arithmetic expressions
involving variables or even array accesses.

An access descriptoris a data structure that describes the extent of an access to an (array)

13Assuming thatS1 andS2 belong to the same control dependence block in the program.
14Note that, after procedure inlining, all aliases (except for array references) are explicit, as there are no

pointers in Fortran77.

3.6. The Concept Specification Language CSL 105

variable, that is, the set of memory locations addressed. The variable could be a scalar or a
one- or higher-dimensional array—for the purpose of determining intersection, all variables
are normalized to a unique and general descriptor format, which reduces the number of cases
to be distinguished. A descriptor consists of two components: (1) the identifier of the variable,
and (2) a list of range objects that describe the access limits and stride for each dimension.
If the variable is a scalar, then only the name field of the descriptor is set. Arange object
consists of four components: (a) the lower bound, (b) the upper bound, and (c) the stride of
the access, and (d) a pointer to another descriptor object. If the accessed range is a constant
or a nonvarying variable, sayc , then the lower bound and upper bound of the range object is
set toc and the stride to 0. Otherwise the lower and upper limit and the stride are set to the
corresponding (maybe symbolic) expressions. For a vector or matrix access resulting from an
array reference in a loop, these limits can usually be derived by substituting15 the loop bounds
in the corresponding index expression. If the access is an indirect array access, the descriptor
pointer is set to the computed descriptor for that array, and the ranges are set to conservative
estimates.

Access descriptors have been introduced in the context of parallelizing compilers, usually
to summarize the behaviour of subroutines in interprocedural program analysis. Common
operations on descriptors are intersection, union, and difference. The structures that have
been proposed to realize descriptors include regular sections16, octogonal extensions of reg-
ular sections by adding diagonal boundaries [Bal90], and arbitrary convex polytopes defined
by linear inequalities [AI91]. A more general representation of array accesses are last-write
trees [Fea91, MAL93], but these are more difficult to use and involve expensive operations. In
[D2] we proposed an extension of regular sections to trapezoidal sections with a compact rep-
resentation and the possibility to exclude certain values from an index interval. Note that, by
now, no descriptor has been proposed that allows the representation of indirect array accesses.
See also [D2] for more pointers to related work on array access descriptors.

For SPARAMAT, we use thus an extension of a standard array access descriptor, namely
regular sections for simplicity, by a symbolic representation of indirect array accesses. For
testing must-intersection of two indirect array accesses, the test algorithm just recurses to
the corresponding descriptors for the indexing array accesses. If these index vectors have a
nonempty must-intersection, so do the indexed vectors as well.

3.6 The Concept Specification Language CSL

Creating concept recognition rules directly as C++ routines by hand is a tedious, time con-
suming and error prone practice best left to automation. A generative approach solves this
problem, allowing the rapid and concise specification of concepts and templates in a high-
level language. For SPARAMAT, we have hence defined a concept specification language,
called CSL.

15This method works for index expressions that are monotonic in the loop variable, such as expressions linear
in the loop variable.

16A regular sectionis a rectangular section that is defined as cross product of intervals on the axes of the index
space, [CK87].

106 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

The specification of a concept in CSL is fairly straightforward. Each component of a
specification, as outlined below, translates directly to a construct of the language. Like most
other languages, CSL is whitespace insensitive and block structured.

As a running example we use matrix–vector multiplication for a MSR matrix (cf. Sec-
tion 3.2). The corresponding specification is given in Figure 3.8.

3.6.1 Header Specification

A concept specification consists of a specification of the concept signature and a set of tem-
plate specifications. It starts with the keywordconcept followed by the concept name and
a block that contains a list with the names (optional) and types of the slots, followed by the
template specifications.

For dependency analysis purposes, slots are assignedusage modes: read (in), write
(out), read and write (inout) and ignore (none).

After a semicolon, the slot type is specified. Theslot typeis used to identify a specific
concept or a group of concepts that return values of the same type and/or shape. Only concepts
in the proper concept group can appear in the correspondingly typed slot. If a concept has at
least oneout slot, then the slot type of the first of these is considered theresult typeof the
concept.17

Here is a (nonexhaustive) list of some built-in slot types (the user may add more if neces-
sary by defining groups of concepts):

� range : A RANGEconcept instance holding a loop variable and bounds.
� rvar : A VARinstance.
� ivar : An IVAR instance.
� real : A CONor VARinstance.
� int : An ICON or IVAR instance.
� vector : A vector-valued concept instance.
� ivector : An integer-vector-valued concept instance.
� xvector : A VXor IVX concept instance of an indexed vector access.
� ixvector : An IVX concept instance.
� matrix : A concept instance for a matrix access.
� operator : The concept name of a matched operator (e.g.MUL).
� symtabentry : A name, i.e. an IR symbol table entry.

Hence, when concept instances occur in pattern matching or when creating new concept
instances, these occurrences can be statically type-checked. The CSL parser issues an error
message if it detects a type clash in a CSL concept specification.

17We never encountered the case where an instance of a concept with more than one result slot, such asSWAP
or MMLUD, appeared as a parameter of another instance. Instead, these tend to occur always as root instances for
statements.

3.6. The Concept Specification Language CSL 107

3.6.2 Concept Instance Lists

Concept instance lists are a CSL data structure to represent FORTRAN code constructs that
contain a variable number of concepts—specifically, array indices. First attempts of writing
CSL code to match scalar variable arrays without concept lists turned out to be problematic.
For instance, theVAR(or IVAR) concepts may have a variable number of arguments, one for
every possible array dimension. If the number of arguments per concept were fixed, differ-
ent concept names, depending on the number of arguments (FORTRAN restricts the number
of array indices to five), would be required. This leads to a combinatorial explosion of con-
cepts. For this reason, the number of argument slots is now fixed for every concept, while
every slot may represent a list of parameters. Concept instance lists are denoted in CSL by
a sequence of comma-separated concept instances, enclosed in braces. In order to enhance
readability by omitting braces, the CSL parser converts occurrences of concept instances (in
CSL expressions) that have a variable number of arguments, such asVAR, automatically to
the corresponding structure using a concept instance list in the proper place, wherever this is
nonambiguous. Consequently, we can abbreviate in CSL most occurrences of one-element
lists by just writing the element itself.

The concept instance list data structure also supports the annotation of a single IR node
with more than one concept instance, which is helpful at some transformations such asIF
distribution.

3.6.3 Selector Expressions

When referring to a certain part of a structural pattern specification in CSL, it is possible
to address subpatterns that are already bound to a variable. In addition the ability to select
specific elements of a concept list proved useful.

The selector syntax in CSL is very simple. In order to select a concept instance argument,
a dot (’. ’) followed by the argument index is appended to the variable, where the arguments
of a concept instance are numbered starting at zero.

For instance, for the following structural pattern specification

pattern
sibling ($init) ASSIGN(VAR($s, $varlist), $const)
fill ($fill)
node ($node) SDOTVV(VAR($b, $blist),

V($a, $alist),
VX($x, $xlist),
VAR($s, $slist))

the CSL expression$node.3 selects the fourth argument, which isVAR($s, $slist) .

For selecting an element from a concept list, the concept index (again counting from zero)
is appended in brackets (e.g.,$alist[0]) to the CSL variable name.

108 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

concept VMATVECMV
{

// b = A*v + init
param (out) $p_b: vector;
param (none) $p_rr: range;
param (in) $p_A: matrix;
param (in) $p_v: vector;
param (in) $p_init: vector;

templateVertical // CSR format
{

pattern
node DO_STMT $lv=$lb:$ub:$st

child SDOTVVX(VAR($s),
RANGE($rlv, $rlb, $rub, $rst)
V($a, $lb, $ub, $st),
VX($v, IV($arr1, $lb1, $ub1, $st1)),
VAR($s))

where
{

IsEqual($rlb->array(), $rub->array())
&& IsLowerFIRArray($rlb, $lv)
&& IsUpperFIRArray($rub, $lv)
&& IsArrayIndexedOnlyBy($s->GetExpr(), $lv)
&& IsArrayIndexedOnlyBy($a->GetExpr(), $rlv)
&& IsArrayRef(ArrayIndex(0, $v->Expr()))
&& ArrayIndex(0, $v->GetExpr())->array() == $rlb->array()
&& IsArrayIndexedOnlyBy(ArrayIndex(0, $v->GetExpr()), $rlv)

}
pre
{

ForAll($lv, $lb, $ub,
Injectivity($rlb->array(), $rlb, $r->GetEnd()));

Monotonicity($rlb->array(), $lb, $ub);
}
instance VMATVECMV(

newVector($s,$lv,$lb,$ub,$st),
newRANGE($lv,$lb,$ub,$st),
newCSR(newVector($a,$rlb->array()($lb),

$rlb->array()($ub+1)-1,1),
newIV($rlb->array(),$lb,$ub+1,1),
newIV($arr1,$lb,$ub+1,1),
$ub-$lb+1,
$rlb->array()($ub+1)-$rlb->array()($lb)),

newVector($v,$lv,1,$ub,1),
newVector($s,$lv,$lb,$ub,$st))

post
{

ForAll($lv, $lb, $ub,
Injectivity($rlb->array(), $rlb, $rub));

Monotonicity($rlb->array(), $lb, $ub);
}

}
}

FIGURE 3.8: Excerpt of the CSL specification of theVMATVECMVconcept for matrix–vector
product.

3.6. The Concept Specification Language CSL 109

3.6.4 Specification of Templates for Vertical Matching

For each nonbasic concept there should be at least one template that matches it. The templates
are classified into templates for vertical matching and templates for horizontal matching.

The conditions for a vertical template to match an IR node can be classified into five main
components:

� Structural matching conditions: A structural pattern describes conditions on control
dependence, concept instances annotated at child nodes, and equality of certain vari-
ables, which must be met for the concept to match the current node. Whether such a
structural pattern matches can be decided at compile time by inspecting the IR.

� Additional conditions: Conditions on some expressions on unmatched nodes and on
slots of concept instances that can not easily be integrated in the structural matching
conditions. An example is the frequent situation where several closely related cases
that involve slight structural variation should be handled together in a single template.

These conditions need auxiliary C++ functions that check certain properties of program
objects and concept instances. These functions are provided by the SPARAMAT sys-
tem; the user may add further functions if necessary.

� Runtime preconditions: Runtime conditions that must be met when executing spec-
ulatively matched and replaced code. This component is not required for nonstable
concepts that do not imply an option of code replacement, and not for templates that
involve no speculative matching decision.

� Concept instance creation: The code necessary to build the concept instance and fill
its slots.

� Runtime postconditions: Runtime conditions that will be valid after code execution,
assuming that the preconditions held.

Accordingly, a template specification for vertical matching is structured into fiveclauses.
A vertical template block is identified by theverticalTemplate keyword. The spec-

ification of the static matching criteria is subdivided into two clauses. The first clause, starting
with thepattern keyword, describes the main structural constraints on the child’s concept
instance and on the current IR node.

For instance, the pattern described in the example template in Figure 3.8 is aDOloop with
one child node annotated by aSDOTVVXinstance. The CSL variable$lv binds the loop
variable and the variables$lb , $ub and$st bind the lower bound, upper bound and the
stride expression, respectively. These bindings are used to test properties of code or specific
slots in the subsequentwhere clause.

Later occurrences of already bound variables in thepattern clause result in implicit
tests for structural equality that are automatically inserted by the generator. In our running
example, such an implicit test is generated to verify that the argument found in the initializer
slot of the dot product is equal to the result variable of the dot product. This variable$s ,

110 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

expanded to a vector access spanned by theDOloop, is later used as argument for the offset
slot$init of theVMATVECMVinstance to preserve the semantics of the program.

The concept instance of the child node can contain nested pattern instances. This powerful
feature makes it easy to specify which further concept instances are expected to occur in the
slots of the child’s concept instances, and to assign names to the slots of those inner concept
instances.

The next clause, starting with thewhere keyword, tests static properties that are not
expressed in thepattern clause. The C++ code in thewhere clause is a boolean expression
that consists of calls to auxiliary C++ library functions. Thewhere clause is only evaluated
if the pattern criteria match.

In virtually all code that manipulates sparse matrices in a format that stores the indices
of the rows in a separate array (see the CSR, MSR, CSC and JAD format descriptions), a
frequently occurring common pattern is the pair of expressionsfir(i) andfir(i+1)-1 ,
wherefir is the array containing the starting indices of each row, andi is a loop variable
ranging over the rows. The auxiliary C++ functionsIsLowerFIRArray andIsUpper-
FIRArray test if the given loop limit expressions match these patterns. The auxiliary func-
tionarray extracts the array name from an array reference. The auxiliary functionIsEqual
checks for structural equality of its arguments. The auxiliary functionIsArrayIndexe-
dOnlyBy returns true if the first argument is an array where only one index expression con-
tains the variable given in the second argument. The auxiliary functionIsArrayRef returns
true if a given expression is an array reference. Finally, the auxiliary functionArrayIndex
returns an index expression, selected by the first argument, of the array named in the second
argument. This collection of additional conditions completes the static test for an occurrence
of theVMATVECMVconcept.

The following clause, starting by the keywordpre , specifies the runtime conditions that
must be met to guarantee that the code does indeed implement a matrix–vector multiplication
in the CSR format.

The next clause, starting with the keywordinstance , defines how an instance of the
concept is created after the static part of the template matches, and fills the slots. The prede-
fined C++ functionsnewRANGE, newV, newIV , newCSR, and so on, create the correspond-
ing concept instances as parameters to the newVMATVECMVinstance. A special case are the
functionsnewVector andnewIVector that compute the section of accessed vector ele-
ments automatically by substituting the loop bounds for the occurrences of the loop variable
in the index expressions of the array reference passed as the first argument.

The last clause, starting with thepost keyword, defines the runtime conditions that will
hold after the code implementing the concept has been executed. In our example thepost
conditions are just the same as thepre conditions.

3.6.5 Specification of Templates for Horizontal Matching

Templates for horizontal matching consist likewise of the following parts:

� Structural matching conditions
� Additional constraints
� Runtime preconditions

3.6. The Concept Specification Language CSL 111

S1: b(j) = 0.0
S2: c = a(1)
S3: do 10 i = 1, 10
S4: b(j) = b(j) + a(i) * x(col(i))
S5: 10 continue

FIGURE 3.9: Example FORTRAN code implementing a dot product, with an interspersed
statement (S2).

� Instance creation
� Runtime postconditions

However, as multiple nodes in the same IR hierarchy block are involved in horizontal
matching, CSL allows to specify individual clauses for each of these parts for each involved
node, as can be seen in the example specification in Figure 3.10.

A specification of a horizontal template consists thus of severalclauses. Thepattern
clause defining structural matching conditions consists of severalpattern units. These are
indicated by the keywordssibling , fill andnode . Optionalwhere clauses, specified
separately for each node, are used to express further conditions on the IR nodes that match the
sibling, the fill or the node pattern unit. Thedefine clause allows the CSL programmer to
create auxiliary variables and assign them. In theconditions clauses the CSL program-
mer specifies constraints on the data dependences that must be met (see detailed description
below). Finally, theinstance clauses detail how the intermediate representation nodes
matching the sibling unit and the node unit are modified if the template matches.

Thenode keyword specifies the start of the cross edge and thesibling keyword indi-
cates the target of the cross edge. The programmer must label the pattern units with identifiers
to relate the constraints, expressed in the subsequent clauses, to the respective pattern units.
The direction of the cross edge is determined by the position of thenode keyword in relation
to thesibling keyword. In Figure 3.10 the cross edge starts at a node annotated with the
SDOTVVXconcept instance and terminates at a node with anASSIGNconcept instance. The
fill pattern unit refers to code spanned by the cross edge.

It is important that the CSL programmer is aware of the order of binding of pattern unit
identifiers, the variables created therein, and the variables assigned in the define clauses for
the respective pattern unit. The concept expected to match the node corresponding to the
node unit serves as the trigger concept to invoke the template. Thus, the bindings for the
node pattern unit are done first. The template searches then for the cross edge target, which
is the first intermediate representation node that matches the conditions of thesibling unit,
provided that all nodes between source and target fulfill the data constraints for thefill unit.
In Figure 3.9, statementS2 is first tested to see if it matches anASSIGN. Then, it is tested
whether it writes to a variable that matches the fourth argument from theSDOTVVXconcept
instance (this is expressed via the data dependency constraints described below). Since it
does not match,S2 is considered as “fill” and hence tested if it interferes with the given
assumptions of a cross edge. In the present example, there is no interference. ThenS1 is
considered as “sibling”. Indeed, it matches all the constraints on the cross edge target.

112 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

templateHorizontal
{

pattern {
sibling ($init) ASSIGN(VAR($var, $varlist), $const)
fill ($fill)
node ($node) SDOTVVX(RANGE($lvar, $lb, $ub, $st),

VAR($bout, $bout_list),
V($a, $alist),
VX($x, $xlist),
VAR($bin, $bin_list))

}
where ($init) {

IsCONST($const) || IsICONST($const)
}
define ($node) {

@(list)$bin_notwrite = ExtractVarsFromList($bin_list);
@(list)$alist_notwrite = ExtractVarsFromList($alist);
@(list)$xlist_notwrite = ExtractVarsFromList($xlist);

}
conditions ($init) {

read = {}
write = { $node.4 } // implies isEqual($var,$bin)

} // and isEqual($varlist,$bin_list)
conditions ($fill) {

notread = { $node.4 }
notwrite = { $node.2, $node.3, $bin_notwrite,

$alist_notwrite, $xlist_notwrite }
}
instance ($init) EMPTY()
instance ($node) SDOTVVX($node.0, $node.1, $node.2, $node.3, $init.1)

}

FIGURE 3.10: CSL template specification for matching aSDOTVVXwith initialization.

Data constraints for the cross edge target, and the nodes spanned by the cross edge, are
differentiated by referring to the pattern unit identifiers ($sib and$fill respectively). Note
that the identifier for the source node of the cross edge is only used for accessing arguments
of the concept instance at that node.

Thedefine clause is a feature that was added to simplify references to subconcepts on
the source or the target of the cross edge. Variables in the define block are created and bound to
the results of user-defined functions or other variables. This greatly enhances both efficiency
and readability of concept specifications—functions need not be called more than once and
the storing variables can be clearly named. The variables could be defined in thewhere
clause as well, like in many vertical templates, but creation of auxiliary variables required a
special clause. For a vertical template, there is only one time where thewhere clause can
be evaluated, namely after the conditions are met for matching the parent and its children.
In contrast, for horizontal matching, there are three possible times where awhere clause
could be evaluated for a horizontal template: after the source of the cross edge matched,

3.6. The Concept Specification Language CSL 113

after the target matched and after the fill conditions matched. In order not to constrain the
programmer, a horizontal template can contain up to threewhere clauses and requires each
where keyword to be followed by one of the pattern unit identifiers ($sib , $fill , or
$node in this example) to clarify when the contents of the clause should be evaluated.

The constraints on data dependencies between the source, target and spanned nodes of the
cross edge are expressed in theconditions clauses. In the same way as for thewhere
anddefine clauses, these clauses are labeled with a pattern unit identifier to specify the part
of the cross edge the clause applies to.

The description of the expected data dependences for the sibling is divided into two sets:
read andwrite . The read set contains the variables that must be read in the sibling’s
concept instance. For most cases theread set will be empty. Thewrite set contains
the variables that must be written to by the sibling. In our example, the variable in the last
argument of theSDOTVVXinstance must be written to.

Negative data dependency constraints on the fill nodes are expressed by two sets in the
appropriately labeledconditions clause, thenotread set and thenotwrite set.

The notread set identifies what variables must not be read by any statement in the
fill. Consider the different situation where, in Figure 3.9, statementS2 is changed tor =
b(j) and assume for a moment that nonotread set were specified. Then the cross edge
specification in Figure 3.10 matches, and the information from the cross edge target is merged
into a new concept instance annotating the cross edge source—although this transformation
is wrong: the variabler receives an undefined value, sinceb(j) is no longer initialized to
zero. For that reason,b(j) has to be placed in thenotread set.

Similar to thenotread set, thenotwrite set contains variables that must not be written
to in the fill. Consider Figure 3.9 where statementS2 is changed toj = 3 . TheSDOTVVX
initialization cross edge is no longer valid because the change toj makes the value ofb(j)
on statementS1 possibly different from that inS3.

In order to obtain the variables to be placed intonotread andnotwrite sets, we have
auxiliary functions such asExtractVarsFromList . This user-defined function extracts
all the variables from the supplied list of expressions, and returns them in a list. For instance
the variable$bin notwrite is set in adefine clause to the integer variable concept
instanceIVAR(j, fg) .

The instance clauses at the end of the horizontal template specify the results. The
node that should be annotated by a newly created concept instance is referenced with the
corresponding pattern unit identifier. In Figure 3.10, theinstance clause for the cross edge
target replaces the old concept instance with anEMPTYconcept instance, indicating that this
node contains no pertinent information and should be ignored by later matching steps. The
information from the sibling is incorporated into the new concept instance created for the
source of the cross edge.

3.6.6 Further Features of CSL

Handling intrinsic functions

Intrinsic functions exist in the FORTRAN runtime library and hence cannot be inlined. We
added these to CSL as special operator concepts. Simple CSL templates were written to match

114 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

their occurrences in the FORTRAN code.

Pre-Matching of GOTO jumps

FORTRAN has no statement for structured jumps out of a loop such as thebreak andcon-
tinue statements in C. Instead, using aGOTOjump to a label located just after the loop is a
common idiom for simulating abreak in FORTRAN code

As SPARAMAT is based on a tree traversal of the intermediate program representation
and thus only works on well-structured programs, it cannot handle arbitraryGOTOjumps
immediately. Instead, we perform a prepass on the IR, locate occurrences ofGOTOstatements
that simulate abreak , and annotate them withBREAKconcepts, which can thus be used by
the CSL programmer in the matching rules. Jumps simulatingcontinue can be handled
accordingly.

IF distribution

Conditional statements in the input program usually present a difficult issue for the CSL pro-
grammer. The statements in the body of a condition can appear in many different orderings
(data dependences allowing) and different FORTRAN programmers may group the statements
in the body of the conditional statement differently.

Instead of trying to merge these separate statements together, SPARAMAT converts all
statements in the body of the condition into aguarded form. The condition is copied for each
statement, creating one-sidedIF statements with only one statement in its body,

Horizontal matching without cross edges

IF distribution does, though, not eliminate the problem that the ordering of the condition
statements affects matching.

Note that this is an instance of a more general problem that occurs in horizontal matching
where the statements are completely unrelated by data dependencies, such that no cross edges
can be used to guide horizontal matching. This problem can be solved in several ways; either
within the generator, by automatically generating all possible variations of the template to
take all possible permutations into account, or by making the matcher itself tolerate various
orderings automatically. A third, and perhaps simplest, variant consists in defining more
versatile concepts and cyclic templates, as the author did in PARAMAT [D2,J2] for matching
difference stencil operators.

Debugging support

Debugging of a template is inevitable. All hand-made changes to the generated code will
be lost upon the next invocation of the generator, therefore there is a directive in the CSL
language that instructs the generator to insert debugging information in the generated code.
This debugging directive of CSL can be applied globally to all templates or constrained to
particular concepts, or templates.

3.6. The Concept Specification Language CSL 115

Multiple CSL files

As the number of concepts increased, it became cumbersome to keep all concept specifica-
tions in a single CSL file. In addition, compilation time increased because many unmodified
concepts were recompiled.

In order to alleviate these problems, we introduced separate compilation of multiple CSL
files. This improved the extensibility, enhanced the overall organization of the implemented
concepts, and sped up the compilation time, as only the modified files are recompiled, at the
expense of increasing compilation complexity. This complexity comes from the interdepen-
dencies among the CSL files that are caused by using instances of externally defined concepts
in templates.

A pre-pass over all CSL files maintains a database tracking automatically the signatures
of all concepts. This database allows to reconstruct the global dependency structure, which
can be used to determine whether other concepts need to be also recompiled because of de-
pendencies.

First results

Currently there is an initial set of 60 concepts implemented in the SPARAMAT system, cov-
ering most of the simpler concepts and some of the advanced concepts, such as CSR matrix–
matrix multiplication.

Some statistical evaluation of the currently existing CSL files, regarding the relation of the
size of the generated C++ code to the length of the original CSL code, the speed of matching,
or the number of IR nodes matched for selected example programs are reported in a forth-
coming technical report of the University of Trier. We summarize here the most important
observations.

The generated C++ files are longer than the original CSL files by a factor that varies
between 3 and 25, depending on the complexity of the concept specifications. The ratio
is approximately the same for the number of lines as well as for the number of characters.
This shows that hand-written pattern matching code is impractical for matching nontrivial
templates.

For the more complicated example codes considered, such as CSR matrix–matrix multi-
plication codes and biconjugate gradient solver codes, the recognition rate is close to 100%,
where the recognition rate is determined as the number of matched IR nodes divided by the
total number of IR nodes that are expected to be recognized by the system.18

18Unfortunately, a large-scale evaluation of the current SPARAMAT implementation was not yet possible,
because, due to technical problems with the underlying Polaris system, several fundamental transformations such
as loop distribution have not been implemented and performed manually. The implementation of SPARAMAT,
which was just becoming usable enough to deliver first results, had to be terminated when the programmer who
worked exclusively on the implementation, Craig Smith, left the University of Trier in September 2000, thus
the preliminary results with the current status of the prototype must suffice. Due to manpower restrictions, a
continuation of the implementation in Trier is not possible; interested readers can get the entire implementation
from the author.

116 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

3.7 Related work

Several automatic concept comprehension techniques have been developed over the last years.
These approaches vary considerably in their application domain, purpose, method, and status
of implementation.

General concept recognition techniques for scientific codes have been contributed by
Snyder [Sny82], Pinter and Pinter [PP91], Paul and Prakash [PP94], diMartino [MI96] and
Keßler [C4,C5,J2]. Some work focuses on recognition of induction variables and reductions
[AH90, PE95, GSW95] and on linear recurrences [Cal91, RF93]. General techniques de-
signed mainly for nonnumerical codes have been proposed by Wills et al. [RW90] and Ning
et al. [HN90, KNS92].

Concept recognition has been applied in some commercial systems, e.g. EAVE [Bos88]
for automatic vectorization, or CMAX [SW93] and a project at Convex [Met95] for automatic
parallelization. Furthermore there are several academic applications, by the author [D2,J2]
and diMartino [MI96], and proposals for application [BS87, BHRS94] of concept recogni-
tion for automatic parallelization. Today, most commercial compilers for high-performance
computers are able to perform at least simple reduction recognition automatically.

Most specification languages for generated pattern matching systems that have been devel-
oped so far, such as OPTRAN [Wil79, LMW88], PUMA [Gro92], TRAFOLA [HS93, Fer90],
and TXL [CC92, CC93], as well as systems for retargetable code generation based on tree
parsing, such as [GG78], Twig [AG85, AGT89], [PG88] orIBURG [FHP92a, FH95], are re-
stricted in their scope of applicability, namely to expression tree rewriting. The reason for
this is probably that these systems have mainly been developed for structural optimizations
of expression trees, such as exploiting distributivity of operators or operator strength reduc-
tion, and for retargetable code generation for basic blocks represented by expression trees or
DAGs (cf. Chapter 2). In contrast, our approach is applicable to pattern matching beyond the
expression level, especially to loops and statement sequences.

The PAP Recognizer [MI96] uses Prolog rules to describe templates and relies on the
backtracking inference engine of Prolog to perform the pattern matching. Hence, the PAP
Recognizer can be regarded rather as an interpreter for a pattern matching language, while
SPARAMAT actually compiles the concept specifications to C++ code.

A more detailed survey of these approaches and projects can be found in [D2,J2,J6].

Our former PARAMAT project (1992–94) [D2,J2,J6] kept its focus on dense matrix com-
putations only, because of their static analyzability. The same decision was also made by other
researchers [PP91, MI96, Met95, BHRS94] and companies [SW93] investigating general con-
cept recognition with the goal of automatic parallelization. According to our knowledge, there
is currently no other framework that is actually able to recognize sparse matrix computations
in the sense given in this chapter.

3.8. Future Work 117

3.8 Future Work

3.8.1 More Concepts, Templates, Example Programs

Adding further concepts and templates specifications to the existing set of CSL files would be
desirable to allow for a larger-scale evaluation of the recognition rate. This is now just a matter
of time and manpower, as the generative approach simplifies the specification considerably.

3.8.2 Interactive Program Comprehension

An interactive environment for the SPARAMAT system would yield many benefits. The
SPARAMAT user could, in an incremental process, teach the system to match further concepts
and thereby update its permanent concept database. A key component of such an interactive
system is a suitable user interface that supports entering new concept specifications. This
could be realized as a pop-up window containing a blank concept specification form where
SPARAMAT could automatically pre-enter some template specification text that it derives
from the latest matching failure in a previous run on an example code.

3.8.3 Application to Automatic Parallelization

The optimization of the runtime tests and a back-end for the automatic generation of parallel
code for the speculatively matched program parts has not been implemented, as this seems to
be a more or less straightforward task, at least for shared-memory parallel target architectures.

However, when faced with distributed memory target architectures, we will have to ad-
dress automatic array distribution and redistribution. It seems to be a reasonable idea to in-
tegrate runtime distribution schemes for sparse matrices [UZSS96] into this framework; for
instance, the runtime analysis of the sparsity pattern, which is required for load-balancing
partitioning of the sparse matrix, may be integrated into the runtime tests.

Beyond automatic parallelization, our automatic program comprehension techniques for
sparse matrix codes can also be used in a nonparallel environment, such as for program flow
analysis, for program maintenance, debugging support, and for more freedom of choice for a
suitable data structure for sparse matrices.

3.8.4 Applicability to Other Problem Domains

SPARAMAT was intended for and applied to the problem domain of linear algebra operations
on sparse matrices. Nevertheless, the principles and techniques of SPARAMAT are not spe-
cific to this particular domain. We expect that other areas could benefit from the SPARAMAT
approach. Investigating how similar program comprehension techniques could be applied to
fields like image processing or operations on dynamic data structures could provide important
insights.

118 Chapter 3. Automatic Comprehension and Parallelization of Sparse Matrix Codes

3.9 Summary

We have described a framework for applying program comprehension techniques to sparse
matrix computations and its implementation. We see that it is possible to perform speculative
program comprehension even where static analysis does not provide sufficient information;
in these cases the static tests on the syntactic properties (pattern matching) and consistency
of the organizational variables are complemented by user prompting or runtime tests whose
placement in the code can be optimized by a static data flow framework.

The SPARAMAT implementation, consisting of the driver, the CSL parser with the gen-
erator, and a set of auxiliary library routines and tools, is operational. Virtually all basic con-
cepts and many of the concepts listed in Section 3.3 along with the most important templates
have been implemented in CSL. The generative approach allows for a fast implementation of
further concepts and templates also by other users.

Acknowledgements

The author thanks Prof. Dr. Emilio L. Zapata for an early discussion about the applicability
of program comprehension techniques to sparse matrix computations. Prof. Dr. Helmut Seidl
contributed some suggestions on specific recognition techniques. Useful comments after pre-
sentation of early versions of this work, such as some pointers to related literature, came from
the audience at the workshops AP’97 at UPT Barcelona, EuroPar’97 in Passau, and CPC’98
in Vadstena.

Part of the material presented in this section has been developed within the SPARAMAT
project, which was funded by the Deutsche Forschungsgemeinschaft (DFG) from October
1997 to September 2000. During this period, Craig Smith was responsible for the implemen-
tation of the SPARAMAT system on top of the open-source Polaris compiler.

The SPARAMAT implementation is available to interested readers upon request.

Chapter 4

Design of Parallel Programming
Languages

MIMD programming languages constitute a more flexible alternative to SIMD languages.
Imperative MIMD languages can be classified into mainly two different categories, depending
on the execution style, that is, the way how parallel activities are created in a program.

The fork-join styleof parallel execution corresponds to a tree of processes. Program ex-
ecution starts with a sequential process, and any process can spawn arbitrary numbers of
child processes at any time. While the fork-join model directly supports nested parallelism,
the necessary scheduling of processes requires substantial support by a runtime system and
incurs overhead.

In contrast, the languagesFork, ForkLight, andNestStep presented in this chapter all
follow the SPMD styleof parallel execution. There is a constant set of threads that are to be
distributed explicitly over the available tasks, e.g. parallel loop iterations. Given fixed sized
machines, SPMD seems better suited to exploit the processor resources economically. Never-
theless, SPMD languages can be designed to provide a similar support of nested parallelism
as is known from the fork-join style languages. This chapter focuses on SPMD-style MIMD
languages with support for nested parallelism.

Furthermore, parallel programming languages may be classified according to the abstract
machine model they are based on. This concerns, for instance, the memory organization, the
memory consistency scheme, or the degree of “natural” synchronization between the proces-
sors. An accompanying cost model can give the programmer or the compiler hints on the
complexity of certain operations that may be useful to optimize the program. In this chapter,
we investigate programming languages for three different machine models.

The chapter begins with a presentation of the general processor group concept in Sec-
tion 4.1. This mechanism allows for the realization of nested parallelism and more flexibility
in SPMD languages. Then, we present the designs of the three languagesFork, ForkLight,
andNestStep in detail.

Fork, previously also calledFork95, is a C-based, parallel programming language for the
PRAM model. The PRAM model provides a sequentially consistent shared memory. The
instruction-level synchronous execution of the code by the PRAM processors is made trans-
parent to the programmer at the language operator level. The scope of synchronous execution

119

120 Chapter 4. Design of Parallel Programming Languages

and of sharing of variables is controlled by the processor group concept. Even in program re-
gions where processors are allowed to proceed asynchronously, the PRAM-typical sequential
memory consistency is maintained. A compiler for the experimental massively parallel com-
puterSB-PRAM is available.Fork is mainly used for teaching parallel programming classes
and for research on the practicality of PRAM algorithms from the literature.

The description ofFork, given in Section 4.2, is followed by a plea for structured parallel
programming inFork; Section 4.3 shows how the support for nested parallelism inFork can
be exploited to implement a set of skeleton-style generic functions that allow for a structured
way of parallel programming.

Section 4.4 describesForkLight [C16], a language for the Asynchronous PRAM model
[Gib89, CZ89] that abstracts from synchronous execution within basic blocks by replacing the
synchronous mode by the so-calledcontrol-synchronous modeof execution. Where group-
wide barriers or bilateral synchronization is necessary within a basic block to protect instruc-
tions with cross-processor data dependences from race conditions, the programmer must pro-
vide these explicitly. Nevertheless,ForkLight assumes a sequentially consistent shared mem-
ory, such as provided in the Tera MTA [ACC+90]. The syntax ofForkLight is very similar
to Fork. ForkLight is implemented by a precompiler (ForkLight to C) and a runtime system
based on portable shared memory interfaces like P4 [BL92, BL94] or OpenMP [Ope97].

Section 4.5 presents the design ofNestStep [C18], a language for the bulk-synchronous
parallel (BSP) model [Val90], which additionally abstracts from sequential memory consis-
tency but retains a shared address space by a software–emulated distributed shared memory.
NestStep programs are structured in supersteps. Supersteps can be nested, which enables
group splitting and accordingly narrows the scope of barriers and shared memory consistency
to subgroups.NestStep is implemented by a precompiler (NestStep to Java resp. to C) and
a runtime system that is based on a message passing interface like Java socket communication
[Far98] or MPI [SOH+96].

BothForkLight andNestStep are MIMD languages, follow the SPMD style, and support
nested parallelism by a hierarchical group concept that controls the scope of sharing and
barriers, as inFork. Hence, programming in these languages is quite straightforward if there
is some familiarity withFork.

We close this chapter with a review of related parallel programming languages in Sec-
tion 4.6. Implementation issues for the three languages will be considered later in Chapter 5.

We would like to emphasize that the sections of this chapter arenot intended as tutorials
for the corresponding programming languages. Instead, an in-depth introduction to program-
ming in Fork can be found in the chapters 5 and 7 ofPractical PRAM Programming[B1].
Accordingly, we omit the description and implementation of larger example problems for sake
of brevity.

4.1 The SPMD Processor Group Concept

In order to support nested parallelism in a SPMD programming language, statements are
executed bygroupsof processors, rather than by individual processors. Initially, there is just
one group containing allp available processors. Groups may be statically, dynamically and

4.1. The SPMD Processor Group Concept 121

P 7
P

P4
5

P

P6

3

P4

P

P3

2

P

6

0

0P

P

P6

1P2

PP0

3P 7P6P5P4P1P 2PP0

P1

leaf groups (currently active)

root group

FIGURE 4.1: The group hierarchy inFork forms a logical tree. Nonactive groups are shaded.

even recursively subdivided into subgroups. A subgroup-creating language construct is called
group-splitting if it may createk > 1 subgroups. Where a groupG with p processors is
subdivided intok � 1 subgroupsG1; :::; Gk, the groupG is temporarily deactivated. Each of
its processors either joins one of the subgroups to perform a computation with that subgroup
being its active group, or skips the subgroups’ computation completely and waits for the other
processors at the program point whereG is reactivated. When all subgroups have finished
their computation, they cease to exist, and thenG is reactivated, typically after an implicit,
G-wide barrier synchronization, and continues with its computation. Hence, at any point of
program execution, all presently existing groups form a treelike1 group hierarchy. Only the
leaf groupsof the group hierarchy are active (see Figure 4.1). A processor belongs to at most
one active group at any time, and to all (inactive) predecessors of that group in the group
hierarchy tree.

In Fork, ForkLight, andNestStep, the group concept is used for controlling different in-
variants regarding the degree of synchronicity, sharing of variables, and memory consistency.
Nevertheless, there are several common organizational properties of the groups in these lan-
guages.

A processor can inspect the number of processors belonging to its current group, either by
calling a standard library routine or by reading the predefined constant shared integer variable
#.

Each group has a (shared) integer group ID, which is primarily intended to distinguish
the subgroups of a group. The group ID of the root group is 0. Group-splitting constructs
set the subgroup IDs consecutively from 0 to the number of subgroups minus one. At the
other subgroup-creating constructs, the subgroup inherits the group ID of its parent group.
A processor can inspect the group ID of its current group by the predefined constant shared
integer variable@.

Within a group, processors are ranked automatically from 0 to the group size minus one.

1If join statements (see Section 4.2.9) are executed, the group hierarchy forms aforestrather than a tree.
As this difference is not important for the following discussions, we omit it for simplicity of presentation.

122 Chapter 4. Design of Parallel Programming Languages

This group rankcan be inspected by the predefined constant private integer variable$$.
In some cases the programmer needs a user-defined numbering of processors that does not
change, even if some processors leave the group. For these cases, there is thegroup-relative
processor ID, which is accessible via the predefined private integer variable$. At program
start,$ is initialized to the processor’s rank in the root group. At all subgroup-creating con-
structs, the$ value of the subgroups is just inherited from the parent group; the programmer
is responsible to renumber them explicitly if desired.

The group ID@and the group-relative processor ID$ are automatically saved when de-
activating the current group, and restored when reactivating it.

There may be regions in the code where the group concept is temporarily disabled. Such
regions are marked explicitly in the program code. If processors belonging to a currently
active groupG enter such a regionr, G is deactivated while the processors remains insider.
Hence, the properties controlled by the group concept are not available withinr. At exit of r,
G is reactivated.

The activity regionof a groupG is the set of statements that may be executed by the
processors ofG whenG is their currently active group. This includes all statements from the
creation ofG to the termination ofG, excluding the activity regions of subgroups ofG and, if
existing, interspersed regions where the group concept is temporarily disabled.

The live region of a groupG denotes all statements whereG may exist, either active
or inactive. Hence, it can be defined recursively as the union of the activity region ofG,
interspersed regions in the activity region ofG where the group concept is disabled, and the
live regions of all subgroups ofG.

The activity region of a group can be structured as a sequence ofactivity blocksthat are
separated by implicit or explicit group-wide barriers. The positions of implicit barriers are
defined by the respective programming language, and explicit barriers can be inserted by the
programmer at virtually any point in the program.

4.2 Fork Language Design

4.2.1 The PRAM model

The Parallel Random Access Machine (PRAM) [FW78] is an abstract machine model for
the execution of parallel programs. It mainly consists of a set of processors, which are Ran-
dom Access Machines (RAMs) as known from the analysis of sequential algorithms, and of
a large shared memory. The processors receive a common clock signal and thus operate syn-
chronously on the machine instruction level. Each processor has its own program counter and
may follow an individual trace of computation in the program memory. All processors are
connected to the shared memory, which may be accessed by any processor in any machine
cycle. Each cell may be either read or written by an arbitrary number of processors in each
machine cycle. Each memory access takes the same time, ideally one machine cycle, for any
processor and any memory location. The shared memory is sequentially consistent; there is
no implicit caching of values. The processors may have optionally also have local memory
cells, such as processor registers. Figure 4.2 shows a block diagram of a PRAM.

4.2. Fork Language Design 123

CLOCK

.....

.....

.....

0P P P

PROGRAM

MEMORY

pc pc pc

SHARED MEMORY

1 p−1

FIGURE 4.2: The PRAM model.

Based on the resolution of write conflicts that occur when several processors try to access
the same memory location, we distinguish between three basic variants of a PRAM:

� the EREW PRAM (Exclusive Read, Exclusive Write): in each cycle, a memory cell
may be either read by at most one processor, or written by at most one processor.

� the CREW PRAM (Concurrent Read, Exclusive Write): in each cycle, a memory cell
may be either read by several processors, or written by at most one processor.

� the CRCW PRAM (Concurrent Read, Concurrent Write): in each cycle, a memory cell
may be either read by several processors, or written by several processors.

The CRCW (or short: CW) PRAM is obviously the strongest of these three forms. Clearly,
simultaneous write accesses to the same memory location in the same cycle require another
arbitration mechanism. Consequently, the CRCW PRAM is, depending on the resolution of
concurrent write accesses, subdivided into several subvariants. The most important ones are
the following, listed in ascending order of computational power:

� the COMMON CRCW PRAM: if several processors write to the same memory cell at
the same cycle, they must write the same value.

� the ARBITRARY CRCW PRAM: if several processors try to write (different) values into
the same memory cell at the same cycle, then one of the values is selected arbitrarily
and written.

124 Chapter 4. Design of Parallel Programming Languages

� the PRIORITY CRCW PRAM: if several processors try to write (different) values into
the same memory cell at the same cycle, then the value of the processor with least
processor ID is written.

� the COMBINE CRCW PRAM: if several processors try to write (different) values into
the same memory cell at the same cycle, a combination of all values to be written and
of the former content of that memory cell will be written. The combination may be a
global sum, a global maximum or minimum, or a logical or bitwise boolean operator
(OR, AND).

� the PREFIX CRCW PRAM: like the Combine CRCW PRAM; additionally, the pre-
fix sums, prefix maximum, etc., in the order of processor ranks, can be obtained as a
byproduct of a concurrent memory access.

The PRAM model has been very popular in the theory of parallel algorithms in the last 20
years because it abstracts from many architectural details that are typically encountered in real
machines, such as distributed memory modules, the cost of memory access, nonuniform or
even unpredictable memory access times, individual clock signals for the processors, weaker
memory consistency schemes, etc. The PRAM has thus often been criticized as being highly
unrealistic, and other programming models that account for the cost of memory access or that
do not rely on synchronous execution have been proposed. For the same reason, a physical
realization of the PRAM was not available for a long time. A research project in the 1990s
at the University of Saarbrücken, Germany, led by Prof. Wolfgang Paul, realized a massively
parallel PREFIX CRCW PRAM in hardware: theSB-PRAM ([AKP91, ADK+93]; see also
[B1, Chap. 4]). Although being no longer competitive with current supercomputer designs,
the SB-PRAM opened a path for research on the practical aspects of PRAM programming,
which resulted in the development of system software, tools, programming languages and
compilers, libraries, and applications. TheSB-PRAM architecture, system software, and the
PRAM-specific parts of the programming environment and libraries are described inPractical
PRAM Programming[B1]. That book also contains an in-depth treatment of PRAM theory
[B1, Chap. 2], which is beyond the scope of this thesis.

4.2.2 Fork Language Design Principles

Fork is a high-level programming language for PRAMs. Its programming model, summarized
in Figure 4.3, is identical to the Arbitrary CRCW PRAM programming model, with the minor
exception that the private memory of each processor is embedded as a private address subsec-
tion into the shared memory. This modification enables treating private and shared addresses
similarly at the language level, which keeps pointer declarations simple.

Fork is based on ANSI C [ANS90]. The language constructs added allow to control
parallel program execution, such as by organizing processors into groups, managing shared
and private address subspaces, and handling various levels of synchronous parallel program
execution. Because of carefully chosen defaults, existing (sequential) C codes can be easily
integrated intoFork programs. Furthermore, powerful multiprefix operations are available

4.2. Fork Language Design 125

CLOCK

HOST FILE SYSTEM

.....

.....

.....

HOST

BASE BASE BASE
0P P P

PROGRAM

MEMORY

pc pc pc

.....

SHARED MEMORY

0 1MM Mp-1

private address subspacesshared address subspace

shared
objects

global
shared objects
group-local

1 p-1

open, read, write, close

FIGURE 4.3: Block diagram ofFork’s programming model.Fork assumes that private ad-
dress subspaces are embedded into the shared memory by handling private addresses relative
to a BASE pointer. Beyond preselecting the private subspace size, this mechanism is implic-
itly handled by the implementation and not accessible to the programmer at the language
level. The other features are the same as for the theoretical PRAM model; all processors
receive the same clock signal, thus the machine is synchronous on the machine instruction
level. The memory access time is uniform for each processor and each memory location.
Each processor works on the same node program. Access to the PRAM is possible only via
a user terminal running on a host computer that is invisible for the programmer. The job of
the host is to load code to the program memory, start the processors, and perform external
I/O. The host computer’s file system is accessible to each PRAM processor by specific I/O
routines. The differences in addressing (BASE-relative vs. absolute addresses) are handled
automatically by the compiler and are not visible to the programmer.

as language operators. In short,Fork enables to exploit the specific features of PRAMs and
makes them transparent to the programmer at the language level.

In contrast to most other MIMD programming languages, the philosophy ofFork is not
to start with a sequential thread of computation and successively spawn new ones (which is
known as thefork-join styleof parallel program execution) but to take the explicitly given set
of available processors—which is active from the beginning and remains constant during par-
allel program execution—and distribute them explicitly across the work to be done. This par-
allel execution model is known under the termsingle program, multiple data(SPMD). Hence,
themain() function of aFork program is executed by all available processors of the PRAM

126 Chapter 4. Design of Parallel Programming Languages

partition on which the program has been started. This number of available processors can be
inspected at runtime by the global shared constant integer variable__STARTED_PROCS__.
Moreover, each processor holds a global private constant integer variable__PROC_NR__
that contains its processor ID at run time. These processor IDs are consecutively numbered
from 0 to__STARTED_PROCS__minus 1.

Each processor works on exactly one process all the time. The number of processors
available in aFork program is inherited from the underlying PRAM hardware resources;
an emulation of additional (logical) PRAM processors by multithreading in software is not
supported for good reason. As we will see later in Section 5.2.1, it turns out that the imple-
mentational overhead to maintainsynchronouslyexecuting logical processors in software is
a too high price to pay for a potential gain in comfort of programming. On the other hand,
execution of an arbitrary number of asynchronous tasks can be easily implemented inFork,
as we have exemplified in [B1, Chap. 7].

Fork programs are statically partitioned into block-structured regions of code that are to be
executed in either synchronous or asynchronous mode. For instance, functions are classified
as either synchronous, straight, or asynchronous.

In synchronous modeprocessors operate in groups. Each processor belongs to exactly one
active group. By itsstrict synchronicity invariant, Fork guarantees that all processors of the
same active group execute the same instruction at the same time. In other words, their pro-
gram counters are equal at any time. Hence, the exact synchronicity available at the PRAM
machine instruction level is made available at the source language level: From theFork pro-
grammer’s point of view, all processors of the same active group execute simultaneously the
same statement or expression operator.

In general, the strict synchronicity invariant eliminates “race conditions”; that is, it enables
deterministic behavior of concurrent write and read accesses to shared memory locations at
the language’s operator level without additional protection mechanisms such as locks and
semaphores.

Where control flow may diverge as a result of private branch conditions, the current group
is automatically split correspondingly into subgroups; exact synchronicity is then maintained
only within each subgroup. The subgroups are active until execution of all branches is finished
and control flow is reunified; then the parent group is reactivated and the strict synchronic-
ity invariant for it is reinstalled automatically. Group splitting can be nested statically and
dynamically; hence, at any time of program execution, the group hierarchy forms a logical
tree.

In asynchronous mode, this strict synchronicity invariant is not maintained. Hence, the
processors may follow individual control flow paths. Asynchronous execution is unavoidable
in some cases; for instance, all I/O routines are asynchronous. In some cases, asynchronous
execution allows for a better utilization of processors, as we will see in Section 4.2.8, for
instance.

The remainder of this section on theFork language design is organized as follows: Sec-
tion 4.2.3 introduces shared and private variables, and Section 4.2.4 discusses the special
expression operators inFork. Section 4.2.5 introduces the language constructs that allow
to switch properly from synchronous to asynchronous mode and vice versa. Section 4.2.6
discusses the synchronous mode of execution in detail. It explains the group concept, de-

4.2. Fork Language Design 127

scribes how the strict synchronicity invariant is relaxed automatically by splitting a group
into subgroups, and shows how this feature can be used to implement synchronous parallel
divide-and-conquer algorithms. Like C,Fork offers pointers and heaps, which are discussed
in Section 4.2.7. The default mode of parallel program execution is the asynchronous mode.
Section 4.2.8 introduces the language constructs and standard library routines provided by
Fork for asynchronous programming, and explains how they may be used to protect critical
sections. Section 4.2.9 introduces thejoin statement that allows to switch from asynchron-
ous to synchronous mode more flexibly. We give some recommendations concerning pro-
gramming style and common pitfalls in Section 4.2.10. Section 4.2.11 introduces thetrv
tool for graphical visualization ofFork program traces, which can be used for performance
analysis.

More example programs written inFork will follow in Section 4.3. The compilation
aspects ofFork are discussed in Chapter 5.

4.2.3 Shared and Private Variables

As mentioned above, the entire shared memory of the PRAM (see Figure 4.3) is partitioned—
according to the programmer’s wishes—into private address subspaces (one for each proces-
sor) and a shared address subspace, which may be again dynamically subdivided among the
different processor groups. Accordingly, program variables are classified as eitherprivate
or shared. The termsharedalways relates to the processor group that defined that variable,
namely, the group that the processor belonged to when it executed that variable’s declara-
tion. For each variable, itssharity—an attribute indicating whether the variable is shared or
private—is to be declared as a qualifier of the variable’s storage class.

Shared variables declared globally (i.e., outside of functions) are shared by all processors
executing the program. Shared variables that occur as formal parameters of a function or
that are declared locally at the top level of a function exist once for each group executing
this function. Finally, block local variables declared to be shared exist once for each group
executing that block.

For a variable declared to be private, one copy resides in the private address subspace of
each processor that executes the declaration.

Declaration

To declare a global shared integer variablev , we write

sh int v;

Heresh is a storage class qualifier indicating that thesharity of v is “shared.” The sharity
may also be specified after the type declaration, but it is convenient programming style to
specify it first.

Fork accepts only new-style declarations of functions; that is, the complete parameter
types are to be specified between the parentheses. Shared formal parameters can only occur
in synchronous functions (see Section 4.2.5). For instance, a shared formal parameter of a
synchronous function may be declared as follows:

128 Chapter 4. Design of Parallel Programming Languages

sync void foo(sh float x);

The sharities of the formal parameters must match at redeclarations; they are part of the func-
tion’s type.

Shared local variables may be declared only in synchronous program regions, such as at
top level of a synchronous function.

Private variables are declared as follows:

pr int w;
int q;

where the sharity declaratorpr is redundant since “private” is the default sharity. For simplic-
ity, we will mostly omitpr in declarations of private variables, except for special emphasis.

System Variables

We already mentioned that thetotal number of started processorsis accessible through the
constant shared integer variable

__STARTED_PROCS__

and theprocessor IDof each processor is accessible through the constant private integer vari-
able

__PROC_NR__

With these, it becomes straightforward to write a simple dataparallel loop:

#include <fork.h>
#define N 30
sh int sq[N];
sh int p = __STARTED_PROCS__;

void main(void) {
pr int i;
for (i=__PROC_NR__; i<N; i+=p)

sq[i] = i * i;
barrier;

}

Since the processor IDs are numbered consecutively from 0 top � 1, the private variable
i on processorj loops over the valuesj, j + p, j + 2p, and so on. Thus, this loop computes
in the shared arraysq all squares of the numbers in the range from 0 toN minus 1.

There are special private variables$ and $$ and a special shared constant@for each
group; these will be introduced in Section 4.2.6.

4.2. Fork Language Design 129

Concurrent-Write Conflict Resolution

Fork supports the Arbitrary CRCW PRAM model. This means that it is not part of the lan-
guage to define which value is stored if several processors write the same (shared) memory
location in the same cycle. Instead,Fork inherits the write conflict resolution method from the
target machine. In the case of theSB-PRAM, which implements a priority concurrent-write
conflict resolution, the processor with highest hardware processor ID2 will win and write its
value. Hence, concurrent write is deterministic in our implementation ofFork. However,
meaningfulFork programs should not be dependent on this target-machine-specific conflict
resolution scheme. For practically relevant applications of concurrent write, the multiprefix
instructions (see Section 4.2.4) are often better suited to obtain a portable program behavior.

4.2.4 Expressions

In addition to the expression operators known from C,Fork provides several new expres-
sion operators: the four binary multiprefix operatorsmpadd() , mpmax() , mpand() and
mpor() , and theilog2() operator.

We also introduce the termsshared expressionandprivate expressionin this section.

Atomic Multiprefix Instructions

The SB-PRAM supports powerful built-in multiprefix instructions calledmpadd, mpmax,
mpand andmpor , which allow the computation of multiprefix integer addition, maximiza-
tion, bitwise AND and bitwiseOR for up to 2048 processors within two CPU cycles. As
they are very useful in practice, these multiprefix instructions are available inFork.3 The
multiprefix instructions are accessible asFork language operators rather than standard library
functions, in order to allow for potential optimizations and to avoid the function call overhead.

For instance, assume that the statement

k = mpadd(ps, expression);

is executed simultaneously by a setP of processors (e.g., a group).ps must be a (potentially
private) pointer to a shared integer variable, andexpression must be an integer expres-
sion. In this way, different processors may address differentsharedvar s, thus allowing for
multiple mpadd computations working simultaneously. LetQs � P denote the subset of

2The hardware processor IDs of theSB-PRAM are not numbered consecutively. Also, because of a hardware
design bug, the hardware processor IDs in the currentSB-PRAM prototype aredifferentfrom the processor ranks
in the multiprefix operations. Since the latter ones are more interesting for the programmer, we have chosen this
multiprefix rank as the processor IDPROCNR in our implementation ofFork. Thus PROCNR does
generallynot reflect the concurrent write priority! Instead, the hardware ID of a processor can be inspected by a
call to the library functiongetnr() .

3Note, however, that the implementation of multiprefix operations likempadd that can be used determin-
istically in synchronous execution mode may lead to extremely inefficient code when compiled to other (non-
priority-based) PRAM variants, because the (conceptually) fixed linear internal access order among the proces-
sors (which is equivalent to the processor IDs inFork) must be simulated in software where hardware support is
missing. Fortunately, the programmer relies quite rarely on this fixed order. One example is the integer parallel
prefix routineprefix add of thePAD library [B1, Chap. 8].

130 Chapter 4. Design of Parallel Programming Languages

the processors inP whose pointer expressionsps evaluate to the same addresss. Assume
the processorsqs;i 2 Qs are subsequently indexed in the order of increasing processor ID
__PROC_NR__.First, each processorqs;i in eachQs computesexpression locally, result-
ing in a private integer valuees;i. For each shared memory locations addressed, letvs denote
the contents ofs immediately before executing thempadd instruction. Then, thempadd
instruction simultaneously computes for each processorqs;i 2 Qs the (private) integer value

vs + es;0 + es;1 + � � � + es;i�1

which is, in the example above, assigned to the private integer variablek . Immediately after
execution of thempadd instruction, each memory locations addressed contains the global
sum

vs +
X
j2Qs

es;j

of all participating expressions. Thus,mpadd can as well be “misused” to compute a global
sum by ignoring the value ofk .

However, if we are interested only in this side effect, there are better alternatives, namely,
the library routinessyncadd , syncmax , syncand , andsyncor , the equivalents of the
SB-PRAM instructions with the same name. They take the same parameters as the corre-
sponding multiprefix operators but do not return a value. If these should be scheduled only
at a specific value of the modulo bit4 there are customized variantssyncadd m0, sync-
max m0, syncand m0, andsyncor m0, which are scheduled only to cycles where the
modulo bit is zero, and syncadd m1, syncmax m1, syncand m1, andsyncor m1,
which are scheduled only to cycles where the modulo bit is one.

For instance, the numberp of currently available processors can be found out by syn-
chronously executing

sh int p = 0;
syncadd(&p, 1);

This may be extended in order to obtain a consecutive renumbering 0,1,. . . ,p� 1 stored in
a user-defined processor IDme:

sh int p = 0;
pr int me = mpadd(&p, 1);

Similarly to mpadd, the atomicmpmax() operator computes the prefix maximum of
integer expressions,mpand() the prefix bitwiseAND, andmpor() the prefix bitwiseOR.

4The modulo bit is a globally visible flag in theSB-PRAM that toggles after each clock cycle. It contains the
least significant bit of the global cycle counter. It is important for the assembler programmer (and the compiler)
of theSB-PRAM to avoid simultaneous access of a memory location with different access types (like load and
store), which is forbidden in theSB-PRAM.

4.2. Fork Language Design 131

The ilog2 Operator

The unaryilog2() expression operator5 is applicable to positive integer operands. It com-
putes the floor of the base 2 logarithm of its argument. For example,ilog2(23) evaluates
to 4.

Return Values of Functions

The return value of a non-void function is always private; each processor passes its own
return value back to the function call.

If a private value, such as the return value of a function, should be made shared among the
processors of the calling group, this can be simply arranged by assigning it immediately to a
shared variable. For instance, in

sq[N-1] = square(N-1);

the private result value returned by functionsquare() is assigned to the shared array el-
ementsq[N-1] that is accessible to all processors, following the default concurrent-write
policy.

Shared and Private Expressions

We call anexpressionto besharedif it is guaranteed to evaluate to the same value on each
processor of a group if evaluation starts synchronously, andprivateotherwise.

In Fork, an expression must be conservatively assumed to be private if it contains a refer-
ence to a private variable,$ or __PROC_NR__, a multiprefix operator, or a function call. All
other expressions are shared.

Note that any other processor that does not belong to the group under consideration may at
the same time modify any shared variables occurring in a shared expressione. Nevertheless,
this does not compromise the abovementioned condition of evaluatinge to the same value on
all processors for that group. Because of the synchronous expression evaluation within the
group, either all processors of the group use the old value ofs, or all of them use the modified
value ofs.

4.2.5 Synchronous and Asynchronous Regions

Fork offers two different program execution modes that are more or less statically associated
with source code regions: synchronous execution mode and asynchronous execution mode.

In synchronous execution mode, processors remain synchronized on the statement level
and maintain thestrict synchronicity invariant, which says that in synchronous mode, all
processors belonging to the same (active) group operate strictly synchronous, that is, their
program counters are equal at each machine cycle. The group concept will be discussed in
more detail in Section 4.2.6.

5On theSB-PRAM, ilog2() is implemented by the one-cyclerm instruction.

132 Chapter 4. Design of Parallel Programming Languages

 }
}

async void main(void)

sync int *sort(sh int *a, sh int n)

}
 }

 A = read_array(&n);

 A = sort(A, n);

{

{

 if (n>0) {

 return a;

 pr int myrank = compute_rank(a, n);

 }

 else

 return NULL;

 printf("Error: n=%d\n", n);

sh int *A, n;
extern async int *print_array(int *, int);
extern async int *read_array(int *);

 seq if (n<100) print_array(A, n);

 extern straight int compute_rank(int *, int);

 a[myrank] = a[__PROC_NR__];

 farm { /* enter asynchronous region */

 start { /* enter synchronous region */

FIGURE 4.4: A Fork program is statically partitioned into synchronous (dark dashed boxes),
asynchronous (light solid boxes) and straight regions.

In asynchronous execution mode, the strict synchronicity invariant is not enforced. The
group structure is read-only; new shared variables and objects on the group heap cannot be
allocated. There are no implicit synchronization points. Synchronization of the current group
can, though, be explicitly enforced using thebarrier statement.

The functions and structured blocks in aFork program, called programregionsfor short,
are statically classified as either synchronous, straight, or asynchronous; see Figure 4.4. This
static property of the code is called itssynchronicity. Synchronous regions are to be executed
only in synchronous mode, asynchronous regions only in asynchronous mode, and straight
regions in synchronous or asynchronous mode (see Table 4.1). In order to guarantee this,
straight program regions must not contain any statements that may cause a divergence of
control flow, such asif statements or loops whose branch condition depends on a private
value.

Advantages of the Synchronous Mode

The synchronous mode overcomes the need for protecting shared program objects by locks
(see Section 4.2.8) because they are accessed in a deterministic way: The programmer can
rely on a fixed execution time for each operation, which is the same for all processors at any
time during program execution. Hence, no special care has to be taken to avoid race conditions

4.2. Fork Language Design 133

Program region synchronicity
Execution mode Synchronous Straight Asynchronous
Synchronous

p p
—

Asynchronous —
p p

TABLE 4.1: The relationship between program execution mode and program region syn-
chronicity.

at concurrent accesses to shared program objects. The synchronous mode saves the time and
space overhead for locking and unlocking but incurs some overhead to maintain the strict
synchronicity invariant during synchronous program execution.

As an example, consider the following synchronous code:

sh int a = 3, x = 4;
pr int y;
...

if (__PROC_NR__ % 2) a = x;
else y = a;

...

Here, the processors with odd processor ID execute thethen branch of theif statement,
the other ones execute theelse branch. While it is, for the processors executing theelse
branch, not determined whethery will finally have the old (3) or the new (4) value ofa, it is
nevertheless guaranteed by the synchronous execution mode that all these processors assign
to their private variabley thesamevalue ofa. A lock to guarantee this is not required.

Advantages of the Asynchronous Mode

In asynchronous or straight program regions, there are no implicit synchronization points.
Maintaining the strict synchronicity invariant in synchronous regions requires a certain over-
head that is incurred also for the cases where exact synchronicity is not required for consis-
tency because of the absence of data dependencies. Hence, marking such regions as asyn-
chronous can lead to substantial savings. For instance, during the implementation of the
(mostly synchronous) routines of thePAD library [B1, Chap. 8], we found considerate us-
age of internally asynchronous execution to pay off in significant performance improvements.
Also, asynchronous computation is necessary for dynamic load balancing, such as in dynamic
loop scheduling (see Section 4.2.8).

Declaring the Synchronicity of a Function

Functions are classified as either synchronous (declared with type qualifiersync), straight
(declared with type qualifierstraight), or asynchronous (async ,) this is the default); for
example

134 Chapter 4. Design of Parallel Programming Languages

sync void foo (void) { ... }
straight int add (int a, int b) { return a+b; }
extern sync int sort (sh int, sh int [],

sh sync int (*cmp)(int,int));
sh sync int (*spf)(sh int);
async void (*pf)(void);

The order of qualifiers for sharity and synchronicity in a declaration is irrelevant. For a
pointer to a function, its synchronicity and parameter sharities must be declared and match
at assignments. Note that the sharity of a pointer to a function refers to the pointer variable
itself, not to the function being called.

main() is asynchronous by default. Initially, all processors on which the program has
been started by the user execute the startup code in parallel. After that, these processors start
execution of the program in asynchronous mode by callingmain() .

The farm Statement

A synchronous function is executed in synchronous mode, except from blocks starting with a
farm 6 or seq statement.

farm <stmt>

causes the executing processors to enter the asynchronous mode during the execution of the
asynchronous region<stmt> , and to reinstall synchronous mode after having finished their
execution of<stmt> by an implicit group local exact barrier synchronization. During the
execution of<stmt> , the group is inactive (see Figure 4.5); thus shared local variables or
group heap objects cannot be allocated within<stmt> .

farm statements make sense only in synchronous and straight regions. Usingfarm
within an asynchronous region is superfluous, and its implicit barrier may even introduce
a deadlock. Hence, the compiler emits a warning if it encounters afarm statement in an
asynchronous region.

return statements are not permitted in the body of afarm or seq statement.

The seq Statement

Theseq statement

seq <statement>

works in a way similar to that of thefarm statement. Its body<statement> is an asyn-
chronous region and is thus executed in asynchronous mode. But, in contrast tofarm ,

6The keywordfarm is due to historical reasons [M4]; it was originally motivated by the intended use for
programming independent tasks (task farming). From today’s point of view, a better choice would be something
like relax or sloppy (relaxed synchronicity). Anyway, what’s in a name? A programmer who prefers another
keyword to replacefarm may simply use the C preprocessor, for instance.

4.2. Fork Language Design 135

G’

G

G

G

G

G

GG

G

G

current group
(active)

current group statement;
program point 1

point 1

program

(active)
point 2

program
farm

point 2

program point 2

(active)

point 1

program program

point 2

(inactive)

program

(inactive)

current group
(active)

program

seq

program point 2

 statement;
program point 1

start

program point 2

 statement;
program point 1

(inactive)

(inactive)

point 1

current group

(inactive)

new group
(active)

FIGURE 4.5: Visualization of the semantics offarm , seq , andstart . Groups are repre-
sented by ovals; and processors, by rectangular boxes. Inactive groups are shaded.

<statement> is executed by onlyoneprocessor of a group executing theseq statement
(see Figure 4.5). This processor is selected arbitrarily within the group.

When this processor finishes execution of the<statement> , the synchronous mode of
execution is reinstalled for the group.

Although, from the programmer’s view, only one processor is active within theseq body,
a clever compiler may try to keep more processors busy by exploiting instruction-level paral-
lelism in <statement> .

seq statements make sense only in synchronous and straight regions. The compiler emits
a warning if it encounters aseq statement in an asynchronous region.

The start Statement

Asynchronous functions are executed in asynchronous mode, except from blocks starting with
thestart statement7

start <stmt>

Thestart statement, applicable in straight and asynchronous regions, switches to syn-
chronous mode for its body<stmt> . It causesall available processors to perform an exact
barrier synchronization with respect to their last group. At the top level of program execution
this is the root group consisting of all started processors. These processors form a new group

7Again, the keywordstart is not the best choice from today’s point of view; something likestrict may
be more suitable.

136 Chapter 4. Design of Parallel Programming Languages

Synchronicity of the called functiona

Caller region Synchronous Straight Asynchronous
Synchronous

p p
Via farm /seq

Straight Viastart
p

Via farm /seq
Asynchronous Viastart /join

p p

TABLE 4.2: Rules for calling functions regarding their synchronicity. The checkmark
p

means that a call is directly possible.

and execute<stmt> in synchronous mode, with unique processor IDs$ renumbered sub-
sequently from 0 to__STARTED_PROCS__�1. <stmt> is a synchronous region. Shared
variables and group heap objects allocated by the former group are no longer visible. Af-
ter having executed<stmt> , the processors restore their previous mode of execution, the
previous group structure is visible again.

A generalization ofstart , thejoin statement, provides a very flexible way of entering
a synchronous program region from an asynchronous region. It will be described in detail in
Section 4.2.9.

Calling Synchronous, Straight, and Asynchronous Functions

There are several rules concerning function calls necessary to maintain this nearly one-to-
one correspondence between the (static) synchronicity of a program region and the (dynamic)
synchronicity of the mode of its execution, as defined in Table 4.1.

From an asynchronous region, only asynchronous and straight functions can be called.
Synchronous functions can be called only if the call is explicitly made a synchronous region
by using astart or join statement.

In the other way, calling an asynchronous function from a synchronous or straight region
results in an explicit (via afarm or seq statement) or implicit (then the programmer receives
a warning) entering of the asynchronous mode.

From straight regions, only straight functions can be called. If a synchronous function
should be called, the programmer must use astart or join . Straight calls to an asyn-
chronous function again result in an implicit cast of the call synchronicity to an asynchronous
region—the programmer may also wrap the call by afarm or seq to make this transition
explicit.

These calling rules are summarized in Table 4.2.

4.2.6 Synchronous Execution and the Group Concept

In synchronous regions, the statements are executed bygroupsof processors, rather than by
individual processors. Initially, there is just one group containing all__STARTED_PROCS__

4.2. Fork Language Design 137

available processors. Groups can be recursively subdivided, such that there is a treelike8

group hierarchy at any time, as discussed in Section 4.1.
At each point of program execution in synchronous mode,Fork maintains the strict syn-

chronicity invariant, which says that all processors of a group operate strictly synchronously:

Strict synchronicity

All processors belonging to the same active processor group are operating strictly
synchronously, that is, they follow the same path of control flow and execute the
same instruction at the same time.

Also, all processors within the same group have access to a common shared address sub-
space. Thus newly allocated shared variables exist once for each group allocating them.

A processor can inspect the number of processors belonging to its current group, either by
calling the standard library routine

straight unsigned int groupsize(void);

or by reading the predefined constant shared integer variable#.
groupsize() may also be called in asynchronous mode, but then it returns only the

number of those processors of the current group that are still working inside their asynchron-
ous region; in other words, that have not yet reached the implicit barrier at the end of the
asynchronous region they are working on.

Subgroup Creation and Group Activity Regions

At the entry into a synchronous region bystart or join , the processors form one sin-
gle processor group. However, it may be possible that control flow diverges at conditional
branches with private condition expression. To guarantee synchronous execution within each
active subgroup, the current leaf group must then be temporarily deactivated and split into
one or several subgroups. The subgroups become active and the strict synchronicity invari-
ant is maintained only within each of the subgroups. Where control flow reunifies again, the
subgroups terminate, and the parent group is reactivated.

Thesubgroup-creating constructsare summarized in Table 4.3. A subgroup-creating con-
struct is calledgroup-splittingif the number of subgroups that it creates may be greater than
1, namely thefork statement and the two-sidedif statement with a private condition.

The activity regionof a groupG is the set of statements that may be executed by the
processors ofG whenG is their currently active group: a leaf of the group hierarchy tree.
This includes all statements from the creation ofG to the termination ofG, excluding the
activity regions of subgroups ofG and the bodies offarm statements (if there are any).

The live regionof a groupG denotes all statements whereG may exist, either active or
inactive. Hence, it can be defined recursively as the union of the activity region ofG, all farm
bodies in the activity region ofG, and the live regions of all subgroups ofG.

8If join statements (see Section 4.2.9) are executed, the group hierarchy forms aforestrather than a tree.
As this difference is not important for the following discussions, we omit it for simplicity of presentation.

138 Chapter 4. Design of Parallel Programming Languages

Construct Region # sub- Redefi- Sets Ranks See
groups nes@ $ $$ Section

fork(k;@=...;) stmt; Synchronous k
p

—
p

4.2.6
if(prcond) stmt; Synchronous 1

p
to 0 —

p
4.2.6

if(prcond) stmt; else stmt; Synchronous 2
p

to 0/1 —
p

4.2.6
loop with private exit condition Synchronous 1 — —

p
4.2.6

call of a synchronous function Synchronous 1 — —
p

4.2.6

start stmt; Asynchronous 1
p

to 0
p p

4.2.5
or straight

join(...) stmt; Asynchronous 1
p

to 0
p p

4.2.9

TABLE 4.3: Summary of the subgroup-creating constructs inFork.

Group ID @, Group-Local Processor ID$, and Group Rank $$

Each group has a (shared) integer group ID, which is primarily intended to distinguish the
subgroups of a group. Atstart , join , and at the beginning of program execution, the
group ID of the created group is set to 0. Group-splitting constructs set the subgroup IDs
consecutively from 0 to the number of subgroups minus one. At the other subgroup-creating
constructs, the subgroup inherits the group ID of its parent group. A processor can inspect the
group ID of its current group by the predefined constant shared integer variable@.

Within a group, processors are ranked automatically from 0 to the group size minus one.
This group rankcan be inspected by the predefined constant private integer variable$$. At
each (implicit or explicit) groupwide barrier synchronization,$$ is kept up-to-date. Hence,
$$ may change at a barrier if a processor leaves the group earlier.

In some cases the programmer prefers to rely on a groupwide processor numbering that
does not change, even if some processors leave the group. For these cases, there is thegroup-
relative processor ID, which is accessible via the predefined private integer variable$. At
program start,$ is initialized to the processor ID__PROC_NR__. start andjoin renum-
ber $ from 0 to the group size minus one. At all other subgroup-creating constructs, the$
value of the subgroups is just inherited from the parent group; the programmer is responsible
to renumber them explicitly if desired.

The group ID@and the group-relative processor ID$ are automatically saved when de-
activating the current group, and restored when reactivating it.

Synchronousif Statements with Private Condition

Sharedif or loop conditions do not affect the strict synchronicity invariant, as the branch
taken is the same for all processors executing it.

Now consider anif statement with a private condition (or “private if statement” for short),
such as

if ($$ % 2)
statement1; // then-part (condition was true)

4.2. Fork Language Design 139

1G

0

G G

GG

G

0G

1

(inactive)

(active) subgroups
(active)

current group

program point 1 program point 2

else

if (privatecondition)

 statement1;

 statement0;
program point 2

current group
(active)

live region of subgroup

live region of subgroup }

}
program point 1

FIGURE 4.6: A synchronous two-sidedif statement with a private condition causes the cur-
rent group to be split into two subgroups. Processors are represented by small rectangular
boxes. At program point 1, the subgroups are created and entered. At program point 2, the
subgroups are left by their processors and terminate.

else
statement0; // else-part (condition was false)

Maintaining the strict synchronicity invariant means that the current processor groupG
must be split into two subgroupsG1 andG0 (see Figure 4.6); the processors for which the
condition evaluates to a nonzero value form the first subgroupG0 and execute thethen part
while the remaining processors form subgroupG1 and execute theelse part. The parent
groupG is deactivated; its available shared address subspace is subdivided among the new
subgroups.

Each subgroup can now declare and allocate shared objects relating only to that subgroup
itself. Also, the subgroups inherit their group-relative processor IDs$ from the parent group
but may redefine them locally. The group IDs@are automatically set to 0 forG0 and 1 for
G1.

When both subgroupsG0 andG1 have finished the execution of their respective branch,
they are released and the parent groupG is reactivated by an explicit groupwide barrier syn-
chronization of all its processors.

Nested synchronousif statement with private conditions result in nested subgroup cre-
ation, seePractical PRAM Programming[B1, Chap. 5] for an example. Nesting may also
be applied recursively; a larger example for the application of the two-sidedif statement for
recursive dynamic group splitting can also be found in that book [B1, Chap. 5], namely, a
parallel implementation of the Quickhull algorithm [PS85].

Synchronous Loops with Private Exit Condition

As in C, the following loop constructs are available inFork:

while (e) S
do S while (e);
for (e1; e2; e3) S

140 Chapter 4. Design of Parallel Programming Languages

GG G

G’
current group current group

(active) (active)subgroup of the

(active)
iterating processors

(inactive)
program point 1 program point 2

subgroup creation subgroup exit

 (privatecondition)while

 statement;
program point 2

program point 1

FIGURE 4.7: In synchronous mode, a loop (here:while) with a private exit condition causes
the current groupG to form a subgroupG0 for the iterating processors.

where thefor loop is just an abbreviation for

e1; while (e2) f S; e3; g
If the loop exit condition (e or e2, respectively) is shared, all processors will perform the

same number of iterations and thus remain synchronous.
On the other hand, if the loop exit condition is private, the number of iterations executed

will generally vary for the processors of the groupG executing the loop. Hence, a subgroup
G0 of G must be created for the iterating processors (see Figure 4.7), as barriers within the
loop body should address only those processors that are still iterating in the loop.

Once the loop iteration condition has been evaluated to zero for a processor in the iterating
groupG0, it leavesG0 and waits at the end of the loop to resynchronize with all processors
of the parent groupG. At loops it is not necessary to split the shared memory subspace of
G, since processors that leave the loop body are just waiting for the last processors ofG to
complete loop execution.

Note that the evaluation of the loop exit condition and, in the case of thefor statement,
the incremente3, are done by the iterating subgroup, not by the parent group.

As an illustration, consider the following synchronous loop

pr int i;
for (i=$$; i<n; i+=#) a[i] + = c * b[i];

If the loop is executed byp processors, the private variablei of processork, 0 � k � p�1,
iterates over the valuesk, k + p, k + 2p, and so on. The whole index range from 0 ton� 1 is
covered because the involved processors are consecutively ranked from 0 top� 1. Note that
the access to the group size# in the increment expression does not harm here, as it is here
equal to the parent group sizep for all but the last iteration. Nevertheless, if some processors
leave the group bybreak , this may no longer be the case. In that case,p should be assigned
to a temporary shared variable before executing the loop.

In contrast to asynchronous loops, the use ofcontinue is not permitted in synchronous
loops.

4.2. Fork Language Design 141

Calls to Synchronous Functions

A synchronous call to another synchronous function may cause a divergence of control flow if
processors in a subgroup created during execution of the called function leave it by areturn
statement while other subgroups continue to work on that function. Hence, a single subgroup
for the calling processors must be created, and there is an implicit barrier synchronization
point immediately after the program control returns to the calling function. If the called
function is statically known and such a situation cannot occur, the subgroup construction and
synchronization can be omitted.

The fork Statement

Splitting into subgroups can, in contrast to the implicit subdivision at private branch condi-
tions, also be done explicitly, by thefork statement9 that gave the entire language its name.
The semantics of

fork (e1; @= e2; $= e3) <stmt>

is as follows. First, the shared expressione1 is evaluated to the number (say,g) of subgroups
to be created. Then the current leaf group is split into that many subgroups, whose group
ID’s @are indexed0; :::; g � 1 (see Figure 4.8). Evaluating the private expressione2, every
processor determines the index of the newly created subgroup it wants to become a member
of. Processors that evaluatee2 to a value outside the range0; :::; g � 1 skip<stmt> and wait
at the implicit barrier synchronization point at the end of<stmt> . The assignment syntax
for the second parameter offork enlights the fact that the group IDs are redefined for the
subgroups. Finally, by evaluating the private expressione3, a processor can renumber its
current group-relative processor ID within the new leaf group. The assignment to$, though,
can also be omitted if renumbering$ is not required. Note that empty subgroups (with no
processors) are possible; an empty subgroup’s work is immediately finished, though.

Continuing, the parent group is now deactivated. Its shared memory subspace is parti-
tioned intog slices, each of which is assigned to one subgroup. Thus, each new subgroup has
now its own shared memory subspace.

Then, each subgroup continues by executing<stmt> ; the processors within each sub-
group work synchronously, but different subgroups can choose different control flow paths.

After a subgroup has completed the execution of the body<stmt> , it is abandoned. All
processors of the parent group are synchronized by an exact barrier; the parent group is then
reactivated as the current leaf group. The shared memory subspaces of the former subgroups
are re-merged and can now be overwritten by the parent group.

Finally, the statement following thefork statement is executed again synchronously by
all processors of the parent group.

9Also, the keywordfork was chosen for historical reasons [HSS92]. From today’s perspective, something
like split would be better suited because this avoids confusion with the UNIXfork mechanism that denotes
spawning a child process from a single process, while inFork the number of processes remains constant and
only the organization of them into groups is rearranged. Again, if the programmer prefers a different keyword,
the C preprocessor can be used.

142 Chapter 4. Design of Parallel Programming Languages

@=0 @=2@=1 @=g−1

G G G G0 1 2 g−1

(inactive)

(active)

(active) (active)
current group current group

subgroups
...

fork (g; @ = fn($$); $=$$)

 statement;

program point 2program point 1

subgroup creation subgroup exit

program point 1

program point 2

FIGURE 4.8: Thefork statement splits groupG into g subgroupsG0, G1, ...,Gg�1.

Another example for a parallel divide-and-conquer algorithm, here implemented using the
recursive application of thefork statement, is the parallel drawing of fractals10 known as
Koch curves[Man82]. Koch curves consist of a polygonal chain of straight-line segments. A
Koch curve of degreed is obtained recursively by replacing a straight-line segment in a curve
of degreed � 1 by an appropriately scaled copy of a special curve, the so-called generator
pattern. The procedure is initialized by an initiator figure as a Koch curve of degree zero (see
Figure 4.9).

Drawing a Koch curve of degreeDEGREEin parallel is straightforward using the recursive
Fork function Koch given in Figure 4.10, which refines a straight line segment connecting
two points(startx,starty) and(stopx,stopy) . The shared parameterlevel in-
dicates the current level of recursive refinement.

The routineline(x1; y1; x2; y2; c) plots in parallel a line connecting two points(x1; y1)
and (x2; y2) with color c. This and the other required graphics routines are declared in
graphic.h and summarized in [B1, Appendix D]. The constantfactor may be used
to distort the curve; its default value is0.33 .

10The reader is referred to Section 10.18 of the textbook by Hearn and Baker [HB94] for an introduction to
fractals in computer graphics.

FIGURE 4.9: Koch curves of degrees 0, 1, 2, and 3 for a straight-line segment initiator (left
upper diagram). The generator pattern is here identical to the degree 1 curve (right upper
diagram).

4.2. Fork Language Design 143

sync void Koch (sh int startx, sh int starty,
sh int stopx, sh int stopy, sh int level)

{
if (level >= DEGREE) { /*reach the limit of recursion*/

line(startx, starty, stopx, stopy, level+2, 1);
return;

} /* else: another recursion step */
if (#<4)

seq seq_Koch(startx, starty, stopx, stopy, level);
else {

sh int x[5], y[5], dx, dy;
seq { /* linear interpolation: */

dx = stopx - startx; dy = stopy - starty;
x[0] = startx; y[0] = starty;
x[1] = startx + (dx/3); y[1] = starty + (dy/3);
x[2] = startx + dx/2 - (int)(factor * (float)dy);
y[2] = starty + dy/2 + (int)(factor * (float)dx);
x[3] = startx + (2*dx/3); y[3] = starty + (2*dy/3);
x[4] = stopx; y[4] = stopy;

}
fork (4; @=$$%4;)

Koch(x[@], y[@], x[@+1], y[@+1], level + 1);
}

}

FIGURE 4.10: The recursive core routine for drawing Koch curves.

Final Remarks

A dual point of view to the hierarchical group concept and the synchronous execution mode in
Fork is the concept ofparallel processes. In contrast to common sequential processes known
from sequential programming systems, a parallel process is executed concurrently by the pro-
cessors of a group. Determinism is guaranteed by exact synchronicity. Group splitting is
analogous to spawning more processes—where now the child processes are parallel processes
with a correspondingly lower degree of available parallelism since the set of processors is also
subdivided across the subgroups.

4.2.7 Pointers and Heaps

Pointers

The usage of pointers inFork is as flexible as in C, since all private address subspaces have
been embedded into the global shared memory. In particular, the programmer does not have to
distinguish between pointers to shared and pointers to private objects, in contrast to some other
parallel programming languages likeC� [RS87], where the sharity of the pointee of a pointer
also must be declared and statically checked at assignments. Shared pointer variables may

144 Chapter 4. Design of Parallel Programming Languages

point to private objects and vice versa; the programmer is responsible for such assignments
making sense. Thus

sh int *sharedpointer;

declares a shared pointer that may point either to a private or to a shared location.
For instance, the following program fragment

pr int privatevar, *privatepointer;
sh int sharedvar;
privatepointer = &sharedvar;

causes the private pointer variableprivatepointer of each processor participating in this
assignment to point to the shared variablesharedvar .

SHARED MEMORY
privatevar privatevar

privatepointer privatepointer

sharedvar

sharedpointer

subspace for shared objects private subspace
of processor 0

private subspace
of processor 4095

....

....

Accordingly, if all processors execute simultaneously the assignment

sharedpointer = &privatevar; // concurrent write access,
// result is deterministic

the shared pointer variablesharedpointer is made point to the private variablepriva-
tevar of the processor that finally got its value stored; on theSB-PRAM this is the processor
with the highest write priority participating in this assignment.

SHARED MEMORY
privatevar privatevar

privatepointer privatepointer

sharedvar

sharedpointer

subspace for shared objects private subspace
of processor 0

private subspace
of processor 4095

....

....

Hence, a shared pointer variable pointing to a private location nevertheless represents a
sharedvalue; all processors belonging to the group that declared that shared pointer see the

4.2. Fork Language Design 145

sameprivate objectprivatevar through that pointer. In this way, private objects can be
made globally accessible. Note that the compiler automatically inserts code that converts the
potentially BASE-relative address&privatevar to an absolute address, such that it defines
a unique memory location.

Heaps

Fork supplies three kinds of heaps: one permanent, private heap for each processor; one
automatic shared heap for each group; and a global, permanent shared heap.

Space on theprivate heapof a processor can be allocated and freed by the asynchronous
functionsmalloc() andfree() known from C.

Space fork memory words on thepermanent shared heapis allocated by calling the
shmalloc() function:

void *ptr = shmalloc(k);

and a pointerptr to the allocated block is returned. If there is not enough permanent shared
heap memory left over, an error message is printed, and a NULL pointer is returned. Note
that each processor callingshmalloc(k) allocates a separate block of lengthk .

Shared memory blocks allocated byshmalloc() can be freed and reused. Such a block
pointed to byptr is freed by calling the asynchronous functionshfree() :

shfree(ptr);

If reuse of a permanent shared memory block isnot intended, a faster way of allocating it
uses thealloc() routine:

void *ptr = alloc(k);

Be aware thatshfree() must not be applied to blocks allocated byalloc() ; the
program may crash in this case.

Thegroup heap, which is accessible only in synchronous regions, is intended to quickly
provide temporary shared storage blocks that are local to a group. Consequently, the life range
of objects allocated on the group heap by the synchronousshalloc() function

sh void *sptr = shalloc(k);

is limited to the life range of the group by which thatshalloc() was executed. Thus, such
objects are automatically removed if the group allocating them is released, in the same way as
the local variables of a function allocated on the runtime stack cease to exist when the function
terminates. In this way, the group heap is really something in between a parallel stack and a
parallel heap.

For better space economy in the group heap, there is the synchronous functionshall-
free() that is applicable in synchronous functions. A call

shallfree();

146 Chapter 4. Design of Parallel Programming Languages

freesall objectsshalloc ed so far in the current (synchronous) function.
Note also the following important difference betweenshmalloc andshalloc . If p

processors callshalloc() concurrently, each processor obtains a copy of the address ofone
allocated block. In contrast, ifp processors callshmalloc() concurrently, each processor
obtains an individual pointer to an individually allocated block, that is,p blocks are allocated
altogether.

Pointers to Functions

Pointers to functions are also supported. The synchronicity and the sharities of the parameters
must be declared when declaring the pointer, and at assignments, these are statically checked.
Type casting is possible as far as allowed in C, but the declared synchronicities and parameter
sharities must be identical.

Special attention must be paid when using private pointers to functions in synchronous
mode:
sync int fp_example (..., pr void (*fp)(void), ...)
{ ...

fp(); // ! this may call several different functions!
... // ! call to *fp is casted to asynchronous mode

}
Since each processor may then call a different function (and, in general, it is statically

not known which one), a synchronous call to a function using a private pointer would cor-
respond to a huge switch over all functions possibly being called, and maintaining the strict
synchronicity invariant would require to create a separate subgroup for each possible call
target—a tremendous waste of shared memory space! For this reason, synchronous calls to
synchronous functions via private pointers are forbidden. If the callee is asynchronous, the
compiler automatically switches to asynchronous mode for the call and emits a warning. Pri-
vate function pointers may thus only point toasync functions.

In contrast, shared function pointers may also point to synchronous functions, as control
flow is not affected:

sync int fp_example (..., sh sync void (*fp)(void), ...)
{ ...

fp(); // all processors of the group call the same function
...

}

4.2.8 Exploring the Asynchronous Mode

The barrier Statement

The statement

barrier;

forces a processor to wait until all processors of its current group have also reached abar-
rier statement. Generally these need not be identical in the program text, as processors may

4.2. Fork Language Design 147

follow individual control flow paths in asynchronous mode, but in any case each processor
of the group should execute the same number ofbarrier s before exiting the asynchronous
region (or the entire program), to avoid deadlocks and unforeseen program behavior.

Critical Sections, Locks, and Semaphores

A critical section is a piece of code that may be executed by at most one processor at any
point of time. If a processor wants to execute the critical section while another processor is
working inside, the processor must wait until the critical section is free.

Critical sections generally occur when shared resources such as files, output devices like
screen or printer, or shared memory objects like shared variables and shared heap objects
are accessed concurrently. If these concurrent accesses are not protected by some arbitrating
mechanism, nondeterminism (also calledrace conditions) may occur, which means that the
result of a program may depend on the relative speed of the processors executing it.

In a general sense, asemaphoreis a shared program object accessed according to a safe
protocol in a deterministic way. More restricted definitions assume that semaphores be simple
unsigned integer (i.e., memory-word-sized) variables that are only accessed by atomic oper-
ations. Semaphores are useful for many purposes. In this section we consider three cases
where semaphores are used: (1) making the execution of critical sections deterministic by re-
stricting access to a critical section to a fixed set of processors only, (2) for user–coded barrier
synchronization, and (3) for dynamic loop scheduling. More examples of using semaphores
will follow in the subsequent chapters of this book.

A lock is a binary semaphore variable used to guarantee deterministic execution of a crit-
ical section: If all processors follow a well-defined locking/unlocking protocol based on this
variable, only one processor is allowed to be inside a critical section at any point of time.
Thus, access to the critical section is sequentialized. This is also calledmutual exclusion, and
for this reason locks are also known asmutexvariables.

Simple locks In the simplest case, a lock can be realized as a shared (integer) variable with
two possible states: 0 (UNLOCKED) and 1 (LOCKED). Initially it is UNLOCKED. A critical
sectionS is protected by forcing all processors to wait at the entry ofS until the lock is
UNLOCKED. As soon as a processor manages to enterS, it sets the lock toLOCKED, with the
goal of prohibiting entry for all other processors attempting to enterS. When the processor
leavesS, it resets the lock toUNLOCKED.

However, we must avoid the situation that multiple processors evaluate the condition
(lock != UNLOCKED) simultaneously, such that all of them would read a zero value and
enter the critical section. To avoid this problem with simultaneous or nearly simultaneous
read and write accesses to shared memory locations, the combination of reading the (old)
value (UNLOCKED) and writing the new one (LOCKED) must beatomic for each processor,
that is, at simultaneous accesses by several processors, only one of them reads the old value
while the other ones read the new one (or, if different values are written, each processor also
reads a different value). This is a classical problem of parallel processing. Atomic operations
[GLR83] such astest&set, fetch&add, or compare&swap, are supported by hardware on most

148 Chapter 4. Design of Parallel Programming Languages

#include <fork.h>
#include <io.h>

#define UNLOCKED 0
#define LOCKED 1

sh int lock = UNLOCKED;

main()
{

if (__PROC_NR__==0)
printf("Program executed by %d processors\n\n",

__STARTED_PROCS__);
barrier;
while (mpmax(&lock,LOCKED) != UNLOCKED) ;
printf("Hello world from P%d\n", __PROC_NR__); //crit. sect.
lock = UNLOCKED;
barrier;

}

FIGURE 4.11: Mutual exclusion for the critical section is protected by a lock variablelock .
All accesses tolock are atomic. If executed concurrently,mpmax() returns 0 (UNLOCKED)
only for one processor, iflock wasUNLOCKEDbefore, andLOCKED(1) in all other cases.
When usingmpmax, it is sufficient ifLOCKED> UNLOCKED.

systems.11 In Fork, thempadd() operator introduced in Section 4.2.4 can be used immedi-
ately for atomicfetch&add, and thempmaxoperator for atomictest&set. In the program of
Figure 4.11 we usempmax() for locking.

And we get the desired output, where theHello world messages are not intermixed
[B1, Chap. 5] but printed consecutively in separate lines:

PRAM P0 = (p0, v0)> g
Program executed by 4 processors

Hello world from P0
Hello world from P1
Hello world from P2
Hello world from P3
EXIT: vp=#0, pc=$00000214
EXIT: vp=#1, pc=$00000214
EXIT: vp=#2, pc=$00000214
EXIT: vp=#3, pc=$00000214
Stop nach 24964 Runden, 713.257 kIps
0214 18137FFF POPNG R6, ffffffff, R1
PRAM P0 = (p0, v0)>

11Software realizations are possible but generally less efficient in practice (see Zhang et al. [ZYC96] for a
survey of software locking mechanisms).

4.2. Fork Language Design 149

Comparing this with the version without locking, we see that the number of machine
cycles required by the program has now considerably increased as the execution of the critical
section is sequentialized.

The mechanism described here is made available inFork as a data type calledsimple lock

typedef int simple_lock, *SimpleLock;

which is predefined infork.h . The following functions resp. macros for simple locks are
defined in theFork standard library:

SimpleLock new_SimpleLock(void);

creates a newSimpleLock instance on the permanent shared heap and initializes it to a zero
value. This should be done before it is used for the first time.

simple_lock_init(SimpleLock sl);

initializes an already allocatedSimpleLock instancesl to a zero value. This should be
done before it is used for the first time. A simple locksl is acquired by

simple_lockup(SimpleLock sl);

which is equivalent to

while (mpmax(sl,LOCKED) != UNLOCKED) ;

and it is released by

simple_unlock(SimpleLock sl);

which resets the integer variable pointed to bysl to UNLOCKED.
Figure 4.12 illustrates the usage of these functions at a rewritten version of theHello

world program.
When using mutual exclusion locks, the programmer must be particularly careful. For in-

stance, if theunlock operation is skipped by some processor (e.g., because its program con-
trol jumps across it, or the programmer has just forgotten to insert theunlock , or unlock s
the wrong lock variable), the subsequent processors would wait forever in theirlockup call.
Such a situation is called adeadlock.

Another common source of deadlock is unsuitable nesting of critical sections. In princi-
ple, critical sections may be nested, for example, if a processor needs exclusive access to two
or more shared resources. However, problems arise if such a nested critical section is not con-
tiguous in the program, or, conversely spoken, if several pieces of the program are protected
by the same lock variable.

Chapter 5 ofPractical PRAM Programmingexplains how deadlocks can occur and how
they can be avoided.

150 Chapter 4. Design of Parallel Programming Languages

#include <fork.h>
#include <io.h>

#define UNLOCKED 0
#define LOCKED 1

sh simple_lock lock;

main()
{

simple_lock_init(&lock);
if (__PROC_NR__==0)

printf("Program executed by %d processors\n\n",
__STARTED_PROCS__);

barrier;
simple_lockup(&lock);

printf("Hello world from P%d\n", __PROC_NR__);
simple_unlock(&lock);
barrier;

}

FIGURE 4.12: A version of theHello world program that uses the simple lock data struc-
ture ofFork.

Fair locks A simple lock sequentializes the accesses to a critical section. However it is not
guaranteed that processors will get access in the original order of their arrival at thelockup
operation. A processor may even be forced to wait quite a long time while other processors
coming later are served earlier. Thus, theSimpleLock is notfair. This may become critical
if there exists an upper limit for the completion time of the processor’s computation, as in
real-time applications. Exceeding this limit is calledstarvation.

A fair lock sequentializes accesses while granting access to the critical section in the order
of arrival of the processors at the lock acquire operation. For theFork programmer there is
the data type

typedef struct {...} fair_lock, *FairLock;

predefined in<fork.h> . A newFairLock instance is created and initialized by the con-
structor function

FairLock new_FairLock(void);

while an already allocated fair lock can be reinitialized by

void fair_lock_init(FairLock);

Again, these should be called before the first use of theFairLock object. The lock acquire
operation

4.2. Fork Language Design 151

void fair_lockup(FairLock);

causes the calling processor to wait until it is its turn to enter the critical section. By the unlock
operation

void fair_unlock(FairLock);

the critical section is left.
The space required to store aFairLock object is two memory words, twice the space of

a simple lock. The run time overhead incurred by thefair lockup and thefair unlock
operation is practically the same as that forsimple lockup resp.simple unlock .

Reader–writer locks In some cases the processors can be classified into two types, accord-
ing to their intended actions in the critical section: thereadersthat “only” want to read a
shared resource but leave it unchanged, and thewriters that want to write to it.

The reader–writer lock is useful when multiple readers should be allowed to work in
the critical section at the same time, and mutual exclusion is required only to sequentialize
different write accesses with respect to each other, and write and read accesses. Different read
accesses need not be sequentialized with respect to each other.

The current status of a reader–writer lock can thus be described as a pair(w; r) 2 f0; 1g�
f0; :::; pg, wherew is a counter indicating the number of writers currently working inside
the critical section andr is a counter indicating the number of readers currently working
inside the critical section. Readers may enter only ifw = 0, while writers may enter only if
w = 0 ^ r = 0. Note that access tow andr must be atomic.

The reader–writer lock data type

typedef struct {...} rw_lock, *RWLock;

is implemented in theFork standard library and declared infork.h .
A newRWLockinstance can be created by the constructor function

RWLock new_RWLock(void);

while an existingRWLockinstancel can be reinitialized by

void rw_lock_init(RWLock l);

The lock acquire operation

void rw_lockup(RWLock l, int mode);

with mode 2 f RW_READ, RW_WRITEg, causes the executing processor to wait until
the critical section is free for it, depending on whether its intended action is a read access
(mode=RWREAD) or write access (mode=RWWRITE).

void rw_unlock(RWLock l, int mode, int wait);

152 Chapter 4. Design of Parallel Programming Languages

releases a reader–writer lockl held by the executing processor in modemode2 fRW_READ,
RW_WRITEg.

The implementation ofRWLockfor Fork (see Section 5.1.11) is apriority reader–writer
lock that prioritizes the writers over the readers; fairness is guaranteed only among the writers.
If there are many write accesses, the readers may suffer from starvation. In order to avoid this
by “ranking down” the writers’ advantage, the correspondingrw unlock function offers a
tuning parameterwait that specifies a delay time for the writers at exit of the critical section
before allowing a new writer to enter. Hence, increasingwait improves the chance for
readers to enter the critical section.

A RWLock instance requires 3 words of memory. The locking and unlocking routines
incur significantly more time overhead than these for simple and fair locks, depending on the
mode parameter.

Reader–writer–deletor locks In some situations it may happen that a lock is part of a non-
persistent data structure, for instance, in data structures with delete operations (see, e.g., the
parallel skip list described inPractical PRAM Programming[B1,Chap. 7.4]. In that case,
the lock itself will be subject toshfree operations and potentially reused by subsequent
shmalloc operations. Hence, all processors spinning on that lock must be immediately no-
tified that theirlockup operationfails as a result of lock deletion, thus they can resort to
some recover action, such as restarting the last transaction from the beginning.

We define an extension of the reader–writer lock for this case, the reader–writer–deletor
lock (RWDLock). Processors are classified into readers, writers, and deletors, where the
deletors are a special case of writers who do not (only) perform a modification of the protected
data structure but also delete a part of it that includes theRWDLockinstance.

The data type

typedef struct {...} rwd_lock, *RWDLock;

is declared infork.h . A newRWDLockinstance is created by calling the constructor func-
tion

RWDLock new_RWDLock(void);

The lock acquire operation

int rwd_lockup(RWDLock l, int mode);

with mode2 f RW_READ, RW_WRITE, RW_DELETEg, causes the executing processor to
wait until the critical section is free for it, depending on whether its intended action is a read
access (mode is RWREAD), write access (mode is RWWRITE), or delete access (mode is
RWDELETE). If the lockup operation succeeds, a nonzero value is returned. In the case of
failure, the function returns 0.

void rwd_unlock(RWDLock l, int mode, int wait);

releases the reader–writer–deletor lockl that the executing processor held in modemode2 f
RW_READ, RW_WRITE, RW_DELETEg. The parameterwait is used as in Section 4.2.8.

An RWDLockinstance uses 4 words of memory. The overhead of locking and unlocking
is comparable to that ofRWLocks.

4.2. Fork Language Design 153

User-defined barrier synchronization A barrier synchronization point causes the proces-
sors executing it to wait until the last processor has reached it. Thebarrier statement of
Fork provides an exact barrier synchronization, which additionally guarantees that all pro-
cessors continue with program execution at exactly the same clock cycle. An inexact barrier
(which thus makes sense only in asynchronous regions) does not require this additional con-
dition.

Such an inexact barrier can be realized by an integer semaphore. The initializiation is
again to be executed before any processor uses the semaphore:

sh unsigned int my_barrier = 0;

A processor reaching the barrier synchronization point atomically increments the sema-
phore and waits until the semaphore’s value reaches the total number of processors that should
execute this barrier, such as__STARTED_PROCS__:

syncadd(&my_barrier, 1); // atomic increment
while (my_barrier != __STARTED_PROCS__) ; // wait

From this simple implementation it also becomes obvious that a processor that jumped across
this piece of code would cause a deadlock, as the other processors would wait for it forever in
thewhile loop.

If the semaphoremy barrier should be reused for subsequent barrier synchronizations,
then, after continuing,my barrier must be reset to zero. However, this requires waiting
for a implementation-dependent (short) time after exiting thewhile loop, because otherwise
a processor leaving the while loop12 early may reset the semaphore before a “late” processor
has checked the exit condition, which would then read the new semaphore value zero—and
wait forever. Also the other processors would be waiting forever at the next synchronization
point; this is a deadlock.

In order to avoid this insecure solution, we implement areinitializing barrier [Röh96]
where a processor determines whether it is the last one to arrive at the barrier. If so, then it is
responsible for resetting the semaphore:

if (mpadd(&my_barrier, 1) != __STARTED_PROCS__ - 1)
while (my_barrier != __STARTED_PROCS__) ; // wait

else {
// executed by the processor arriving last:
while (my_barrier != __STARTED_PROCS__) ; // wait
my_barrier = 0;

}

Thewhile loop in thethen branch guarantees that no processor re-usesmy barrier
before its reinitialization has been completed. Thewhile loop in theelse branch seems to
be redundant, asmy barrier has then already reached the value__STARTED_PROCS__,

12Even an empty while loop takes a few machine cycles per iteration for checking the exit condition. As long
as we do not program explicitly in assembler, we cannot rely on specific execution times.

154 Chapter 4. Design of Parallel Programming Languages

but it is necessary to guarantee that the processor arriving last waits for at least one iteration,
in order to give the other processors enough time to check the loop exit condition and exit
their while loop before the semaphore is reset to zero.13

Example: dynamic loop scheduling

In asynchronous mode, integer semaphores can be used together with thempadd() operator
to program self-scheduling parallel loops. Loop scheduling is discussed in detail in [B1,
Chap. 7.1]; for now it is sufficient to know that a so-called self-scheduling loop is a loop
with independent iterations that are dynamically assigned to processors. Dynamic scheduling
generally achieves better load balancing than static scheduling if the loop iterations may differ
considerably in their execution times.

A shared loop iteration counter

sh int iteration = 0;

initialized to zero serves as a semaphore to indicate the next loop iteration to be processed.
A processor that becomes idle applies ampadd() to this iteration counter to fetch its next
iteration index:

int i; /* dynamic scheduling: */
...
for (i=mpadd(&iteration,1); i<N; i=mpadd(&iteration,1))

execute_iteration (i);

Hence, if for a processor its execution ofmpadd returns an iteration index greater than
N, it can leave the loop. The mechanism guarantees that each iteration inf0; :::; N � 1g is
executed exactly once. The only condition is thatN + p < 232 wherep denotes the number
of processors executing this loop.

Macros for parallel loop constructs in Fork

For common cases of one–, two– and threedimensional loops, there are several macros pre-
defined infork.h . Most of them are available in a statically scheduled as well as in a
dynamically scheduled variant.

Static scheduling composes sets of iterations top parallel tasks forp processors, either
blockwise, where a task consists of contiguous iterations, or cyclic, where taskj consists of
iterationsj, j + p, j + 2p, and so on, as applied theforall macro:

#define forall(i,lb,ub,p) for(i=$$+(lb);i<(ub);i+=(p))

Dynamic scheduling uses an integer semaphore as in Section 4.2.8.
The parallel loop constructs are described and compared inPractical PRAM Programming

[B1, Chap. 7.1]; we give here a short survey in Table 4.4.
13For the execution ofFork programs the operating system guarantees that processors are not interrupted

asynchronously, except for reasons that lead to immediate abortion of the execution of the program. Röhrig
[Röh96] describes a barrier mechanism handling the case where processors may be interrupted.

4.2. Fork Language Design 155

Parallel Dimen- Step Mapping to Distribution
loop construct sions size processors of iterations
forall 1 +1 static cyclic
Forall 1 > 1 static cyclic
forallB 1 +1 static blockwise
FORALL 1 � 1 dynamic (cyclic)
fork+forall 2 +1 static cyclic/cyclic
forall2 2 +1 static cyclic
Forall2 2 > 1 static cyclic
FORALL2 2 � 1 dynamic (cyclic)
forall3 3 +1 static cyclic

TABLE 4.4: Summary of macros for parallel loop constructs introduced inPractical PRAM
Programming[B1, Chap. 7.1].

4.2.9 Thejoin Statement

The join statement is a generalization of thestart statement. Whilestart expects all
STARTEDPROCS processors to synchronize and execute its body in synchronous mode,

join allows switching from asynchronous to synchronous mode with much more flexibility
and permits (nearly) arbitrary nesting of synchronous and asynchronous regions.

A useful analogy to understand the semantics of thejoin statement is abus stop. Imagine
a city with several excursionbus lines, each of which has one unique bus stop. One excursion
bus circulates on each bus line. At the door of each bus there is aticket automaton that sells
tickets when the bus is waiting. Tickets are numbered consecutively from 0 upward. All
passengers inside a bus form a group and behave synchronously. They can be distinguished
by theirrank of entering, namely, their ticket number. Each bus has abus driver, namely, the
passenger that entered first and thus obtained rank zero.

Let us now consider what happens at the bus stop. Passengers come by asynchronously
and look for the bus to join the excursion. If the bus isgone, they have the choice to either retry
andcontinuewaiting for the next bus tour of this line (if there is one), perhaps by individually
doing someother useful workmeanwhile, or to resign,breakwaiting and continue with the
next statement.

If the bus is not gone, it is waiting and its door is not locked. Hence the passenger can
get a ticket at the ticket automaton and enter. The first passenger entering the bus receives
ticket number 0; this person becomes the bus driver and does someinitialization work for the
bus excursion. The passenger waits as long as a certainstart conditiondoes not hold; in the
meantime, other passengers may enter the bus. Then the driver signals that the bus is about to
start and switches off the ticket automaton—thus no one can enter this bus any more. At this
point, the passengers inside still have the possibility to decide whether tostay insidethe bus
for the excursion, or whether they should immediately spring off the starting bus, for example,
if they feel that the bus is too crowded for them. After that, the door is definitely locked. The
passengers inside form agroup and behave synchronously during thebus tour. They can
allocate shared objects in the bus that are then accessible to all bus passengers during the tour.

156 Chapter 4. Design of Parallel Programming Languages

When the tour is finished and the bus returns, all passengers leave the bus at the bus stop and
proceed, again asynchronously, with their next work. The bus itself is cleaned and ready to
receive new passengers by reopening the ticket automaton.

The behavior described in this bus analogy is supplied inFork by the language construct

join (SMsize; startCond; stayInsideCond)
busTourStatement;

else missedStatement;

where

� SMsize is an expression evaluating to an integer that determines the size of the shared
stack and group heap (in memory words) for the group executing the bus tour. It should
be at least 100 for simple “bus tours.”

� startCond is an integer expression evaluated by the “driver” (i.e., the first processor
arriving at thejoin when the bus is waiting). The driver waits until this condition
becomes nonzero.

� stayInsideCond is an integer expression evaluated by all processors in the “excur-
sion bus.” Those processors for which it evaluates to zero branch to theelse part. The
others barrier-synchronize, form a group, and executebusTour in synchronous mode.

� startCond andstayInsideCond can access the number of processors that mean-
while arrived at thisjoin statement by the macro__NUM_PR__and their own rank
in this set of processors (their “ticket code”) by the macro__RANK__.

� busTourStatement is a synchronous statement.

� missedStatement is an asynchronous statement. It is executed by the processors
missing the “excursion bus” (i.e., arriving at thejoin when a group is currently operat-
ing in thejoin body) or springing off after testing thestayInsideCond condition.
Theelse part is optional.

� Inside theelse branch, processors may return to the entry point of thisjoin statement
by continue , and leave thejoin statement bybreak . This syntax corresponding
to loops in C is motivated by the fact that theelse clause indeed codes a loop that is
executed until the processor can participate in the following bus excursion or leaves the
loop bybreak .

� Theelse clause is optional; a missingelse clause is equivalent toelse break;

The passengers mentioned in the bus tour analogy are the processors. Eachjoin instruc-
tion installs a unique bus line with a bus stop at the place where thejoin appears in the
program. The start conditionstartCond is evaluated only by the bus driver processor. It
spins until a nonzero value is obtained. This condition may be used to model a time interval,
such as by incrementing a counter, or to wait for an event that must occur, such as for a min-
imum bus group size to be reached before the bus tour can start. ThestayInsideCond

4.2. Fork Language Design 157

condition is an integer expression that may evaluate to different values for different processors.
The start condition as well as the stay-inside condition may read the current value of the ticket
counter,__NUM_PR__, and the ticket number of the evaluating processor,__RANK__. The
bus driver allocates a chunk ofSMsize words of shared memory on the permanent shared
heap (see Section 4.2.7), where it installs a new shared stack and heap for the bus. This chunk
of memory is released when the bus tour terminates. The bus tour itself corresponds to the
bodybusTourStatement of the join instruction and is a synchronous region. When the
bus tour starts, the group local processor IDs$ of the processors remaining in the bus group
are automatically renumbered consecutively, starting at 0.

The optionalelse part may specify an asynchronous statementmissedStatement
that is executed by those processors that missed the bus and by those that spring off. Acon-
tinue statement occurring insidemissedStatement causes these processors to go back
to the bus stop and try again to get the bus, very similar tocontinue in loops. Correspond-
ingly, processors encountering abreak statement insidemissedStatement immediately
leave thejoin statement and proceed with the next work.

If no else part is defined, then all processors missing the bus or springing off the bus
leave thejoin statement and proceed with the next work. Hence, a missingelse part is
equivalent toelse break; .

As an example, consider the following code:

join(100; __NUM_PR__>=1; __RANK__<2)
// at least one, at most 2 passengers
farm pprintf("JOIN-BODY! $=%d\n",$);

else {
pprintf("ELSE-PART!\n");
continue; /* go back to join head */

/* break would leave it */
}

Note that a bus line can have only one entry point (i.e., the program point where thejoin
keyword appears) within the program. To ensure this, the programmer can encapsulate the
join in a function and call that function from several sites.

Bus tours of different bus lines can be nested. Recursion (directly or indirectly) to the
samebus line will generally introduce a deadlock because a processor would wait forever for
a bus whose return it is blocking itself just by its waiting.

The passengers inside a bus will generally have their origin in different former leaf groups.
The old group structure, as well as all shared local variables and objects allocated by that old
group structure, arenot visible during the bus tour. Global shared objects are always visible.

As soon asjoin statements are executed in aFork program, the group hierarchy forms a
forestrather than a tree, since each bus tour caused by ajoin statement installs a new root
group.

Example: Simulating thestart statement byjoin

Usingjoin , the programmer may specify an exact number of passengers expected, or only a
maximum or minimum number for them—or some other criterion esteemed relevant; any de-

158 Chapter 4. Design of Parallel Programming Languages

sirable constellation can easily be programmed usingstartCond andstayInsideCond
appropriately.

As an example, consider the semantics of thestart statement.start is just a special
case ofjoin ; it collectsall __STARTED_PROCS__available processors, synchronizes and
renumbers them, and executes astatement in synchronous mode. Thus, we may rewrite

start
statement;

as

join(100000; (__NUM_PR__ == __STARTED_PROCS__); 1)
statement;

where the bus is equipped with 100,000 words of shared memory taken from the permanent
shared heap. As the start condition depends on the current value of__NUM_PR__and no pro-
cessor will spring off, the bus tourstatement starts if and only if all__STARTED_PROCS__
processors have entered the bus. Anelse clause is not necessary here, as it would not be
reached by any processor.

Synchronous Parallel Critical Sections

Thejoin statement enables the implementation of a generalization of the (sequential) critical
section introduced in Section 4.2.8, namely,synchronous parallel critical sections.

Remember that a (sequential) critical section requires sequentialization to guarantee its
deterministic execution by multiple processors. On the other hand, the PRAM mode of com-
putation provides deterministic parallel execution. Hence, a synchronous statement executed
by at mostonegroup (and by no other processor) at any point of time will produce determin-
istic results. And just this condition is guaranteed by thejoin statement, where the parallel
critical section corresponds to thebusTourStatement —no other processor can join a bus
tour as long as the door is locked. They have to wait (at least) until the processors inside the
bus have finished their excursion, that is, have left the parallel critical section.

The question arises in which cases synchronous parallel critical sections may be the better
choice, compared to traditional sequentializing critical sections. The prerequisite for exploit-
ing the potential benefits of parallel critical sections—parallel speedup and/or the possibility
to apply more sophisticated and expensive algorithms—is the availability of a suitable parallel
algorithm for the problem to be solved in the critical section.

As an example let us consider a very simple shared memory allocation scheme where a
large slice of available shared heap memory is divided intoN equal-sized blocks. Pointers to
free blocks are kept in a queueavail . SinceN is a known constant, this queue is imple-
mented by a shared array, together with two integerslow andhigh . Indexlow % Npoints
to the first occupied cell inavail whereas indexhigh % N points to the first free cell.

sh void *avail[N]; /*array of N pointers*/
sh int high, low;

4.2. Fork Language Design 159

P 2P 1P 0 3 4095P time

.

.P

balloc(400)

balloc(20)

bfree(100)

bfree(10)

balloc(40)

bfree(40)

bfree(4)

balloc(50)

bfree(56)

balloc(17)

balloc(4)

bfree(50)

balloc(17)

balloc(300)

balloc(30)

balloc(40)
bfree(12)

bfree(500)

bfree(128)

balloc(300)

balloc(4)

FIGURE 4.13: Nearly simultaneous, asynchronous queries to the block heap memory allocator
may be collected and processed in parallel using thejoin statement.

Each processor works on its local task and sometimes issues a queryballoc() to
allocate orbfree to release a block of memory, see Figure 4.13 for illustration and Fig-
ure 4.15 for the test program. In order to implement operationsvoid bfree(void *p)
andvoid *balloc() , we introduce an auxiliary functionvoid *pcs(void *ptr,
int mode) with an extra argumentmode to distinguish between the two usages.

Now, functionpcs() is implemented using thejoin construct (see Figure 4.15). Es-
sentially, it consists in applying anmpadd operation to variablehigh (in casemode ==
FREE) resp. to variablelow . Nevertheless, one must handle the case that the queue is empty,
as no block can be delivered from an empty queue.

This routine should be contrasted to a conventional, asynchronous implementation that
protects access to the shared variableslow and high by locks (see Section 4.2.8). Note
that the simplicity of our problem somewhat favors the asynchronous implementation. The
runtime figures for both implementations, run with a varying number of processors, are given
in Figure 4.16. The breakeven point is here approximately at 128 processors. For smaller
numbers of processors, the overhead spent injoin and for maintaining exact synchronicity
during the bus tour outweighs most of the parallel speedup, and the density of queries over

/* modes of pcs: */
#define ALLOC 1
#define FREE 0

void bfree(void *p) {
pcs(p, FREE);

}

void *balloc() {
return pcs(NULL, ALLOC);

}

FIGURE 4.14: A simple test program for the implementation of a parallel critical section.

160 Chapter 4. Design of Parallel Programming Languages

void *pcs(void *ptr, int mode)
{

int t=0, my_index;
void *result = NULL;

join(1000; (t++ > 2); 1) {
if (mode == FREE) {

my_index = mpadd(&high, 1);
avail[my_index % N] = ptr;
/*insert ptr into queue of free blocks*/

}
if (mode == ALLOC) {

my_index = mpadd(&low, 1);
if (my_index >= high) { // can’t get a block

result = NULL;
mpadd(&low, -1); // correct value of low

}
else result = avail[my_index % N];

}
}
else continue;
return result;

}

FIGURE 4.15: An implementation of the parallel critical section in the block allocation exam-
ple that uses thejoin statement.

time is not dense enough to outperform the asynchronous implementation. For large numbers
of processors, the runtime for the asynchronous variant grows linearly in the number of pro-
cessors, as the sequentialization due to the sequential critical section dominates the execution
time.

Thejoin variant is likely to perform even better if the queries are not equally distributed
over time. If a burst of many nearly simultaneous queries appears within a small time interval,
these can be handled by a single bus tour.

The pcs example program could be extended for variable block sizes and a more so-
phisticated block allocation method (best fit). The list of free blocks is kept in a search tree,
ordered by increasing size, to enable fast access to the smallest block whose size is still greater
than or equal to the one demanded for byballoc() . In this way, a synchronous algorithm
can be developed that allows to process severalballoc / bfree queries (see Figure 4.13)
synchronously in parallel.

Other situations for the application ofjoin have been described inPractical PRAM Pro-
gramming[B1], such as synchronous bulk updating of a parallel dictionary based on 2-3 trees
[B1, Chap. 8], or parallel rehashing of a hashtable data structure [B1,Chap. 7].

4.2. Fork Language Design 161

p asynchronous usingjoin
1 5390 cc (21 ms) 6608 cc (25 ms)
2 5390 cc (21 ms) 7076 cc (27 ms)
4 5420 cc (21 ms) 8764 cc (34 ms)
8 5666 cc (22 ms) 9522 cc (37 ms)

16 5698 cc (22 ms) 10034 cc (39 ms)
32 7368 cc (28 ms) 11538 cc (45 ms)
64 7712 cc (30 ms) 11678 cc (45 ms)

128 11216 cc (43 ms) 11462 cc (44 ms)
256 20332 cc (79 ms) 11432 cc (44 ms)
512 38406 cc (150 ms) 11556 cc (45 ms)

1024 75410 cc (294 ms) 11636 cc (45 ms)
2048 149300 cc (583 ms) 11736 cc (45 ms)
4096 300500 cc (1173 ms) 13380 cc (52 ms) 0

50000

100000

150000

200000

250000

300000

0 500 1000 1500 2000 2500 3000 3500 4000

P
R

A
M

 c
yc

le
s

number of processors

asynchronous
using join

FIGURE 4.16: Timings on theSB-PRAM for the parallel shared block allocator. Each pro-
cessor submits threeballoc() resp.bfree() queries that are distributed randomly over
time. We compare an asynchronous implementation using simple locks (second/third column)
with a synchronous one usingjoin (fourth/fifth column). The measurements are taken on
theSB-PRAM simulator.

Alternatives and possible extensions forjoin

A major discussion in the design phase of thejoin statement was whether it should be a
static or a dynamic program construct. In both cases, a bus line is bound to a certain program
text location, namely where thejoin keyword appears. Finally, we decided in favor of the
former alternative, that is, each bus line has exactly one bus circulating on it, mainly because
this substantially simplified the allocation of the semaphore variables and other organizational
data structures necessary for the implementation ofjoin , and because this scenario is easier
to understand for the programmer, in particular for cases where thejoin appears in a loop or
in a recursive function.

The other alternative would mean that there be multiple buses circulating on the same
bus line. The total number of buses needs not be limited. A new bus can start whenever
“enough” (w.r.t. the wait condition) passengers have arrived at thejoin , regardless of the
number of buses that are already on tour. Hence, the organizational data structures for each
bus have to be allocated dynamically, and the programmer must take care of cases where
shared data structures may be simultaneously accessed by different bus groups of the same
join statement that are asynchronous with respect to each other.

In an object-oriented view, the concept of a bus line with a certain “bus tour” operation
could be regarded as a class, with a synchronous parallelrun method corresponding to the
bus tour. The circulating bus with its organizational data structures is then just an instance
of that class, that is, an object. The organizational data structures of a bus are, in the former
variant, associated with the class, and in the latter, with the object. This object-oriented view
has the advantage that one may declare, for instance, an array of bus lines. In order to avoid
intricate constructions, bus line objects should be declared and allocated statically and glob-
ally. Such a bus line array may indeed be helpful in practice. For instance, we investigated

162 Chapter 4. Design of Parallel Programming Languages

an improved asynchronous shared heap memory management (i.e., implementations of the
functionsshmalloc andshfree) with k-way parallel search lists for free memory blocks
of each size category; processors may be distributed over the sublists either statically or dy-
namically by randomization. If eventually multiple subsequentshmalloc calls by different
processors fail, for instance caused by unequal distribution of free blocks across thek heads,
the lists can be reorganized by a synchronous parallel operation on all lists of the same cat-
egory. If there arem different size categories, and thusm different bus lines are necessary,
the samejoin statement must be textually replicatedm times14, possibly in the body of a
switch statement with the category index as selector. This textual replication is not desirable
from a software engineering point of view. With an array of bus line objects, the replication
could be avoided, and the category index could be used as an index into the array of bus lines.

4.2.10 Programming Style and Caveats

In general,Fork offers a lot of comfort to the programmer. Nevertheless, there are some
problems and common pitfalls the programmer should take care of. These are partly inherent
to the language itself and motivated by the design goals of performance and generality, and
are partly due to weaknesses of the current implementation that are likely to disappear in a
future version of the compiler. We also discuss some aspects of good programming style that
may help to increase the clarity of aFork program and to avoid potential errors.

Absolute versus Relative Group Identifiers

The group ID@is intended to distinguish the different subgroups of a group with respect to
each other. Generally,Fork constructs that create a single subgroup cause the subgroup to
inherit its group ID@from its parent group. Only the group-splitting constructs, thefork
statement and the privateif statement, explicitly rename the group IDs of the subgroups.

If an absolutely unique group identifier is required for a groupG, for instance, at debug-
ging, we suggest concatenating all@values of all groups located on the path(G0; G0;0; :::; G)
from the rootG0 of the group hierarchy tree towardG that have been created by group-
splitting constructs, includingG itself. The resulting sequence of group IDs, maybe stored in
a dynamically allocated array, is a globally unique identifier forG, which can be easily seen
by induction.

Numbering of Group-Relative Processor Identifiers

In some situations one needs a consecutive numbering of the group-relative processor identi-
fiers$ from 0 to the group size minus one within the current group, for example, for simple
parallel loops:

int i;
sh int p = groupsize();
for (i=$; i<123; i+=p) pprintf("%d\n", i);

14In principle, only the header of thejoin statement must be replicated; the “bus tour” operation may be
factored out in a (synchronous) function, and the same can also be applied to theelse part.

4.2. Fork Language Design 163

Note that in this example, if consecutive numbering of$ does not hold, some iterations
may be left out while others may be executed multiple times.

In contrast to the group rank$$, consecutive numbering for$ is not enforced automat-
ically by Fork. Even if the programmer has renumbered$ at creation of a group, some
processors that initially belonged to the group may have left it earlier, such as by areturn
statement. Finally, the group-relative processor identifier$ can be modified arbitrarily by the
programmer. Hence, if consecutive numbering is required, we suggest using$$.

On the other hand, it is sometimes necessary to avoid changing the numbering of proces-
sors even if some processors leave the group. In these cases,$$ should not be used to identify
processors, as it may change accordingly. Instead, the programmer should, in time, fix the
desired processor ID, either by

sh int p = groupsize();
$ = $$;

or by explicit renumbering

sh int p = 0;
$ = mpadd(&p, 1); // compute p and renumber $ from 0 to p-1

Accessing Objects Shared by Different Groups

While all processors inside a leaf group operate strictly synchronously, different leaf groups
will, in general, work asynchronously with respect to each other. This may cause problems
when two different leaf groups want to access the same shared object. Such a shared object
may be either global or allocated by a common predecessor group of these groups in the group
hierarchy tree. If the accesses are not atomic, and at least one of the groups wants towrite to
such an object, the accesses to it become a critical section.

For instance, look at the test program in Figure 4.17:
Theif statement causes the root group to be split into two subgroups; these execute their

branches in parallel. Executing this program with four processors, we obtain

PRAM P0 = (p0, v0)> g
common.re = 23, common.im = 90
Stop nach 12779 Runden, 851.933 kIps

This is probably not what the programmer of this code had in mind; this programmer would
probably prefer that access tocommonbe atomic, which means thatcommonfinally has
either the valuef45,90 g or f23,17 g, depending on which of the groups did its assignment
last.

Such conflicts can again be managed using locks. Nevertheless, the implementation in-
troduced in Section 4.2.8 cannot be reused without modification, as all processors of a group
should get access to the critical section simultaneously and synchronously. Thus we need a
group lockmechanism.

A simple solution using the existing lock mechanisms may be to select for each group
one processor that should act as a representative for its group and be responsible for the

164 Chapter 4. Design of Parallel Programming Languages

sh struct cmplx_int {
int re;
int im;

} common;

void main(void)
{

start {
if ($ % 2) {

common.re = 45;
common.im = 2 * common.re;

}
else {

common.im = 17;
common.re = 23;

}
seq printf("common.re = %d, common.im = %d\n",

common.re, common.im);
}

}

FIGURE 4.17: Example for non-atomic, asynchronous access of a data structure by different
groups.

locking/unlocking mechanism. This is done by masking the locking/unlocking operations by
seq statements, as shown in Figure 4.18.
Now we get the desired output:

PRAM P0 = (p0, v0)> g
common.a = 45, common.b = 90
Stop nach 13179 Runden, 753.086 kIps

Jumps

All statements causing non-block-structured control flow, namely,goto , break , return ,
andcontinue , appear to be problematic with respect to synchronous execution, because
the jumping processors may miss to enter or leave groups on the “normal” way (via subgroup
construction or subgroup merge).

However, for jumps of typebreak , continue , andreturn , the target group is stat-
ically known: it is a predecessor of the current leaf group in the group hierarchy tree. For
break and return , the compiler generates additional code that guarantees that the pro-
cessors to exit the proper number of subgroups and that the strict synchronicity invariant is
maintained.continue is allowed only in asynchronous loops.

Jumps across synchronization points usually will introduce a deadlock. In particular,
goto jumps whose target is not in the current group’s activity range are strongly discour-
aged; the target group may not yet have been created at the time of executing the jump. Even
worse, the target group may not be known at compile time.

4.2. Fork Language Design 165

sh struct cmplx_int {
int re;
int im;
fair_lock fglock; /* used as a fair group lock */

} common;

void main(void)
{

start {
seq fair_lock_init(&(common.fglock));
if ($ % 2) {

seq fair_lockup(&(common.fglock));
common.re = 45;
common.im = 2 * common.re;
seq fair_unlock(&(common.fglock));

}
else {

seq fair_lockup(&(common.fglock));
common.im = 17;
common.re = 23;
seq fair_unlock(&(common.fglock));

}
seq printf("common.re = %d, common.im = %d\n",

common.re, common.im);
}

}

FIGURE 4.18: Asynchronous access to the group-global shared variablecommonby different
groups is protected by a group lock.

On the other hand, synchronousgoto jumps within the current group’s activity range
should not lead to problems, as all processors jump simultaneously to the same target position,
and will still reach the official release point of the group. For this reason,goto jumps are
under the programmer’s responsibility.

Shared Memory Fragmentation

As static program analysis for C (and thus also forFork) is generally hard, even a clever
compiler will be often unable to analyze the space requirements of the subgroups and thus,
following a worst-case strategy, assign equal-sized slices of the parent group’s shared memory
subsection to the child groups. Hence, it is not wise to have multiple, nestedfork or pri-
vateif statements on the recursive branch of a recursive procedure (e.g., parallel depth-first-
search), unless such a construction is unavoidable. Otherwise, after only very few recursion
steps, the remaining shared memory fraction of each subgroup will reach an impracticably
small size, which results in a shared stack overflow.

A programmer who statically knows that a group will consist of only one processor should
switch to asynchronous mode because this avoids the expensive overhead of continued sub-
group formation and throttling of computation by continued shared memory space fragmen-

166 Chapter 4. Design of Parallel Programming Languages

tation.

The asm Statement

As some older C compilers, the currentFork implementation offers theasm statement that
allows the inclusion of inline assembler sections directly into the C source.

asm() takes a constant string as argument; the string is directly copied to the assembler
file produced by the compiler. Errors in the assembler string will be reported by the assembler
prass .

Additionally, accesses to a local variable15 or function parametervar can be expressed in
this string as%var , as in the following example:

unsigned int rc = lock->readercounter;
asm("bmc 0\n\

gethi 0x40000000,r31 /*__RW_FLAG__*/\n\
syncor r31,%rc\n\
nop /*delay*/");

Fork admits this low-level programming with inline assembler for efficiency reasons, but
it should be used only as a last resort, as it makes programs less portable and less understand-
able. Moreover, it disables any compiler optimizations on that part of the program, since the
compiler does not really “understand” what happens inside theasm code—it just trusts the
programmer.

Short-Circuit Evaluation of &&and ||

Fork follows the C semantics of evaluating the binary logical operators&&and|| in a short-
circuit way. This means that, for instance, in

sync void crash (pr int a)
{

pr int c = a && foo(...);
...

}

the call tofoo() is not executed by the processors that evaluateda to a zero value. In sequen-
tial C programming, this may be a pitfall for programmers if side effects in the argument’s
evaluation or in the execution offoo() are not foreseen. In the synchronous mode ofFork,
this may additionally lead to unintended asynchronity and thus to race conditions, or even to
a deadlock iffoo() contains a synchronization point. As there exist obvious workarounds
to avoid such situations, the current implementation renounces on an explicit splitting of the

15In the current implementation this replacement mechanism works only for private and shared formal pa-
rameters, for private local variables, and for shared local variables defined at the top level of a synchronous
function. Global variables (private and shared) and block local shared variables cannot be resolved by this
method. These restrictions are caused by the fact that addresses of global variables cannot be generated within a
singleSB-PRAM instruction, and that block local shared variables do not have a unique addressing scheme.

4.2. Fork Language Design 167

current group into subgroups to maintain strict synchronicity. Rather, the compiler emits a
warning in this case.

A straightforward workaround would be to rewrite the logical expression above as

sync void no_crash (pr int a)
{

pr int c;
if (a) /*group splitting*/

c = foo(...);
else c = 0;
...

}

As an alternative, one may, if the side effects of short-circuit evaluation are not explicitly
desired, replace a logical operationA&&Bby the equivalent expression

((A?1:0)*(B?1:0))

and the logical operationA||B by the equivalent bitwise operation

(A|B)?1:0)

which are free of race conditions.
Furthermore, one may, if possible, switch to asynchronous mode during the evaluation of

the logical expression iffoo() could be rewritten as an asynchronous function.

4.2.11 Graphical Trace File Visualization

Fork offers the possibility to trace and visualize program runs.
A (trace) eventis a tuple(typ, pid, t; g) that denotes for a processorpid belonging to a

current groupg a change in the type of its activity totyp at timet. Possible types of activity
during the execution ofFork programs are: (1) doing “useful” work, (2) waiting at barriers,
(3) waiting at lock acquire operations, and (4) group reorganization. The user may define
further events that may be of interest for the application program, such as sending or receiving
messages, accesses to user-defined data structures, shared memory allocation, etc. Events that
occur during program execution within a user-defined time interval are recorded in a central
trace bufferthat can later be written to a file and processed further (post-mortem analysis).

In order to activate the tracing feature, the user program must be compiled and linked with
the -T option. The program is then instrumented with additional code that records for each
event the values oftyp, pid, t, andg, and stores them in the trace buffer.

The start and endpoints of tracing can be set arbitrarily in the source program, as follows:

start {
initTracing(100000); // allocates central trace buffer
... (no tracing here)
startTracing(); // starts tracing

168 Chapter 4. Design of Parallel Programming Languages

void main(void)
{

start {
initTracing(10000);
startTracing();
seq fair_lock_init(&(common.fglock));
if ($ % 2) {

seq fair_lockup(&(common.fglock));
common.re = 45;
common.im = 2 * common.re;
seq fair_unlock(&(common.fglock));

}
else {

seq fair_lockup(&(common.fglock));
common.im = 17;
common.re = 23;
seq fair_unlock(&(common.fglock));

}
stopTracing();
seq

printf("common.re = %d, common.im = %d\n",
common.re, common.im);

writeTraceFile("glock.trv", "group lock example");
}

}

FIGURE 4.19: Themain function of the group lock example program, with calls to the tracing
routines inserted.

... (automatically recording events in trace buffer)
stopTracing(); // stops tracing
... (no tracing here)
writeTraceFile("filename.trv","title"); //writes trace buffer

}

The synchronous functionstartTracing starts the recording of events. A default trace
buffer size is used unless the call tostartTracing is preceded by a callinitTracing(L)
that reallocates the central trace buffer with lengthL (in memory words) on the permanent
shared heap. Note that, in the current implementation, each event requires 3 words in the
trace buffer, and that the number of events usually depends linearly on the number of proces-
sors.

After calling the synchronous functionstopTracing , events are no longer recorded in
the trace buffer. The events stored in the trace buffer can be written to a file (trace file) by
calling the synchronouswriteTraceFile function, which takes the trace file name and
an optional title string as parameters. Writing the trace buffer to a file is done in parallel, at
acceptable speed.

4.2. Fork Language Design 169

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

�������
�������
�������

�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���������������
���������������
���������������

���������������
���������������
���������������

����
����
����

����
����
����

����
����
����

����
����
����

������������
������������
������������

������������
������������
������������

���
���
���

���
���
���

������������
������������
������������

������������
������������
������������

���
���
���

���
���
���

group lock example traced time period: 3 msecs
40 sh-loads, 78 sh-stores
12 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

5 barriers, 1 msecs = 38.9% spent spinning on barriers 1 lockups, 0 msecs = 3.5% spent spinning on locks 23 sh loads, 33 sh stores, 8 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 0 msecs = 24.5% spent spinning on barriers 1 lockups, 0 msecs = 20.0% spent spinning on locks 6 sh loads, 15 sh stores, 4 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 1 msecs = 52.2% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 5 sh loads, 15 sh stores, 0 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 1 msecs = 50.7% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 15 sh stores, 0 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.20: Processor–time diagram generated bytrv for the group lock program in Fig-
ure 4.19.

Once the execution of the instrumentedFork program is finished, the trace file written is
submitted to thetrv tool (in fork/bin) by

trv filename.trv

wheretrv is a utility program supplied with theFork compiler that generates processor–time
diagrams from traces ofFork programs.trv creates a file namedfilename.fig in FIG
format that can be viewed and edited byxfig (version 3.0 or higher), a free, vector-oriented
drawing program for X-Windows, or converted to numerous other graphics file formats using
fig2dev . For instance, a postscript version offilename.fig is created by

fig2dev -Lps filename.fig > filename.ps

For different output devices, different colors may be preferable. For instance, on a color
screen or color printer one prefers different, bright colors, while these are hard to distinguish
when printed on a grayscale printer. For this reason, there is a color variant oftrv , called
trvc , while trv itself produces colors that are more suitable for grayscale devices, as the
trace images printed in this book16.

In a processor–time diagram (also known as aGantt chart) generated bytrv resp.trvc ,
a time bar is drawn from left to right for each processor (see Figures 4.20 and 4.21). The left
end corresponds to the point of time wherestartTracing was called, and the right end
corresponds to the point of time wherestopTracing was called. A time bar for a processor

16Color versions of thetrv -generated diagrams in this section can be found on theFork web page,
www.informatik.uni-trier.de/ �kessler/fork .

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

group lock example traced time period: 30 msecs
40 sh-loads, 78 sh-stores
12 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

6 barriers, 1 msecs = 5.4% spent spinning on barriers 1 lockups, 0 msecs = 0.4% spent spinning on locks 23 sh loads, 33 sh stores, 8 mpadd, 0 mpmax, 0 mpand, 0 mpor

6 barriers, 27 msecs = 89.9% spent spinning on barriers 1 lockups, 0 msecs = 2.6% spent spinning on locks 6 sh loads, 15 sh stores, 4 mpadd, 0 mpmax, 0 mpand, 0 mpor

6 barriers, 28 msecs = 93.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 5 sh loads, 15 sh stores, 0 mpadd, 0 mpmax, 0 mpand, 0 mpor

6 barriers, 28 msecs = 93.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 15 sh stores, 0 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.21: Processor–time diagram generated bytrv for the group lock program in Fig-
ure 4.19, where the time-consumingprintf call is integrated in the traced time period. The
diagram in Figure 4.20 corresponds to the first few milliseconds of the traced time period.

170 Chapter 4. Design of Parallel Programming Languages

is tiled by a sequence of colored rectangles that correspond to phases. Aphaseis the time
interval between two subsequent events of the same processor. The color of the rectangle
representing a phase indicates the type of activity of the processor in this phase:

� Phases of “useful” work are drawn in a color chosen in the range between blue and
green. All processors of the same group have the same color (trvc) resp. intensity
(trv).

� Work phases in groups created by thejoin statement are drawn in light green (trvc)
resp. light shaded (trv).

� Idle phases due to waiting at a barrier (either implicit or explicit) are drawn in red
(trvc) resp. black with horizontal stripes (trv).

� Idle phases due to waiting at a lock acquire operation, likesimple lockup() , fair-
lockup() , or rw lockup() , are drawn in yellow (trvc) resp. black with diagonal

stripes (trv).

� Wait phases at entry to ajoin statement and subgroup creation phases are drawn in
black.

� White is reserved for other events inFork standard libraries that may be in the future
considered for tracing, such as memory allocation or message passing.

The default colors may be changed by the user.
User-defined events are also possible, by calling the routinetraceEntry(typ) routine

with an integer parametertyp indicating a user-defined event type between 8 and 31. Phases
started by such a user event will be drawn in the corresponding color taken from the standard
color table ofxfig . The 8 predefined event types (between 0 and 7) can be looked up in
fork.h unless explicitly specified by the user.

The image generated bytrv also shows detailed information on the number of barriers,
lockups, accumulated waiting times at barriers and lockups, and the numbers of various shared
memory access operations for each processor below its time bar. The overall numbers of
shared memory accesses are shown in the top line.

As an example, let us reconsider the group lock example program from Section 4.2.10.
The calls to the tracing routines are set such that the lengthyprintf call is not traced, see
the code in Figure 4.19. The resulting trace image is shown in Figure 4.20. This diagram offers
a very fine resolution in time, as the traced time period is only about 3 ms, which corresponds
to only a few CPU cycles per millimeter on the horizontal axis. A much coarser resolution
(by a factor of 10) is already obtained if the time-consumingprintf call is integrated in
the traced time interval, because theprintf call executed by processor 0 dominates the
execution time; see Figure 4.21.

Discussion The two-step approach with the trace buffer as a temporary data structure for
event data was chosen to keep the overhead incurred by tracing during program execution
as small as possible. This is particularly important for asynchronous applications that access

4.2. Fork Language Design 171

701283 871425 574623 358953 736578 1005344 427186 175294
983639 879684 597400 261401 605659 81098 248455 405579

Sorting...
81098 175294 248455 261401 358953 405579 427186 574623
597400 605659 701283 736578 871425 879684 983639 1005344

261401
key[11]

597400
key[10]

574623
key[2]

427186
key[6]

605659
key[12]

701283
key[0]

871425
key[1]

736578
key[4]

983639
key[8]

1005344
key[5]

879684
key[9]

358953
key[3]

175294
key[7]

81098
key[13]

405579
key[15]

248455
key[14]

FIGURE 4.22: Output of an example run withN = 16 randomly generated integers, and the
tree built by the Quicksort program.

shared data structures, since the tracing overhead may introduce delays that change the order
of access compared to a nontracing version of the same program.

Due to the instrumentation, a program takes slightly more time when recording tracing
information. However, the tracing overhead per event (tracebuffer entry) is reasonably small
(see Section 5.1.13]). In any case, the execution time of programs that are not compiled and
linked with -T is not affected by the tracing feature.

trv is tailored toward the usage withFork and theSB-PRAM. There exist several
other performance visualization tools for parallel processing, which are designed for and
used with mainly message passing environments like MPI and PVM. Examples are Para-
graph [HE91], Upshot [HL91], Pablo [RAN+93], AIMS [YHL93], VAMPIR [Pal96], VisTool
from the TRAPPER system [SSK95], or vendor-specific systems like VT [IBM] or ParAide
[RAA+93]. While these systems often support further statistical analysis and multiple types
of diagrams and views of trace data,trv is a simple, low-overhead program that focuses just
on the processor–time diagram.

Zooming in trace images generated bytrv is possible withinxfig by adjusting the zoom
scale (up to a certain limit), and by narrowing the time interval between thestartTracing
andstopTracing calls before running the program. Arbitrary zooming and scrolling could
be provided by an additional viewing tool running on top oftrv . An extension oftrv by
adding arcs for messages sent in a user-supplied message passing library on top ofFork, such
as the implementation of the MPI core routines presented in [B1, Chap. 7.6] is straightforward
by making use of the user-definable events.

Some examples for the application oftrv

172 Chapter 4. Design of Parallel Programming Languages

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

�
�
�

�
�
�

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

buildTree traced time period: 9 msecs
103 sh-loads, 128 sh-stores
20 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

14 barriers, 1 msecs = 19.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 13 sh loads, 8 sh stores, 5 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 50.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 6 msecs = 66.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 6 msecs = 66.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 7 msecs = 86.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.23: Processor–time diagram for the tree construction phase, run withN = 16
processors. It can be well observed that processors that have found the position of “their”key
element in the tree leave thewhile loop and wait for the others. Processor 15 is associated
with the root node of the tree. Thewhile loop makes four iterations, one for each level of
the tree (see Figure 4.22).

CRCW Quicksort algorithm As a first nontrivial example, we consider the CRCW Quick-
sort algorithm by Chlebus and Vrto [CV91], see also Chapter 1 ofPractical PRAM Program-
ming[B1].

N items, initially stored in an array, are to be sorted by theirkeys(e.g., integers). In
sequential, this could be done by the well-known Quicksort algorithm [Hoa62]: ifN is one,
the array is sorted, and we are done; otherwise we choose a key from the array, called the
pivot, partition the array into three subarrays consisting of the keys smaller than, equal to, and
larger than the pivot, respectively, and finish by applying the algorithm recursively to the two
subarrays with the smaller and the larger keys. If the pivot is chosen randomly, or the input
keys are assumed to be stored in random order in the input array, Quicksort can quite easily
be shown to run in an expected number of steps bounded byO(N logN) [CV91].

The CRCW Quicksort algorithm by Chlebus and Vrto [CV91] assumes thatN proces-
sors are available, each one associated with an element of the input array. The computation
constructs a binary tree that corresponds to the tree-like structure of the recursive calls of the
Quicksort algorithm, and stores it in index arrays. Each tree node corresponds to a contiguous
subarray to be sorted. Leaves of the tree correspond to sorted arrays storing only a single inte-
ger. The tree is constructed top-down. First a root is chosen, and all remaining keys/processors
are made children of this root. The child processors compare in parallel their key to that of the
parent node to determine whether they belong to the left or to the right subtree. Further, for

4.2. Fork Language Design 173

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�������������
�������������
�������������

�������������
�������������
�������������

����������������
����������������
����������������

����������������
����������������
����������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

������
������
������

������
������
������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

countDescendants traced time period: 2 msecs
148 sh-loads, 160 sh-stores
34 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

1 barriers, 1 msecs = 50.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 13 sh loads, 10 sh stores, 4 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 50.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 50.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 50.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 36.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 50.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 40.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 50.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 41.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 22.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 31.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 41.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 8.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 40.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 0 msecs = 26.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 1 msecs = 60.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 9 sh loads, 10 sh stores, 2 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.24: Processor–time diagram for a run of the top-down pass in the parallel Quicksort
implementation, withN = 16 processors. The grey parts of the processor–time bars visualize
“useful” work of a processor. It can be well observed that this time is proportional to the
height of the associated node in the tree (except for the root node that does not participate).

both left and right subtrees a new parent (root) node is chosen, and the remaining processors
are all made children of these nodes. This process continues in awhile loop until each node
has found its proper place in the tree. We label the nodes of the computation tree by the pivot
element. After the tree computation phase, each processor can determine from the tree where
its key has to go in order to put the input keys into sorted order. These indices are computed
by a parallel bottom-up traversal, followed by a parallel top-down traversal of the tree. The
implementation of the algorithm inFork is given in [B1, Chap. 1].

Figure 4.22 shows a run of the Quicksort program withN = 16 processors for an array of
N randomly generated integers. The constructed tree is also shown in Figure 4.22. Figure 4.23
shows thetrv -generated image for the tree construction phase. Figure 4.24 visualizes the
top-down pass, the bottom-up pass looks similar.

SynchronousN -Queens program TheN -Queens problems consists of finding all possi-
bilities of placingN queens on aN � N checkerboard such that they do not interfere with
each other. A (sequential) exhaustive search method traverses the solution space as follows:
Initially, there areN possibilities for by placing a queen in the first row. For each of these,
one checks recursively for all possibilities to place another queen in the second row without
interfering with that in the first row, and so on. Recursion is limited in depth byN . Whenever
all N queens could be placed in a depth-N configuration, this solution is reported.

The synchronous parallel implementation inFork searches this decision tree in parallel:

174 Chapter 4. Design of Parallel Programming Languages

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�

�
�
�

��
��
��

��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

�
�
�

�
�
�

�������������
�������������
�������������

�������������
�������������
�������������

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�
�
�

�
�
�

synchronous N-Queens implementation traced time period: 250 msecs
5024 sh-loads, 380 sh-stores
52 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

8 barriers, 143 msecs = 57.3% spent spinning on barriers 2 lockups, 0 msecs = 0.1% spent spinning on locks 428 sh loads, 62 sh stores, 13 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 87 msecs = 35.0% spent spinning on barriers 2 lockups, 0 msecs = 0.3% spent spinning on locks 623 sh loads, 49 sh stores, 11 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 35 msecs = 14.2% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 801 sh loads, 46 sh stores, 3 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 34 msecs = 13.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 805 sh loads, 46 sh stores, 3 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 0 msecs = 0.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 930 sh loads, 50 sh stores, 3 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 59 msecs = 24.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 696 sh loads, 43 sh stores, 3 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 153 msecs = 61.4% spent spinning on barriers 2 lockups, 1 msecs = 0.4% spent spinning on locks 360 sh loads, 42 sh stores, 9 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 148 msecs = 59.6% spent spinning on barriers 2 lockups, 1 msecs = 0.6% spent spinning on locks 381 sh loads, 42 sh stores, 7 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.25: Processor–time diagram for the synchronousN -Queens program withN = 6
andp = 8.

First, it splits the initial group ofp processors intoN subgroups of sizedN=pe or bN=pc, and
each subgroup then performs a recursive call of the search routine independently. The same
method is applied in the recursive search routine. As soon as a subgroup reaches size 1, the
algorithm switches to the sequential version of the search routine.

Figure 4.25 shows the diagram obtained forN = 6 with p = 8 processors; the trace file
contains 144 events. It appears that the load distribution is quite uneven (long idle times at
barriers for the processors belonging to the first two subgroups).

AsynchronousN -Queens program This implementation solves theN -Queens program by
maintaining a shared queue of tasks, implemented as a parallel FIFO queue [B1, Chap. 7]. A
task is represented by a partial positioning of1 � k < N queens which contains no inter-
ference, that is, it corresponds to a call of the recursive search function. A call to a testing
function dequeues a task, checks all possibilities for placing a new queen, and generates and
enqueues a subtask for the feasible cases. If allN queens could be placed for a subtask, the
corresponding checkerboard is printed. Simultaneos output of several checkerboards com-
puted at approximately the same time is arranged by collecting processors that want to print
a solution by thejoin statement ofFork, over a certain time interval. The synchronous
parallel output routine is started when either a maximum number (M) of solutions has been
found or a time counter has exceeded a certain value. Hence, up toM solutions are printed
concurrently to the screen.

As example, we runp = 8 processors on the caseN = 6, which has 4 solutions (see the
screen output in the Appendix, Figure 4.26). The generated trace has 2518 events, most of
which are due to locking the shared FIFO queue when enqueuing or dequeuing a task. As
Figure 4.27 shows, the first two solutions happen to be found at the same time (by P2 and
P7) and are printed concurrently, while the next two are printed separately when they have
been computed (by P1, P3). Load balancing is very good, due to the fine-grained tasks and
the shared task queue. Most of the time in the join body is consumed by aprintf call that
prints the headline “Next k solutions...”, see Figure 4.26.

4.2. Fork Language Design 175

Computing solutions to the 6-Queens problem...

-------------------- Next 2 solutions (1..2): ----------------
|..Q...|...Q..
|.....Q|Q.....
|.Q....|....Q.
|....Q.|.Q....
|Q.....|.....Q
|...Q..|..Q...
-------------------- Next 1 solutions (3..3): ----------------
|.Q....
|...Q..
|.....Q
|Q.....
|..Q...
|....Q.
-------------------- Next 1 solutions (4..4): ----------------
|....Q.
|..Q...
|Q.....
|.....Q
|...Q..
|.Q....

Solutions: 4
TIME: 101428 cc

FIGURE 4.26: The screen output of the asynchronousN -Queens program forN = 6. By
collecting near-simultaneously found solutions withjoin , parallel screen output leads to
less sequentialization.

Further examples Moretrv -generated images, together with the correspondingFork source
programs, are available at theFork homepage

http://www.informatik.uni-trier.de/˜kessler/fork.html

4.2.12 The History ofFork

The design ofFork has been developed in several evolutionary steps from 1989 to 1999, as
shown in Figure 4.28. In 1999 the language has reached a final state with version 2.0 of the
variantFork95, which is referred to simply asFork and described in this book.

The first approach to the design ofFork, calledFORK[HSS92], was a rather theoretical
one. Pointers, dynamic arrays, nontrivial data types, input/output, and nonstructured control
flow were sacrificed in order to facilitate correctness proofs [Sch91, RS92] and static pro-
gram analysis [K̈ap92, Wel92, Sei93]. In this way, however, the language became completely
unusable. A compiler [K̈ap92, Wel92, Lil93, Sei93] was never completed.

In order to provide a full-fledged language for real use, we have added all the language
features that are well known from sequential imperative programming. We decided to build

176 Chapter 4. Design of Parallel Programming Languages

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������
������
������

������
������
������

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

asynchronous N-Queens program traced time period: 405 msecs
14350 sh-loads, 167 sh-stores
70 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

4 barriers, 3 msecs = 0.9% spent spinning on barriers 167 lockups, 66 msecs = 16.4% spent spinning on locks 1912 sh loads, 13 sh stores, 3 mpadd, 0 mpmax, 0 mpand, 0 mpor

20 barriers, 10 msecs = 2.6% spent spinning on barriers 127 lockups, 35 msecs = 8.7% spent spinning on locks 1848 sh loads, 30 sh stores, 20 mpadd, 0 mpmax, 0 mpand, 0 mpor

36 barriers, 11 msecs = 2.9% spent spinning on barriers 103 lockups, 47 msecs = 11.8% spent spinning on locks 1774 sh loads, 42 sh stores, 37 mpadd, 0 mpmax, 0 mpand, 0 mpor

4 barriers, 7 msecs = 1.8% spent spinning on barriers 148 lockups, 61 msecs = 15.2% spent spinning on locks 2103 sh loads, 13 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

4 barriers, 6 msecs = 1.7% spent spinning on barriers 176 lockups, 63 msecs = 15.7% spent spinning on locks 1539 sh loads, 13 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

4 barriers, 6 msecs = 1.5% spent spinning on barriers 155 lockups, 60 msecs = 14.9% spent spinning on locks 2030 sh loads, 13 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

4 barriers, 10 msecs = 2.7% spent spinning on barriers 163 lockups, 60 msecs = 15.0% spent spinning on locks 1470 sh loads, 13 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

20 barriers, 53 msecs = 13.2% spent spinning on barriers 110 lockups, 53 msecs = 13.1% spent spinning on locks 1674 sh loads, 30 sh stores, 6 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

FIGURE 4.27: Processor–time diagram for the asynchronousN -Queens program withN = 6
andp = 8. P2 and P7 join for concurrent output. P7 waits for P2 to print the headline before
they jointly process theN output lines.

upon an existing and well-known sequential language since this enables better acceptance of
the language and facilitates the integration of existing sequential code into parallel imple-
mentations. Thus, for the newFork dialectFork95 we decided [M4] to extend the ANSI-C
syntax—instead of clinging to the original one which was an idiosyncratic mixture of Pascal
and Modula. This also meant that (for the sequential parts) we had to adopt C’s philosophy.

With Fork95 we introduced the possibility of locally asynchronous computation to save
synchronization points and to enable more freedom of choice for the programming model.
First existing only locally inside the bodies offarm statements [M4] that were originally
intended only as an instrument for performance tuning and encapsulating of I/O, the asyn-
chronous mode soon became an equally important component of the language [C8,J3]. Asyn-
chronous and synchronous mode complement each other. Static association of synchronous
resp. asynchronous mode of execution with program regions avoids confusion and eliminates
a potential source of bugs. Switching forth and back became highly flexible by thejoin
statement that was added in 1997 [C14,I4]. The third type of synchronicity,straight , was
added in 1999 [B1] to avoid duplicate definitions of functions likesyncadd that should be
accessible in synchronous as well as asynchronous mode.

A second important decision was to abandon the tremendous runtime overhead of ad-
ditional processor emulation (see Section 5.2.1) by limiting the number of processes to the
hardware resources, resulting in a very lean code generation and runtime system. In the old

1989 1993 1995 19961994 199919981997

FORK Fork95 v.1.0 Fork95 v.1.5 Fork95 v.1.7 Fork95 v.2.0

straight,join group-local
shared variables

C - based;
asynchronous mode

Pascal/Modula based;
synchronous mode

$$, #, trv

= Fork

....

FIGURE 4.28: The evolution ofFork.

4.2. Fork Language Design 177

FORKproposal [HSS92], thestart statement was used with a shared parameter expression,
start(e) , to start a sub-PRAM ofe processors while freezing the current configuration. If
the value ofe was allowed to exceed the hardware resources, additional PRAM processors
had to be emulated in software; otherwise, this did not really add more expressiveness to the
language design. As we shall see in Chapter 5, the combination of exact synchronous program
execution with virtual processing, especially for a weakly typed base language such as C, is
extremely expensive to realize. In pm2 the same decision was made.

Third, we restricted the language support for exact synchronicity to the leaf groups only.
In contrast, the oldFORKproposal also supported larger group hierarchies running exactly
synchronous. At any point of the program and for each (leaf) group, the compiler kept track
of the so-called maximally synchronous group; namely, the root of the subtree in the group
tree all of whose leaf groups currently run exactly synchronous with this group considered
(see Section 5.2.1). Originally intended to avoid some unnecessary synchronization points, it
appeared that, because of the compile time and runtime overhead, this theoretical flourish was
not useful in practice, decreased performance, and confused the programmer.

Fourth,Fork95 supports pointers; the declaration and usage of pointers is simple and very
flexible. Unfortunately, with our decision for C we also inherited its unpleasant, weak type
system. This disables many compile-time analyses that were possible with the old proposal
[Wel92, Käp92, Sei93]. Nevertheless we think that this is a price to be paid for practically
useful parallel programming.

Later evolution steps added toFork95 the join construct [C14,I4], the possibility to
declare shared variables within any block in a synchronous region, and the declaration of
straight synchronicity.

With these extensions, the language, now named justFork, has reached a stable state. A
further development, as discussed in Section 4.2.13, would imply fundamental changes of the
general concept and/or in the basis language.

4.2.13 The Future ofFork

Object-oriented programming provides cleaner programming interfaces and simplifies the de-
velopment of software libraries. Hence, we would favor an object-oriented extension ofFork,
such as one based on a subset of C++.

The implementation ofFork for non-PRAM target machines will be discussed in Sec-
tion 5.2. Unfortunately, it appears that theFork design—in particular synchronous execution,
concurrent write, and sequential shared memory consistency—causes an implementation for
asynchronous shared memory machines or even distributed memory architectures to produce
quite inefficient target code, as we will see in Section 5.2. As a consequence, we have devel-
oped alternative language designs that relax some of these features in order to allow for easier
and more efficient implementations.

For instance,ForkLight [C16], which we discuss in Section 4.4, relaxes the synchronous
execution from the operator level to the (extended) basic block level (control-synchronous
mode of execution). The programmer becomes responsible to protect data dependencies
within basic blocks by additionalbarrier statements or suitable semaphore mechanisms.
Nevertheless, sequential shared memory consistency is maintained.

178 Chapter 4. Design of Parallel Programming Languages

NestStep [C18,I8,J7], which we discuss in Section 4.5, relaxes synchronicity to even
larger units that are defined by an explicitstep statement, which is a generalized and nestable
variant of the BSP superstep. Theneststep statement ofNestStep roughly corresponds to
the combination of thestart , fork , andfarm statements ofFork, that is, it allows to define
subgroups that install scopes of barriers and sharing. Also,NestStep no longer assumes the
availability of a shared memory. Instead, it emulates a distributed shared memory on top
of a message passing system, where memory consistency is relaxed tostep boundaries, in
compliance with the BSP model.

4.3 A Plea for Structured Parallel Programming in Fork

Structured parallel programming[Col89, Pel98] can be enforced by restricting the many ways
of expressing parallelism to compositions of only a few, predefined patterns, so-called skele-
tons.Skeletons[Col89, DFH+93] are generic, portable, and reusable basic program building
blocks for which parallel implementations may be available. They are typically derived from
higher-order functions as known from functional programming languages. A skeleton-based
parallel programming system, like P3L [BDO+95, Pel98], SCL [DFH+93, DGTY95], SkIL
[BK96], HSM [Mar97], orHDC [HLG+99], usually provides a relatively small, fixed set of
skeletons. Each skeleton represents a unique way of exploiting parallelism in a specifically or-
ganized type of computation, such as data parallelism, parallel divide-and-conquer, or pipelin-
ing. By composing these, the programmer can build a structured high-level specification of
parallel programs. The system can exploit this knowledge about the structure of the paral-
lel computation for automatic program transformation [GP99], resource scheduling [BDP94],
and mapping. Performance prediction is also enhanced by composing the known performance
prediction functions of the skeletons accordingly. The appropriate set of skeletons, their de-
gree of composability, generality, and architecture independence, and the best ways to support
them in programming languages have been intensively researched in the 1990s and are still
issues of current research.

In Practical PRAM Programming[B1, Chap. 7] we provideFork implementations for
several important skeletons. Table 4.5 gives a survey. In this chapter we focus on skeleton
functions for dataparallel computations and reductions, for sake of brevity. Note that we call
theseFork functions that simulate skeleton behavior justskeleton functions, not skeletons. We
call the programming style characterized by expressing parallelism (where possible) by using
only these skeleton functions theskeleton-oriented style of parallel programmingin Fork,
which uses only the features available in the basis language. This should be seen in contrast
to parallel programming in a skeleton language, which additionally requires special skeleton
language elements.

Composition of skeletonsmay be either nonhierarchical, by sequencing using temporary
variables to transport intermediate results, or hierarchical by (conceptually) nesting skeleton
functions, that is, by building a new, hierarchically composed function by (virtually) inserting
the code of one skeleton as a parameter into that of another one. This enables the elegant
compositional specification of multiple levels of parallelism. In a declarative programming
environment, such as in functional languages or separate skeleton languages, hierarchical

4.3. A Plea for Structured Parallel Programming inFork 179

Skeleton function Nestable Meaning Introduced in
map – Unary dataparallel operation Section 4.3.1
map1 – Scalar–vector dataparallel operation [B1, Chap. 7]
map2 – Binary dataparallel operation Section 4.3.1
Map

p
Unary dataparallel operation [B1, Chap. 7]

Map2
p

Binary dataparallel operation Section 4.3.1
reduce – Parallel reduction Section 4.3.3
Reduce

p
Parallel reduction Section 4.3.3

prefix – Parallel prefix operation [B1, Chap. 7.2]
Prefix

p
Parallel prefix operation [B1, Chap. 7.2]

divide conquer – Parallel divide-and-conquer computation [B1, Chap. 7.3]
taskQueue – Asynchronous parallel task queue [B1, Chap. 7.5]
pipe – Pipelining with global step signal [B1, Chap. 7.7]
Pipe

p
Pipelining with global step signal [B1, Chap. 7.7]

TABLE 4.5: Survey of the skeleton functions that have been implemented forFork, see also
the description inPractical PRAM Programming[B1].

composition gives the code generator more freedom of choice for automatic transformations
and for efficient resource utilization, such as the decision of how many parallel processors
to spend at which level of the compositional hierarchy. Ideally, the cost estimations of the
composed function could be composed correspondingly from the cost estimation functions of
the basic skeletons.

The exploitation ofnested parallelismspecified by such a hierarchical composition is
quite straightforward if a fork-join mechanism for recursive spawning of parallel activities is
applicable. In that case, each thread executing the outer skeleton spawns a set of new threads
that execute also the inner skeleton in parallel. This may result in very fine-grained parallel
execution and shifts the burden of load balancing and scheduling to the run-time system,
which may incur tremendous space and time overhead.

In a SPMD language likeFork, nested parallelism can be exploited by suitable group
splitting. A common strategy is to exploit as much parallelism as possible at the outer levels
of nested parallelism, use group splitting to encapsulate inner levels of nested parallelism, and
switch to a sequential code variant as soon as a group consists of only one processor.

With thefork statement,Fork provides substantial support of nested parallelism. Hence
it is possible to define statically and dynamically nestable skeleton functions. Static hierar-
chical composition of skeleton functions will be discussed in more detail in Section 4.3.1;
in short, hierarchical composition inFork works by encapsulating the inner skeleton function
into the definition of a synchronous functionf that is passed as function parameter to the outer
skeleton functionG. We provide a nonnestable and a nestable variant for most skeleton func-
tions. Dynamically nested parallelism is internally exploited in recursive skeleton functions
like divide conquer [B1, Chap. 7.3].
Parallel programming with skeletons may be seen in contrast to parallel programming using
parallel library routines. For nearly any parallel supercomputer platform, there are several
packages of parallel subroutine libraries available, in particular for numerical computations

180 Chapter 4. Design of Parallel Programming Languages

on large arrays. Also for library routines, reusability is an important purpose. Neverthe-
less, the usage of library routines is more restrictive than for skeletons, because they exploit
parallelism only at the bottom level of the program’s hierarchical structure, that is, they are
not compositional, and their computational structure is not transparent for the programmer.
Instead, they are internally highly optimized for performance. Nevertheless, generic library
routines and preprocessor macros can simulate the effect of skeletons at a limited degree in
Fork, as we will show in the following sections.

In the following, we focus on data parallelism as an example domain. The implementation
and application of the other skeleton functions listed in Table 4.5 can be found inPractical
PRAM Programming[B1, Chap. 7].

4.3.1 Data Parallelism

Data parallelismdenotes the concurrent application of the same operationf on all elements
of a homogeneous regular collection of input datad, which may be given in a form such as
a list or an array. Alternatively, this can be regarded as a singledataparallel operatorF ,
applied to the collectiond of input data as a whole. The domain of elementwise application is
determined by the input data domains, but may additionally be restricted by the programmer.

The simplest form of data parallelism arises where the element computations are mutu-
ally independent from each other. Hence the order of their execution does not matter. Let us
assume for the first that the resultx of the dataparallel computation is not being written to a
variable that occurs on its right-hand side. Otherwise we have some kind of fixpoint compu-
tation, whose parallel execution requires special scheduling or buffering techniques and will
be considered later.

In an imperative environment like Fortran90/95, HPF, orFork, such collections of ele-
mental data are typically realized as arrays, and the elementwise application off is done by
dataparallel loops:

sh data x[N], d[N];
sh int p = #;
int i;
extern straight data f(data);
...
forall(i, 0, N, p)

x[i] = f(d[i]);
...

Here, the iterations of the parallelfor loop formN elemental computations, indexed by
the private loop variablei . As long asf is implemented as an asynchronous function, the
entireforall loop could run in asynchronous mode:

farm
forall(i, 0, N, p)

x[i] = f(d[i]);

4.3. A Plea for Structured Parallel Programming inFork 181

Generalizations to higher-dimensional arrays and more operand arrays are straightforward.
Some languages like Fortran90 offer language constructs that allow to handle arrays as a

whole:

x = f(d); // Fortran90-like array syntax

In other words, the functionf is mappedto the input data. In a functional environment,
one could express this in terms of the application of ahigher-order functionmap to f :

x = map f d

By convention,map denotes a skeleton that specifies (and implements) parallelism by el-
ementwise application of an arbitrary (unary) argument functionf to input datad in a generic
way. The result does not depend on the order of processing the elements ofd. Hence, applica-
tions off to different elements ofd may be computed independently on different processors.
Nevertheless, termination ofmap must guarantee the completion of all elementalf computa-
tions, so that the resultx can be used by subsequent computations.

Although the C-basedFork has no true higher-order functions, it allows to simulate, at a
quite limited degree, the usage of higher-order functions by passing a pointer to the function
f as an additional parameter. Generic data types are enabled by usingvoid * pointers for
the operand and the result array, and by passing the element size (in terms of PRAM memory
words) as a parameter. A call to a genericmap implementation inFork may thus look like

x = map(f, d);

Hence, the genericmap function defined below can be regarded as an implementation of
themap skeleton.

/** generic map routine for unary functions:
*/

sync void map(straight sh void (*f)(void *, void *),
sh void **x, sh void **d,
sh int N, sh int elsize)

{ int i;
forall(i, 0, N, #)

f(x+i*elsize, d+i*elsize);
}

This implementation hides some details such as the consecutive renumbering17 of the proces-
sors, the order in which the elemental computations are performed, or the decision as to which
elemental computations are assigned to which processor.

The worst-case time complexity of a call tomapwith problem sizen executed by a group
of p processors is

tmap f(n; p) = O

 &
n

p

'
� tf
!

(4.1)

For a dataparallel operation with two operand arrays, we provide a variant ofmap:
17In order to makemapwork in any calling context, the renumbering must be applied.

182 Chapter 4. Design of Parallel Programming Languages

/** generic map routine for binary functions:
*/

sync void map2(sh straight (*f)(void *, void *, void *),
sh void **x, sh void **d1, sh void **d2,
sh int n, sh int elsize)

{ int i;
forall(i, 0, n, #)

f(x+i*elsize, d1+i*elsize, d2+i*elsize);
}

The worst-case time complexity ofmap2 is the same as formap:

tmap2 f (n; p) = O

 &
n

p

'
� tf
!

(4.2)

Here is an example call for floatingpoint vector addition:

straight void fadd(void *c, void *a, void *b)
{ *(float *)c = *(float *)a + *(float *)b; }

sync float *fvadd(sh float *x, sh float *y, sh int n)
{

sh float *z;
int i;
seq z = (float *)shmalloc(n * sizeof(float));
map2(fadd, (void**)z, (void**)x,(void**)y, n,sizeof(float));
return z;

}

A second variant of implementing skeletons inFork uses the C preprocessor. Macros
are generic by default; hence taking care of the element sizes is not required here. Ourmap
skeleton, rewritten as a macro, then looks as follows:

#define MAP(f, x, d , n) \
{ \

int p = #; \
int i; \
farm \

forall(i, 0, n , p) \
f(x[i], d[i]); \

}

4.3.2 Nestable Skeleton Functions

A fundamental alternative to such function or macro implementations of skeletons is to have
primitives like map available as built-in declarative language constructs and thus move the
burden of exploiting implicit parallelism from the programmer to the compiler. This is done

4.3. A Plea for Structured Parallel Programming inFork 183

sync void Map2(
sync sh void (*f)(sh void*, sh void*, sh void*, sh int),
sh void **x, sh void **d, sh void **d2, sh int N, sh int m,
sh int mx, sh int md, sh int md2, sh int elsize)

{
sh int p = #;
if (p < N)

fork(p; @=$;) {
sh int t;
for (t=@; t<N; t+=p)

f(x+t*mx*elsize, d+t*md*elsize, d2+t*md2*elsize, m);
}

else
fork(N; @=$%N;)

f(x+@*mx*elsize, d+@*md*elsize, d2+@*md2*elsize, m);
}

FIGURE 4.29:Map2, the nestable variant ofmap2 for binary element functions.

by skeleton languages like P3L, SkIL, SCL, or HSM. There, skeletons are an essential part of
the language itself; there are strict rules about their interoperability with the “classical” lan-
guage elements. In some skeleton languages, skeletons may be hierarchically composed. The
compiler obtains complete information about the entire structure of the parallel computation
hierarchy. Hence, it is able to derive cost estimations and has built-in expert knowledge to
decide about transformations or mapping and scheduling strategies. The extension ofFork by
a separate skeleton language layer, for instance, as a combination with HSM as proposed by
Marr [Mar97], is an issue of ongoing research and development.

In a purely imperative framework likeFork, the structural composition of skeletons must,
at the same time, also serve as a detailed description of the imperative structure of the (parallel)
computation. At a first glance this seems to be a prohibitive restriction. Nevertheless we will
see that the existing features ofFork do allow for an implementation of nestable skeleton
functions that exploits nested parallelism, without requiring any language extension.

For themap2 skeleton function, for instance, a nestable variantMap2 is given in Fig-
ure 4.29. The main difference tomap2 is that the parameter functionf is synchronous, takes
shared parameters, and needs an additional parameterm that holds the extent of the inner
computation, called theinner problem size, while theouter problem sizeis the extent of the
map computation itself,n. Also, Map2 needs a stride parameter for each parameter:mx for
x (the result),mdfor d (the first operand), andmd2 for d2 (the second operand). If the result
or an operand is a vector, the corresponding stride parameter is 1. If it is a scalar, its stride
parameter is 0. If it is a matrix (see later), its stride parameter is the row or column length
(depending on the storage scheme of the matrix). We will see an application ofMap2 for
parallel matrix–vector multiplication in Section 4.3.4.

The worst-case time complexity of a call toMapor Map2 with outer problem sizen and

184 Chapter 4. Design of Parallel Programming Languages

inner problem sizem depends on the number of processors executing it:

tMap f(n;m; p) =

8<
:

O
�
tf
�
m;
jp
n

k��
; p > n

O
�
n
p � tf (m; 1)

�
; p � n

(4.3)

wheretf (m; p0) denotes the worst-case time complexity off when executed withp0 proces-
sors.

4.3.3 Reductions

A reduction denotes a computation that accumulatively applies a binary operationf to all
elements of a collection of data items, and returns the accumulated value. A typical represen-
tative is a global sum computation of all elements in an array, wheref is the usual addition.
In sequential, a reduction usually looks like

int i;
data s, d[n];
...
s = d[0];
for (i=1; i<n; i++)

s = f(s, d[i]);

The structure of this computation is shown in Figure 4.30a.
A generic sequential reduction function can hence be written as follows:

#include <string.h> // needs prototype for memcpy()

void seq_reduce(straight void (*f)(void *, void *, void *),
void *s, void **d, int n, int elsize)

{
int t;
if (n<=0) return;
memcpy(s, d, elsize); // initialize s by d[0]
for (t=1; t<n; t++) {

f(s, s, d+t*elsize);
}

}

An efficient parallelization of a reduction is only possible iff is associative. Then, instead
of scanningd sequentially element by element, partial sumss1, s2 of disjoint parts ofd can be
recursively computed concurrently, and the partial sums are then combined byf . Hence, we
obtain a treelike computation, as shown in Figure 4.30b. It seems most appropriate to split a
given data collection into two partsd1 andd2 of (approximately) equal size, as this will result
in a balanced computation treeT of logarithmic depth. All computations on the same level of
T are independent of each other and may thus be processed in parallel; they only depend on
the results computed in the next deeper level.

4.3. A Plea for Structured Parallel Programming inFork 185

ba

f

f

f

f

f

f

f f f f

f f

f

() ()

s

s

s

s

s

s

s

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7] d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

f

FIGURE 4.30: The computation structure of a sequential (a) and a parallel (b) reduction.

We may formulate this directly as an imperative, recursive function inFork [B1, Chap. 7.3].
However, a recursive implementation results in many function calls and many parameters be-
ing passed. Instead, we give an iterative implementationpreduce in Figure 4.31. Thep
processors process the tree level by level, starting at levell = 1 immediately above the leaves.
In each levell � 1, the intermediate results of the previous level are stored in the operand
arrayd (in-place computation) in2k elements, withk = 2dlogne�l, stored in everytth element
of d, with t = 2l. These2k elements are pairwise added to formk intermediate results at level
l, which are stored again in every(2t)th element ofd. Hence, the number of elements to be
added is halved by processing a level. After leveldlogne has been processed,d[0] contains
the global sum.

Usually, there are fewer processors available than there are data elements to be reduced.
We refine the algorithm as follows. In a first phase, each processor sequentially computes

/** In-place f-reduction for an array d of n<=2p items
* of size elsize, to be executed by p processors.
*/

sync void preduce(sync sh void (*f)(void *, void *, void *),
sh void **d, sh int n, sh int elsize)

{
sh int t;
$ = $$;
// iterative computation upwards the tree:
for (t=1; t<n; t = t<<1) // sequ. loop over tree levels

if (2*$*t+t < n)
f(d + (2*$*t)*elsize,

d + (2*$*t)*elsize, d + (2*$*t+t)*elsize);
}

FIGURE 4.31: A fully parallel reduction inFork.

186 Chapter 4. Design of Parallel Programming Languages

#include <string.h> // needs prototype for memcpy()

sync void reduce(straight void (*f)(void*, void*, void*),
sh void *s, sh void **d, sh int n,
sh int elsize)

{
sh int p = #;
sh void **temp = (void **)shalloc(2*p*elsize);
int ss, myslice;
$ = $$;

if (2*p < n) {
// partition the data vector d into p slices:
farm {

ss = (int)((float)(n+p-1) / (float)(p)); //==ceil(n/p)
if ($*ss >= n) myslice = 0;
else if (($+1)*ss > n) myslice = n - $*ss;
else myslice = ss;

}
// concurrently do sequential reduction for each slice:
farm

seq_reduce(f, temp+$*elsize, d+$*ss*elsize, myslice,
elsize);

n = p; // extent of temp for preduce
}
else // copy data in parallel to temp array:

farm {
if ($ < n)

memcpy(temp+$*elsize, d+$*elsize, elsize);
if (p+$ < n)

memcpy(temp+(p+$)*elsize, d+(p+$)*elsize, elsize);
}

preduce(f, temp, n, elsize);
seq

memcpy(s, temp, elsize); // write result to *s
shallfree(); // release temp

}

FIGURE 4.32: Implementation of thereduce function for generic parallel reductions in
Fork.

a local reduction on a data slice of approximate sizen=p, wheren is the size of the data
collection being reduced, andp is the number of available processors. This results in an
intermediate collection ofp partial result values. In a second phase, thesep partial results are
combined bypreduce() as above indlog pe time steps. Expressed in terms of skeletons, the
first phase of this algorithm consists of amap overp sequential reduction computations, and
the second phase is a parallelreduce computation on the intermediate results. The resulting
implementation,reduce , is shown in Figure 4.32.

4.3. A Plea for Structured Parallel Programming inFork 187

Note that the details of the implementation, like temporary storage allocation, recursive or
iterative computation, index computations, handling of special cases, or performance tuning
are encapsulated and hidden from the programmer.

As an example, the following functionfdot computes thedot productof two floating-
point vectors of sizen:

straight void fadd(void *c, void *a, void *b)
{ *(float *)c = *(float *)a + *(float *)b; }

straight void fmul(void *c, void *a, void *b)
{ *(float *)c = *(float *)a * *(float *)b; }

sync void fdot(sh float*s, sh float*x, sh float*y, sh int n)
{

sh float *tmp = (float *)shalloc(n * sizeof(float));
map2(fmul, (void **) tmp, (void **)x, (void **)y,

n, sizeof(float));
reduce(fadd, s, (void **) tmp, n, sizeof(float));
shallfree();

}

As time complexity offdot we obtain

tfdot(n; p) = tmap2 fmul(n; p) + treduce fadd(n; p) +O(1) = O

n

p
+ log p

!
(4.4)

The generality must be paid with a certain overhead due to the out-of-line definition of the
functionf and the generic pointer usage. This is why several programming languages offer
special reductions for common cases off as built-in language primitives or library routines.
An example is the intrinsic sum functionsum for floatingpoint arrays in Fortran90, or the
integer sum functionsyncadd in Fork.

Also, reduce may be implemented as a preprocessor macro as well.
As in the case ofmap, a nestable variantReduce of thereduce skeleton function can be

defined, see [B1, Ex. 7.17]. The worst-case time complexity ofReduce , with outer problem
sizen and inner problem sizem, depends on the number of processors executing it:

tReducef(n;m; p) =

8<
:

O
�
logn � tf

�
m;
jp
n

k��
; p > n

O
��
n
p + log p

�
� tf (m; 1)

�
; p � n

(4.5)

In the same way as for the generic reductions we can define nestable and non-nestable
skeleton functions for generic parallel prefix computations. These and the other skeleton
functions listed in Table 4.5 are given inPractical PRAM Programming[B1, Chap. 7].

188 Chapter 4. Design of Parallel Programming Languages

4.3.4 Composing Skeleton Functions

Now we show how skeleton functions can be composed to structured parallel programs, such
that nested parallelism is exploited if enough processors are available for executing the pro-
gram. As an example, we consider matrix–vector multiplication.

The matrix–vector product of a matrixA 2 Rn;m with a vector~b 2 Rm is defined as a
vector~c 2 Rn with

ci =
mX
j=1

Ai;jbj; i = 1; : : : ; n

Each component of the result vector~c is determined by a dot product of the corresponding
row vector~ai of A with the corresponding component of~b.

Using ourfdot routine defined in Section 4.3.3, we can hence simply write

sync void fmatvec(sh float *c, sh Matrix A, sh float *b,
sh int n, sh int m)

{
Map2((sync void(*)(sh void*, sh void*, sh void*, sh int))fdot,

(void **)c, (void **)(A->data), (void *)x, n, m,
1, m, 0, sizeof(float));

}

where we exploit the fact that the matrix elements ofA are stored row major inA->data , i.e.
as a linear sequence of then row vectors of lengthm each. The access stride for the vectorc
is set to 1, the stride for the matrix data array is equal to the row lengthm, and the stride for
the vectorb is set to zero, as the same vectorb is to be dot-multiplied with each row vector of
A. The nestableMap2skeleton function (see Figure 4.29) passes the inner problem sizem to
thefdot routine. Note that the deviation using thefdot definition is necessary, as an inline
specification of a sequence of functions is syntactically not possible inFork.

Hence, we have created a composition of three skeletons on two levels:Map2 at the
top level, and (see the definition offdot above) the sequence ofmap2 andreduce at the
inner level. By inserting formulas (4.3) and (4.4), the worst-case time complexity of this
composition is

tfmatvec(n;m; p) = tMap2 fdot m(n; p)

=

8<
:

O
�
tfdot

�
m;
jp
n

k��
; p > n

O
�
n
p � tfdot(m; 1)

�
; p � n

(4.6)

=

8<
:

O
�
nm
p + log pn

�
; p > n

O
�
nm
p

�
; p � n

Alternatively, the matrix–vector product can be regarded as a plus–reduction ofm vectors
of lengthn each, which produces a vector-valued result. In this case,m is the outer problem
size andn the inner problem size. This can be implemented using the nestable variant of the

4.4. ForkLight Language Design 189

reduce skeleton,Reduce to sum up vectors, using a parallel functionfvadd for adding
two floatingpoint vectors as a parameter that, in turn, can be implemented using themap2
skeleton function. Consequently, this yields a composition of two skeletons with two hierar-
chy levels:Reduce at the top level, andmap2at the inner level. If less thanm processors are
available, all are dedicated to the top level (i.e., the reduction), and the inner level is executed
sequentially. Otherwise, there are aboutp=m processors available for each instance of the
map2 computation. Hence, the worst-case time complexity of this variant is as follows:

tfmatvec0(m;n; p) = tReduce fvadd n(m; p)

=

8<
:

O
��
m
p + logm

�
� tfvadd(n; 1)

�
; p < m

O
�
logm � tfvadd

�
n;
l p
m

m��
; p � m

=

8<
:

O
�
nm
p + n log p

�
; p < m

O
�
logm � nmp

�
; p � m

(4.7)

Comparing this to equation (4.7), it appears that for small numbers of processors the
asymptotic time complexities are more or less the same, while for largep the first variant
outperforms the second, because themap / Mapalgorithm is cost-optimal while thereduce
/ Reduce algorithm is not [B1, Chap. 2]. the latter produces more idle cycles (see Fig-
ure 4.30b). Hence it seems to be advisable to exploit as much parallelism as possible along
themapaxis (with extentn) and only the remaining parallelism along thereduce axis (with
extentm), and thus we favor the first variant.

4.4 ForkLight Language Design

Parallel computer manufacturers and research groups recently devised several types of mas-
sively parallel (or at least scalable) machines simulating or emulating a shared memory. Most
of these machines have nonuniform memory access time (NUMA). Some of these still require
program tuning for locality in order to perform efficiently, e.g. Stanford DASH [LLG+92],
while others use multithreading to hide the memory access latency and high-bandwidth mem-
ory networks, and thus become more or less independent of locality issues, such as the Tera
MTA [ACC+90].

So far there is only one synchronous, massively parallel shared memory architecture that
offers uniform memory access time (UMA), theSB-PRAM [ADK +93]. No massively paral-
lel MIMD machine that is commercially available today is UMA or synchronous in the PRAM
sense. Rather, the common features are the following:

� the user sees a large amount of threads (due to scalable architecture and multithreading)

� the user sees a monolithic shared memory (due to a hidden network)

� there is no common clock

190 Chapter 4. Design of Parallel Programming Languages

SMwrite

SMread (read a value from a shared memory cell)

(add an integer to a cell and
 return its previous value)

fetch_add

atomic_add (add an integer to a cell)

shmalloc (shared memory allocation)

Atomic shared memory access primitives: (write a value into a shared memory cell)

furthermore:

beginparallelsection

endparallelsection (kill spawned threads)

(spawn p-1 threads)

P 2PP0 1 Pp-1

M M M
0 1 2 p-1

M

SHARED MEMORY

NETWORK

.......

.......

.......

processors / threads

private memory modules

FIGURE 4.33: Asynchronous PRAM model with shared memory access operations. Assum-
ing that the processors’ native load/store operations are used for accessing private memory,
the seven operations listed on the right hand side are sufficient to handle shared memory
parallelism as generated by theForkLight compiler. Other auxiliary functions for thread
handling, like inspecting the thread ID or the total number of threads, could also be imple-
mented by the runtime library of the compiler.

� the memory access time is nonuniform, but more or less independent of locality (due to
multithreading)

� program execution is asynchronous (due to the previous two items, and because of
system features like virtual memory, caching, and I/O)

� there is efficient hardware support for atomicfetch&opinstructions

A typical representative of this class of parallel machines is the Tera MTA [ACC+90].
In order to abstract from particular features and to enhance portability of parallel algo-

rithms and programs, one often uses aprogramming modelthat describes the most important
hardware properties. Suitable parameterization allows for straightforward estimates of execu-
tion times; such estimations are the more accurate, the more the particular parallel hardware
fits the model used. Typically, also a standard programming interface is defined for such mod-
els, e.g. MPI for the message passing model, HPF for dataparallel programming of distributed
memory machines, BSPlib for the BSP model, orFork for the PRAM model.

In this case, the programming model is the Asynchronous PRAM introduced in the parallel
theory community in 1989 [Gib89, CZ89, CZ95]. AnAsynchronous PRAM(see Figure 4.33)
is a MIMD parallel computer with a sequentially consistent shared memory. Each processor
runs with its own private clock. No assumptions are made on uniformity of shared memory
access times. Thus, much more than for a true PRAM, the programmer must explicitly take
care of avoiding race conditions (nondeterminism) when accessing shared memory locations
or shared resources (screen, shared files) concurrently. We add to this model some atomic
fetch&opinstructions likefetch add and atomic update instructions likeatomic incr ,
which are required for basic synchronization mechanisms and typically supported by the par-
allel machines in consideration18. Note however that this is not an inadmissible modification

18Efficient support for atomic operations is provided, for instance, in Tera MTA, HP/Convex Exemplar

4.4. ForkLight Language Design 191

of the original Asynchronous PRAM model, since software realizations for these primitives
are also possible (but at the expense of significant overhead [ZYC96]). In short, this program-
ming model is closely related to the popular PRAM and BSP models but offers, in our view, a
good compromise, as it is closer to real parallel machines than PRAMs and easier to program
than BSP.

Programming languages especially designed for “true” PRAMs, such asFork, cannot
directly be used for Asynchronous PRAMs, as their efficient implementation relies on unit
memory access time and instruction-level synchronous program execution.

In this section we describe the parallel programming languageForkLight [C16] for the
Asynchronous PRAM model, which retains a considerable part of the programming comfort
known fromFork while dropping the requirement for strictly synchronous execution on the
expression operator level, which would inevitably lead to poor performance on any existing
asynchronous machine. Rather, synchronicity is relaxed to the basic block level. We work out
its similarities and main differences toFork. The compilation ofForkLight is discussed in
Section 5.3.

4.4.1 SPMD Execution

As Fork, ForkLight follows the SPMD model of parallel execution, that is, allp available pro-
cessors (or threads) are running just from the beginning ofmain execution. Thus,ForkLight
does not need aspawn resp.forall statement to spawn new parallel threads from a current
one. Coordination is provided, for instance, by composing the processors into groups. The
processors of a group can allocate grouplocal shared variables and objects. They workcontrol-
synchronously, that is, all branches of control flow are synchronized. In order to adapt to finer
levels of nested parallelism, a group can be (recursively) subdivided into subgroups. In this
way, ForkLight supports statically and dynamically nested parallelism in the same way as
Fork. Control-synchronous execution can locally be relaxed towards totally asynchronous
computation where this is desired by the programmer, such as for efficiency reasons. Also,
a clever compiler will aim at removing as many synchronization points as possible without
courting the risk of race conditions.

4.4.2 Variables and Expressions

As in Fork, variables are classified either asprivate or asshared; the latter are again to be
declared with the storage class qualifiersh .

Thetotal number of started processorsis accessible through the constant shared variable

__P__

Thephysical processor IDis accessible through the function

_PhysThreadId()

[SMS96], andSB-PRAM.

192 Chapter 4. Design of Parallel Programming Languages

4.4.3 Control-Synchronous and Asynchronous Program Regions

ForkLight offers two different program execution modes that are statically associated with
source code regions: control-synchronous mode in control-synchronous regions, and asyn-
chronous mode in asynchronous regions.

In control-synchronous mode, which is the equivalent of the synchronous mode ofFork,
ForkLight maintains the control-synchronicity invariant:

Control-synchronicity

All processors belonging to the same (active) group work on the same activity
block.

In ForkLight, the implicit synchronization points that define the activity blocks are more
or less set in a way that associates activity blocks withextended basic blocks. A basic block
can be extended by an interspersed asynchronous region, such as the body of anasync or a
seq statement (see later), for instance.

Subgroup creation and implicit barriers occur only in control-synchronous mode.
In asynchronous mode, control-synchronicity is not enforced. The group structure is read-

only; shared variables and automatic shared heap objects cannot be allocated. There are
no implicit synchronization points. Synchronization of the current group can, though, be
explicitly enforced by a call to thebarrier() function, or, to optically emphasize it in the
program code, by a barrier statement like

===========

i.e., a sequence of at least three=’s.
Initially, one processor on which the program has been started by the user executes the

startup code and initializes the shared memory. Then it spawns the other processors requested
by the user program. All these processors start execution of the program in asynchronous
mode by callingmain() .

Functions are classified as either control-synchronous (to be declared with type qualifier
csync) or asynchronous (this is the default).main() is asynchronous by default.

A control-synchronous function is a control-synchronous region, except for (blocks of)
statements explicitly marked as asynchronous byasync or as sequential byseq .

An asynchronous function is an asynchronous region, except for statements explicitly
marked as control-synchronous bystart or join() .

Theasync statement is the equivalent of thefarm statement inFork:

async <stmt>

causes the processors to execute<stmt> in asynchronous mode. In other words, the entire
<stmt> (which may contain loops, conditions, or calls to asynchronous functions) is con-
sidered to be part of the “basic” (w.r.t. control-synchronicity) block containing thisasync .
There is no implicit barrier at the end of<stmt> . If the programmer desires one, (s)he may
use an explicit barrier (see above).

As in Fork, theseq statement

4.4. ForkLight Language Design 193

seq <stmt>

causes<stmt> to be executed by exactly one processor of the current group; the others skip
<stmt> . But, in contrast to theseq statement inFork, there is no implicit barrier at the end
of <stmt> .

Asynchronous functions andasync blocks are executed in asynchronous mode, except
for (blocks of) statements starting with thestart statement

start <stmt>

Thestart statement, only permitted in asynchronous mode, switches to control-synchronous
mode for its body<stmt> . It causes all available processors to barrier-synchronize, to form
one large group, and execute<stmt> simultaneously and in control-synchronous mode, with
unique processor IDs$ numbered consecutively from 0 to__P__�1.

As in Fork, there is ajoin statement (see Section 4.2.9) inForkLight with the same
semantics, except that only control synchronicity holds for the bus group instead of strict
synchronicity.

In order to maintain the static classification of code into control-synchronous and asyn-
chronous regions, within an asynchronous region, onlyasync functions can be called. In the
other way, calling anasync function from a control-synchronous region is always possible
and results in an implicit entering of the asynchronous mode.

Shared local variables can only be declared / allocated within control-synchronous regions.
In particular, asynchronous functions must not allocate shared local variables. In contrast to
Fork there are no shared formal parameters inForkLight.

Control-synchronous functions contain an implicit groupwide barrier synchronization point
at entry and another one after return, in order to reinstall control-synchronous execution also
when the function is left via differentreturn statements.

4.4.4 Groups and Control Synchronicity inForkLight

ForkLight programs are executed bygroupsof processors, as introduced in Section 4.1.
As in Fork, subgroups of a group can be distinguished by theirgroup ID. The group ID of

the leaf group a processor is member of can be accessed through the shared variable@. join
andstart initialize @to 0. The group-relative processor ID$ and the group rank$$ are
defined as inFork. The values of$, $$, and@are automatically saved when deactivating the
current group, and restored when reactivating it. Thus, these values remain constant within
the activity region of a group.

Also, all processors within the same group have access to a common shared address sub-
space. Thus, newly allocated shared objects exist once for each group allocating them.

As in Fork, a processor can inspect the number of processors belonging to its current
group using the routine

int groupsize();

or by accessing the read-only variable#.

194 Chapter 4. Design of Parallel Programming Languages

Groups and control flow

Without special handling control flow could diverge for different processors at conditional
branches such asif statements,switch statements, and loops. Only in special cases it
can be statically determined that all processors are going to take the same branch of control
flow. Otherwise, control-synchronicity could be lost. In order to prevent the programmer from
errors based on this scenario,ForkLight guarantees control-synchronicity by suitable group
splitting. Nevertheless, the programmer may know in some situations that such a splitting is
unnecessary. For these cases, (s)he can specify this explicitly.

We consider an expression to bestableif it is guaranteed to evaluate to the same value on
each processor of the group for all possible program executions, andunstableotherwise.

An expression containing private variables (e.g.,$) is generally assumed to be unstable.
But even an expressione containing only shared variables may be also unstable: Sincee is
evaluated asynchronously by the processors, it may happen that a shared variable occurring
in e is modified (maybe as a side effect ine, or by a processor outside the current group) such
that some processors of the group (the “faster” ones) use the old value of that variable while
others use the newer one, which may yield different values ofe for different processors of the
same group. The only shared variable which can always be assumed to be stable is@, because
it is read-only, thus expressions that only involve@and constants are stable.

Technically, the compiler defines a conservative, statically computable subset of thestable
expressionsas follows:

(1) @is a stable expression.
(2) A constant is a stable expression. (This includes shared constant pointers, e.g. arrays.)
(3) The pseudocaststable(e) is stable for any expressione (see below).
(4) If expressionse1, e2 and e3 are stable, then also the expressionse1 � e2 for � 2
f+;�; �; =;%;&; j;&&; jjg,	e1 for 	 2 f�; ˆ ; !g, ande1?e2 : e3 are stable.

(5) All other expressions are regarded as unstable.

Conditional branches with a stable condition expression do not affect control-synchronicity.
Otherwise control-synchronicity can generally be lost; this could result in unforeseen race
conditions or deadlock. For this reason, unstable branches in control-synchronous mode lead
to a splitting of the current group into subgroups—one for each possible branch target. Con-
trol synchronicity is then only maintained within each subgroup. Where control flow reunifies
again, the subgroups cease to exist, and the previous group is restored. There is no implicit
barrier at this program point.19

For a two-sidedif statement with an unstable condition, for instance, two subgroups are
created. The processors that evaluate their condition to true join the first, the others join the
second subgroup. The branches associated with these subgroups are executed concurrently.

For a loop with an unstable exit condition, one subgroup is created that contains the iter-
ating processors.

Unstable branch conditions in control-synchronous mode may nevertheless be useful for
performance tuning. Thus, there is the possibility of a pseudocast

19As a rule of thumb: Implicit barriers are, in control-synchronous mode, generated only at branches of control
flow, not at reunifications.

4.4. ForkLight Language Design 195

stable (<expr>)

which causes the compiler to treat expression<expr> as stable. In this case the compiler as-
sumes that the programmer knows that possible unstability of<expr> will not be a problem
in this context, for instance because (s)he knows that all processors of the group will take the
same branch.20

Splitting a group into subgroups can also be done explicitly, using thefork statement,
which is only admissible in control-synchronous regions. Executing

fork (e1; @=e2) <stmt>

means the following: First, each processor of the group evaluates the stable expressione1 to
the number of subgroups to be created, sayg. Then the current leaf group is deactivated and
g subgroupsg0; :::; gg�1 are created. The group ID ofgi is set toi. Evaluating expression
e2 (which is typically unstable), each processor determines the indexi of the newly created
leaf groupgi it will become member of. If the value ofe2 is outside the range0; :::; g � 1 of
subgroup IDs, the processor does not join a subgroup and skips<stmt> 21. The IDs$ of the
processors are renumbered consecutively within each subgroup from 0 to the subgroup size
minus one. Each subgroup gets its own shared memory subspace, thus shared variables and
heap objects can be allocated locally to the subgroup. — Now, each subgroupgi executes
<stmt> . When a subgroup finishes execution, it ceases to exist, and its parent group is reac-
tivated as the current leaf group. Unless the programmer writes an explicit barrier statement,
the processors may immediately continue with the following code.

Groups and jumps

Regarding jumps,ForkLight behaves likeFork. For break , continue , and return
jumps, the target group is statically known; it is an ancestor of the current leaf group in the
group hierarchy tree. In this case, the compiler will provide a safe implementation even for
the control-synchronous mode.

By a goto jump, control-synchronicity is, in principle, not lost. However, the target
group may not yet have been created at the time of executing the jump. Even worse, the target
group may not be known at compile time. Nevertheless, as long as source and destination of a
goto are known to be within the activity scope of the same (leaf) group, there is no danger of
deadlock. For this reason, we have renounced to forbidgoto in control-synchronous regions,
but all other cases cause a warning to be emitted.

Other statements affecting control flow

The short-circuit evaluation of the binary logical operators&&and|| and for the?: operator
applies also toForkLight. Hence, similar problems as described forFork in Section 4.2.10
arise also inForkLight. In order to avoid unintended asynchrony or deadlocks,&&, || and

20Alternatively, there is the option to declare such control constructs as asynchronous byasync .
21Note that empty subgroups (with no processors) are possible; an empty subgroup’s work is immediately

finished, though.

196 Chapter 4. Design of Parallel Programming Languages

?: with unstable left operands are illegal in control-synchronous mode. Clearly there exist
obvious workarounds for such situations, as shown in Section 4.2.10.

4.4.5 Pointers and Heaps

The usage of pointers is slightly more restricted than inFork since inForkLight the private
address subspaces are not embedded into the global shared memory but addressed indepen-
dently. Thus, shared pointer variables must not point to private objects. As it is, in general, not
possible to statically verify whether the pointee is private or shared, dereferencing a shared
pointer containing a private address will lead to a run time error. Nevertheless it is legal to
make a shared or a private pointer point to a shared object.

ForkLight supplies three kinds of heaps, as inFork. First, there is the usual, private heap
for each processor, where space can be allocated and freed by the (asynchronous) functions
malloc andfree known from C. Second, there is a global, permanent shared heap where
space can be allocated and freed accordingly using the asynchronous functionsshmalloc
andshfree . And finally, ForkLight provides one automatic shared heap for each group.
This kind of heap is intended to provide fast temporary storage blocks which are local to a
group. Consequently, the life range of objects allocated on the automatic shared heap by the
control-synchronousshalloc function is limited to the life range of the group by which
that shalloc was executed. Thus, such objects are freed automatically when the group
allocating them is released.

Pointers to functions are also supported inForkLight. Dereferencing a pointer to a control-
synchronous function is only legal in control-synchronous mode if it is stable.

4.4.6 Standard Atomic Operations

Atomic fetch&opoperations, also known asmultiprefixcomputations when applied in a fully-
synchronous context with priority resolution of concurrent write accesses to the same mem-
ory location, have been integrated as standard functions calledfetch add , fetch max,
fetch and andfetch or , in order to give the programmer direct access to these powerful
operators. They can be used in control-synchronous as well as in asynchronous mode. Note
that the order of execution for concurrent execution of several, say,fetch add operations
to the same shared memory location is not determined inForkLight.

For instance, determining the sizep of the current group and consecutive renumbering
0,1,...,p� 1 of the group-relative processor ID$ could also be done by

csync void foo(void)
{

int myrank;
sh int p = 0;
============= //guarantees p is initialized
myrank = fetch_add(&p, 1);
============= //guarantees p is groupsize
...

}

4.4. ForkLight Language Design 197

where the function-local integer variablep is shared by all processors of the current group.
The implementation offetch&addis assumed to work atomically. This is very useful to

access semaphores in asynchronous mode, such as simple locks that sequentialize access to
some shared resource where necessary. LikeFork, ForkLight offers several types of locks in
its standard library: simple locks, fair locks, and reader–writer locks.

There are further atomic memory operationsatomic op available asvoid routines.
They may be used for integer global sum, bitwiseOR, bitwise AND, maximum, and mini-
mum computations.

4.4.7 Discussion: Support of Strict Synchronicity inForkLight?

There are some cases where strict synchronicity would allow more elegant expression of par-
allel operations. For instance, a parallel pointer doubling operation would, in synchronous
mode ofFork, just look like

a[$] = a[a[$]];

under the assumption that the shared integer arraya has as many elements as there are pro-
cessors available. In order to guarantee correct execution inForkLight, one has to introduce
temporary private variables and a barrier statement:

int temp = a[a[$]];
==============
a[$] = temp;

Nevertheless, we claim that this is not a serious restriction for the programmer, because
(s)he must use the second variant also inFork if not enough processors are available to per-
form the operation in one step (i.e., if the numberN of array elements exceeds the number of
processors):

int i, *temp, prsize;
prsize = (int)ceil(N/groupsize()));
temp = (int *)malloc(prsize);
for (i=0; i<prsize && $*prsize+i<N, i++)

temp[i] = a[a[$*prsize+i]];
============ // only required in ForkLight
for (i=0; i<prsize && $*prsize+i<N, i++)

a[$*prsize+i] = temp[i];
free(temp);

A more elegant interface for the programmer would be to allow sections of strict synchron-
ous mode inForkLight. This could be achieved by an extension of the currentForkLight
design by a statement

strict <stmt>

that causes fully synchronous execution for a statement, as in

198 Chapter 4. Design of Parallel Programming Languages

/* Parallel Mergesort in ForkLight. C.W. Kessler 8/98
* Sorts N elements using p processors.
* Assumes that all elements are different;
* otherwise the result will be wrong.
*/

#include <ForkLight.h> // required for ForkLight programs
#include <stdio.h> // host stdio.h
#include <stdlib.h> // host stdlib.h

#define THRESHOLD 1

/** print an array a of size n sequentially
*/

void print_array(int *a, int n)
{

int i;
printf("Array %p of size %d:\n", a, n);
for (i=0; i<n; i++) printf(" %d", a[i]);
printf("\n");

}

/** compare function used by the sequential qsort() routine
*/

int cmp(const void *a, const void *b)
{

if (*(int *)a < *(int *)b) return -1;
else if (*(int *)a > *(int *)b) return 1;

else return 0;
}

/** in sequential compute the rank of key within
* array of size n, i.e. # array-elements < key
*/

int get_rank(int key, int *array, int n)
{

int left = 0, right = n-1, mid;
if (key >= array[n-1]) return n;
if (key == array[n-1]) return n-1;
if (key <= array[0]) return 0;
while (left < right-1) { /*binary search*/

// always maintain array[left] <= key < array[right]
mid = (right+left)/2;
if (key < array[mid]) right = mid;
else left = mid;

}
if (key==array[left]) return left;
else return left+1;

}

FIGURE 4.34: Parallel Mergesort inForkLight (1).

4.4. ForkLight Language Design 199

/** merge array src1 of size n1 and src2 of size n2
* into one array dest of size n1+n2.
* Assertions: p>1, n1*n2>=1, dest array is allocated.
*/

csync void merge(int *src1, n1, *src2, n2, *dest)
{

sh int iter, iter2;
sh int *rank12, *rank21; /*temp. rank arrays*/
int i, p = groupsize();
rank12 = (int *)shalloc(n1 * sizeof(int));
rank21 = (int *)shalloc(n2 * sizeof(int));
seq iter = 0;
seq iter2 = 0;
=================
async

/* self-scheduling par. loop over rank computations: */
for (i=fetch_add(&iter,1); i<n1; i=fetch_add(&iter,1))

rank12[i] = get_rank(src1[i], src2, n2);
=================
async

for (i=fetch_add(&iter2,1); i<n2; i=fetch_add(&iter2,1))
rank21[i] = get_rank(src2[i], src1, n1);

=================
/* copy elements to dest using the rank information */
async for (i=$$; i<n1; i+=p) dest[i+rank12[i]] = src1[i];
async for (i=$$; i<n2; i+=p) dest[i+rank21[i]] = src2[i];

}

/** mergesort for an array of size n.
* The sorted array is to be stored in
* sortedarray which is assumed to be allocated.
*/

csync void mergesort(int *array, n, *sortedarray)
{

int i, p = groupsize();
if (stable(p==1)) {

qsort(array, n, sizeof(int), cmp);
async for (i=0; i<n; i++) sortedarray[i] = array[i];

}
else
if (stable(n<=THRESHOLD)) { // parallelism doesn’t pay off

seq qsort(array, n, sizeof(int), cmp);
================
async for (i=$$; i<n; i+=p) sortedarray[i] = array[i];

}
else {

sh int *temp = (int *)shalloc(n * sizeof(int));
fork (2; @=$$%2)

mergesort(array + @*(n/2),
(1-@)*(n/2) + @*(n-n/2), temp + @*(n/2));

//============= implicit barrier at merge() call:
merge(temp, n/2, temp+n/2, n-n/2, sortedarray);

}
}

FIGURE 4.35: Parallel Mergesort inForkLight (2).

200 Chapter 4. Design of Parallel Programming Languages

void main(void)
{

start {
sh int *a, *b;
int j, N = 100;
a = (int *) shalloc(N * sizeof(int));
b = (int *) shalloc(N * sizeof(int));
=================== // arrays allocated
async for (j=$; j<N; j+=__P__) a[j] = N - j;
=================== // array a initialized
seq print_array(a, N);
=================== // array a printed
mergesort(a, N, b);
=================== // mergesort completed
seq print_array(b, N);

}
}

FIGURE 4.36: Parallel Mergesort inForkLight (3).

.....
strict {

a[$] = a[a[$]];
}
.....

A drawback ofstrict is that the compiler must perform data dependence analysis and
generate code that protects the correct order of accesses to the same shared memory location
by locks or barriers, as described in Chapter 5. Worst-case assumptions may even lead to
complete sequentialization.strict would be admissible only in control-synchronous re-
gions. Functions called from<stmt> would be executed in control-synchronous rather than
fully synchronous mode.

4.4.8 Example: Parallel Mergesort

The parallel mergesort algorithm sorts an array ofn items (here: integers) withp processors
by splitting the array into two halves, sorting these recursively in parallel byp=2 processors
each, and then reusing the same processors for merging the two sorted subarrays in parallel
into one sorted array. The recursion stops if either the size of the array to be sorted falls below
a certain threshold, or if the number of processors available for sorting becomes 1. In both
cases a sequential sorting algorithm (such as the nativeqsort routine) may be applied. The
run time isO(n=p � log p logn), assuming that an optimal sequential sorting algorithm is used
for the sequential parts.

A ForkLight implementation of the parallel mergesort algorithm is given in Figures 4.34
and 4.35. Amain function that combines these routines to a completeForkLight program is
given in 4.36.

4.5. NestStep Language Design 201

FIGURE 4.37: A BSP su-
perstep

global barrier

local computation

communication phase

next barrier
update cached copies of shared variables

using cached copies of shared variables

4.5 NestStep Language Design

Now let us consider a parallel target architecture that has no shared memory at all. Using
virtual shared memory techniques, a shared memory can be simulated by the compiler and
the runtime system on top of a distributed memory architecture. Nevertheless, sequential
memory consistency must usually be paid by a high overhead. Additionally, synchronization
is even more expensive where it must be simulated by message passing. Hence, the issues of
synchronization and memory consistency should be considered and solved together. This is
the approach taken for the design and implementation of the parallel programming language
NestStep.

As its two predecessorsFork and ForkLight, NestStep has been designed as a set of
extensions to existing imperative programming languages, like Java or C. It adds language
constructs and runtime support for the explicit control of parallel program execution and shar-
ing of program objects.

4.5.1 The BSP Model

The BSP (bulk-synchronous parallel) model, as introduced by Valiant [Val90] and imple-
mented e.g. by the Oxford BSPlib library [HMS+98] for many parallel architectures, struc-
tures a parallel computation ofp processors into a sequence ofsuperstepsthat are separated
by global barrier synchronization points.

A superstep (see Figure 4.37) consists of (1) a phase of local computation of each proces-
sor, where only local variables (and locally held copies of remote variables) can be accessed,
and (2) a communication phase that sends some data to the processors that may need them in
the next superstep(s), and then waits for incoming messages and processes them. Note that
the separating barrier after a superstep is not necessary if it is implicitly covered by (2). For
instance, if the communication pattern in (2) is a complete exchange, a processor can proceed
to the next superstep as soon as it has received a message from every other processor.

In order to simplify cost predictions, the BSP machine model is characterized by only four
parameters: the numberp of processors, the overheadg for a concurrent pairwise exchange of
a one word message by randomly chosen pairs of processors, which roughly corresponds to
the inverse network bandwidth, the minimum timeL (message latency) between subsequent

202 Chapter 4. Design of Parallel Programming Languages

synchronizations, and the processor speed,s.
Additionally, some properties of the program dramatically influence the runtime, in par-

ticular the amount of communication. Lethi denote the maximum number of words sent or
received by processori, 0 � i < p. A communication pattern that bounds the maximum com-
munication indegree and outdegree of any processor byh is calledh-relation. For instance,
the situation where each processori sends one integer to its neighbor ((i + 1)%p) implies a
1-relation. Broadcasting one integer from one processor to the otherp�1 processors is treated
as a(p� 1)-relation.

If we denote the time for the computation part of a superstep bywi for processori, with
w = max0�i<pwi, we obtain the following formula for the overall execution time of a super-
step:

t = max
procs.Pi

wi + max
procs.Pi

hi � g + L = w + h � g + L

Note that the parametersL andg are usually functions ofp that depend mainly on the topology
and the routing algorithm used in the interconnection network. For instance, on a bus network,
g is linear inp, because all messages are sequentialized, and thus the realization of a 1-relation
takes linear time.

The BSP model, as originally defined, does not support a shared memory; rather, the pro-
cessors communicate via explicit message passing.NestStep provides a software emulation
of a shared memory: Shared scalar variables and objects are replicated across the processors,
arrays may be distributed. In compliance to the BSP model, sequential memory consistency is
relaxed to and only to superstep boundaries. Within a superstep only the local copies of shared
variables are modified; the changes are committed to all remote copies at the end of the su-
perstep. A tree-based message combining mechanism is applied for committing the changes,
in order to reduce the number of messages and to avoid hot spots in the network. As a useful
side effect, this enables on-the-fly computation of parallel reductions and prefix computations
at practically no additional expense. For space economy,NestStep also provides distribution
of arrays in a way similar to Split-C [CDG+93].

In the BSP model there is no support for processor subset synchronization, i.e. for nesting
of supersteps. Thus, programs can only exploit one-dimensional parallelism or must undergo
a flatteningtransformation that converts nested parallelism to flat parallelism. However, au-
tomatic flattening by the compiler has only been achieved for SIMD parallelism, as e.g. in
NESL [BHS+94]. Instead,NestStep introduces static and dynamic nesting of supersteps,
and thus directly supports nested parallelism.

Although considered unnecessary by a large fraction of the BSP community, there are
several good reasons for exploiting nested parallelism:

� “Global barrier synchronization is an inflexible mechanism for structuring parallel pro-
grams” [McC96].

� For very large numbers of processors, barrier-synchronizing a subset of processors is
faster than synchronizing all processors.

4.5. NestStep Language Design 203

� If the parallel machine is organized as a hierarchical network defining processor clus-
ters, this multi-level structure could be exploited by mapping independently operating
processor subsets to different clusters.

� Most parallel programs exhibit a decreasing efficiency for a growing number of proces-
sors, because finer granularity means more communication. Thus it is better for overall
performance to run several concurrently operating parallel program parts with coarser
granularity simultaneously on different processor subsets, instead of each of them using
the entire machine in a time-slicing manner.

� The communication phase for a subset of processors will perform faster as the network
is less loaded. Note that e.g. for global exchange, network load grows quadratically with
the number of processors. Moreover, independently operating communication phases
of different processor subsets are likely to only partially overlap each other, thus better
balancing network traffic over time.

� Immediate communication of updated copies of shared memory variables is only rel-
evant for those processors that will use them in the following superstep. Processors
working on a different branch of the subset hierarchy tree need not be bothered by par-
ticipating in a global update of a value that they don’t need in the near future and that
may be invalidated and updated again before they will really need it.

4.5.2 NestStep Language Design Principles

NestStep is defined by a set of language extensions that may be added, with minor modifi-
cations, to any imperative programming language, be it procedural or object oriented. In our
first approach in 1998 [C18,J7],NestStep was based on the Java language [GJS96], called
NestStep-Java in the following. The implementation of the runtime system ofNestStep-
Java (see Section 5.4) was written in Java as well. However, we were so disappointed by
the poor performance of Java, in particular the slow object serialization, that we decided for
a redesign based on C in 2000, which we callNestStep-C in the following. In the course of
the redesign process, we changed the concept of distributed arrays and abolished the so-called
volatile shared variables, which simplified the language design and improved its compatibility
with the BSP model. The Java-based versionNestStep-Java is to be changed accordingly.
Note that theNestStep extensions could as well be added to (a subset of) C++ or Fortran.
In particular, the basis language needs not be object oriented: parallelism is not implicit by
distributed objects communicating via remote method invocation, as in Java RMI [Far98], but
expressed by separate language constructs.

The sequential aspect of computation is inherited from the basis language.NestStep adds
some new language constructs that provide shared variables and process coordination. Some
restrictions on the usage of constructs of the basis language must be made for eachNestStep
variant. For instance, inNestStep-C, unrestricted pointers (see Section 4.5.7) are excluded;
in NestStep-Java, the usage of Java threads is strongly discouraged.

NestStep processes run, in general, on different machines that are coupled by theNest-
Step language extensions and runtime system to a virtual parallel computer. This is why we

204 Chapter 4. Design of Parallel Programming Languages

prefer to call themprocessorsin the following, as we did also forFork andForkLight.
As in Fork andForkLight, NestStep processors are organized in groups, as described in

Section 4.1. Themain method of aNestStep program is executed by all available processors
of the partition of the parallel computer the program is running on. Groups can be dynamically
subdivided during program execution, following the static nesting structure of the supersteps.

4.5.3 Supersteps and Nested Supersteps

The termstep statementcovers both thestep statement and theneststep statement of
NestStep. Step statements denote supersteps that are executed by entiregroupsof processors
in a bulk-synchronous way. Hence, a step statement always expects all processors of the
current group to arrive at this program point.

The relationship between processor groups and step statements is determined by the fol-
lowing invariant:

Superstep synchronicity

All processors of the same group are guaranteed to work within the same step
statement.

The step statements also control shared memory consistency within the current group, as
will be explained in Section 4.5.5.

Thestep statement

step statement

implicitly performs a groupwide barrier synchronization at the beginning and the end ofstate-
ment. Note that these barriers are only conceptual. In any case, the implementation will try to
avoid duplicate barriers and integrate barriers into combine phases.

Supersteps can be nested, as visualized in Figure 4.38. The nestable variant of thestep
statement is theneststep statement. Aneststep statement deactivates and splits the
current group into disjoint subgroups. Each subgroup executesstatement, independently of
the others, as a superstep. The parent group is reactivated and resumes when all subgroups
finished execution of theneststep body. Asneststep s can be nested statically and
dynamically, the group hierarchy forms a tree at any time of program execution, where the
leaf groups are the currently active ones.

The first parameter of aneststep statement specifies the number of subgroups that are
to be created. It needs not be a constant, but its value must be equal on all processors of an
executing group. An optional second parameter indicates how to determine the new subgroup
for each processor. Creating a single subgroup may make sense if only a part of the group’s
processors is admitted for the computation in the substep, e.g. at one-sided conditions.

neststep (k) statement

splits the current group (let its size bep) into k subgroups of sizedp=ke or bp=kc each. The
k subgroups are consecutively indexed from 0 tok � 1; this subgroup index can be read in
statementas thegroup ID @. Processori, 0 � i � p � 1 of the split group joins subgroup
imodk. If p < k, the lastk � p subgroups are not executed.

4.5. NestStep Language Design 205

changes to shared variables
are only committed within
the current group

subgroup-
local
barrier

subgroup-
local
superstep

end of nested superstep

commit inter-subgroup changes
to shared variables

end of previous superstep

sub-supersteps are independently
executed by the two subgroups

split current group into 2 subgroups
processors join new subgroup
renumber processor ranks

restore parent group

final combine phase

subgroup-wide

FIGURE 4.38: Nesting of supersteps, here visualized for aneststep(2,...) ...
statement splitting the current group into two subgroups. Dashed horizontal lines represent
implicit barriers.

In order to avoid such empty subgroups, the programmer can specify by

neststep (k, #>=1) statement

that each subgroup should be executed by at least one processor. In that case, however, some
of the subgroups will be executed serially by the same processors. Thus the programmer
should not expect all subgroups to work concurrently. Also, the serial execution of some
subgroups needs not necessarily be in increasing order of their group indices@.

In some cases a uniform splitting of the current group into equally-sized subgroups is
not optimal for load balancing. In that case, the programmer can specify a weight vector to
indicate the expected loads for the subgroups:

neststep (k, weight) statement

Here, the weight vectorweight must be a replicated shared array (see later) ofk (or more)
nonnegative floats. If the weight vector has less thank entries, the program will abort with

206 Chapter 4. Design of Parallel Programming Languages

an error message. Otherwise, the subgroup sizes will be chosen as close as possible to the
weight ratios. Subgroups whose weight is 0 are not executed. All other subgroups will have
at least one processor, but if there are more (k0) nonzero weights than processors (p) in the
split group, then thek0 � p subgroups with least weight will not be executed.

The group splitting mechanisms considered so far rely only on locally available infor-
mation and are thus quite efficient to realize [BGW92]. Now we consider a more powerful
construct that requires groupwide coordination:

neststep (k, @= intexpr) statement

createsk new subgroups. Each processor evaluates its integer-valued expressionintexpr. If
this valuee is in the range[0:::k � 1], the processor joins the subgroup indexed bye. Since
the subgroup to join is a priori unknown (intexpr may depend on runtime data), the proper
initialization of the subgroups (size, ranks) inherently requires another groupwide combine
phase22 that computes multiprefix-sums (cf. [C16]) across the entire split group.

If for a processor the valuee of intexpr is not in the range[0::k � 1], then this processor
skips the execution ofstatement.

4.5.4 Supersteps and Control Flow

The usual control flow constructs likeif , switch , while , for , do , ?: , &&and|| as well
as jumps likecontinue , break , andreturn (and exceptions in Java) can be arbitrarily
used within step statements.

Nevertheless the programmer must take care that step statements are reached by all pro-
cessors of the current group, in order to avoid deadlocks. As long as the conditions affecting
control flow arestable, i.e. are guaranteed to evaluate to the same value on each processor
of the current group, this requirement is met. Where this is not possible, for instance, where
processors take different branches of anif statement and step statements may occur within a
branch, as in

if (cond) // if stmt1 contains a step:
stmt1(); // danger of deadlock, as

else stmt2();// these processors don’t
// reach the step in stmt1

aneststep statement must be used that explicitly splits the current group:23

neststep(2; @=(cond)?1:0) // split group into 2 subgroups
if (@==1) stmt1(); // a step in stmt1 is local
else stmt2(); // to the first subgroup

22This combine phase may, though, be integrated by the compiler into the combine phase of the previous step
statement ifk andintexprdo not depend on shared values combined there.

23It is, in general, not advisable here to have such insertion of group splittingneststep s automatically
by the compiler, since the inner step statements to be protected may be hidden in method calls and thus not
statically recognizable. Also, paranoic insertion of group-splittingneststep s at any point of potential control
flow divergence would lead to considerable inefficiency. Finally, we feel that all superstep boundaries should be
explicit to theNestStep programmer.

4.5. NestStep Language Design 207

Similar constructs hold forswitch statements. For the loops, a step statement within the
loop body will not be reached by all processors of the group if some of them stop iterating
earlier than others. Thus, the current group has to be narrowed to a subgroup consisting only
of those processors that still iterate. Awhile loop, for instance,

while (cond) // may lead to deadlock
stmt(); // if stmt() contains a step

can be rewritten using a private flag variable as follows:

boolean iterating = (cond);
do

neststep < 1 ; @ = iterating? 0:-1 >
stmt(); // a step inside stmt is local

// to the iterating subgroup
while (iterating = iterating && (cond));

Note that the conditioncond is evaluated as often and at the same place as in the previous
variant. Once a processor evaluatesiterating to 0, it never again executes an iteration.
Note also that now the iterations of thewhile loop are separated by implicit barriers for the
iterating group.

Processors can jump out of a step statement byreturn , break , continue , or an
exception. In these cases, the group corresponding to the target of the jump is statically
known and already exists when jumping: it is an ancestor of the current group in the group
hierarchy tree. On their way back through the group tree from the current group towards this
ancestor group, the jumping processors cancel their membership in all groups on this path.
They wait at the step statement containing their jump target for the other processors of the
target group.

Jumps across an entire step statement or into a step statement are forbidden, since the
group associated with these jump target step statements would not yet be existing when jump-
ing. As there is nogoto in Java, such jumps are mostly syntactically impossible. Never-
theless, processors jumping viareturn , break andcontinue may skip subsequent step
statements executed by the remaining processors of their group. For these cases, the compiler
either warns or recovers by applying software shadowing of the jumping processors to prevent
the other processors from hanging at their next step statement.

Jumps within a leaf superstep, that is, within a step statement that contains no other step
statement, are harmless.

Group inspection

For each group there is on each processor belonging to it a classGroup object. In particular,
it contains the group size, the group ID, and the processor’s rank within the group. (see
Table 4.6). TheGroup object for the current group is referenced inNestStep programs by
thisgroup . thisgroup is initialized automatically when the group is created, updated as
the group processes step statements, and restored to the parent group’sGroup object when
the group terminates.

At entry to a step statement, the processors of the entering group are ranked consecu-
tively from 0 to the group size minus one. This group-local processor ID can be accessed

208 Chapter 4. Design of Parallel Programming Languages

Publically accessible fields and access methods:
int size size of this group at entry to the current step
int rank my rank in this group at entry to current step
int sizeinit size of this group when it was created
int rankinit my initial rank when this group was created
int gid this group’s ID
Group parent ref. to myGroup object for the parent group
int depth depth of this group in the hierarchy tree
int path string indicating the group’s hierarchy path
int count counter for supersteps executed by this group

NestStep shorthands for ease of programming:
thisgroup expands toGroup.myGroup
expands tothisgroup.size()
$$ expands tothisgroup.rank()
$ expands tothisgroup.rankinit()
@ expands tothisgroup.gid()

TABLE 4.6: Fields and shorthands forGroup objects inNestStep.

by thisgroup.rank() or, for convenience, just by the symbol$$. Correspondingly, the
current group’s sizethisgroup.size() is abbreviated by the symbol#, and the group
ID thisgroup.gid() by the symbol@.

If some processors leave a group earlier bybreak , continue or return , thesize
andrank fields of the group will be updated at the end of the corresponding superstep.

g.depth() determines the depth of the groupg in the group hierarchy tree. The parent
group of a groupg can be referenced byg.parent() . This allows to access theGroup
object for any ancestor group in the group hierarchy tree.g.path() produces a string like
0/1/0/2 that represents the path from the root group to the calling processor’s current group
in the group hierarchy tree by concatenating thegid s of the groups on that path. This string is
helpful for debugging. It is also used by theNestStep run-time system for uniquely naming
group-local shared variables and objects.

Sequential parts

Statements marked sequential by aseq keyword

seq statement

are executed by the group leader only. Thegroup leaderis the processor with rank$$==0 .
Note that, as inForkLight, theseq statement does not imply a barrier at its end. If such a
barrier is desired,seq has to be wrapped by astep :

step seq statement

Note that, if the initially leading processor leaves the group before the “regular” end of a
step statement viabreak , continue or return , another processor becomes leader of the
group after the current sub-step, and thus responsible for executing future unparameterized

4.5. NestStep Language Design 209

seq statements. Nevertheless, maintaining a leader of the group involves some run-time
overhead, as we will see in Section 5.4.

Discussion: Explicit versus implicit group splitting

In Fork andForkLight, the maintenance of the synchronicity invariant is performed auto-
matically by the implementation, using implicit subgroup creation and implicit barriers. In
contrast, the policy ofNestStep is to make all subgroup creations and all barriers explicit,
hence the programmer must be aware of them. This break in the tradition is motivated as
follows:

� Clarity. The programmer should have an idea of the complexity of the resulting group
hierarchy tree.

� Performance. On a distributed memory system, subgroup creation and barriers are
expensive operations; their cost scales at least logarithmically in the group size. In con-
trast, on a tightly coupled system such as theSB-PRAM, such operations required only
a small constant overhead. The programmer should be aware of these high-overhead
constructs by having them marked explicitly in the program code.

� Optimizations. Some subgroup creations can be avoided because the programmer has
additional knowledge about his application that the compiler cannot deduce from static
program analysis. Also, the programmer can choose the weakest possible variant of the
neststep statement that still matches the desired subgroup creation effect.

Clearly, implicit subgroup creation and implicit barriers would provide more program-
ming comfort, especially forFork andForkLight programmers. We could imagine a flexible
solution in future implementations ofNestStep by offering a compiler option that enables
implicit subgroup creation and barriers, as known fromFork.

4.5.5 Sharing Variables, Arrays, and Objects

Variables, arrays, and objects are eitherprivate (local to a processor) orshared(local to a
group). Sharing is specified by a type qualifiersh at declaration and (for objects) at allocation.

Shared base-type variables and heap objects are replicated. Shared arrays may be repli-
cated or distributed; replication is the default. Pointers, if supported by the base language, are
discussed in Section 4.5.7.

By default, for areplicatedshared variable, array, or object, one local copy exists on each
processor of the group declaring (and allocating) it.

Shared arrays are stored differently from private arrays and offer additional features. A
shared array is calledreplicated if each processor of the declaring group holds a copy of
all elements, anddistributedif the array is partitioned and each processor owns a partition
exclusively. Like their private counterparts, shared arrays are not passed by value but by
reference. For each shared array (also for the distributed ones), each processor keeps its

210 Chapter 4. Design of Parallel Programming Languages

element size, length and dimensionality at runtime in a local array descriptor. Hence, bound-
checking (if required by the basis language) or thelength() method can always be executed
locally.

For nondistributed arrays and for objects it is important to note that sharing refers to the
entire object, not to partial objects or subarrays that may be addressed by pointer arithmetics.
This also implies that a shared object cannot contain private fields; it is updated as an entity24.

Sharing by replication and combining

For replicated shared variables, arrays, and objects, the step statement is the basic control
mechanism for shared memory consistency:

Superstep consistency

On entry to a step statement holds that on all processors of the same active group
the private copies of a replicated shared variable (or array or heap object) have
the same value. The local copies are updated only at the end of the step statement.

Note that this is a deterministic hybrid memory consistency scheme: a processor can be sure
to work on its local copy exclusively within the step statement.

Computations that may write to shared variables, arrays, or objects, must be inside a step
statement.

Replicated shared variables

At the end of a step statement, together with the implicit groupwide barrier, there is a group-
wide combine phase. The (potentially) modified copies of replicated shared variables are
combined and broadcast within the current group according to a predefined strategy, such that
all processors of a group again share the same values of the shared variables. Thiscombine
strategycan be individually specified for each shared variable at its declaration, by an extender
of thesh keyword:

� sh<0> type x; declares a variablex of arbitrary typetype where the copy of the
group leader (i.e., the processor numbered 0) is broadcast at the combine phase. All
other local copies are ignored even if they have been written to.

� sh<?> type x; denotes that an arbitrary updated copy is chosen and broadcast. If
only one processor updates the variable in a step, this is a deterministic operation.

� sh<=> type x; declares a shared variable for which the programmer asserts that it
is always assigned an equal value on all processors of the declaring group. Thus, no
additional combining is necessary for it.

24With Java as basis language, shared objects must beSerializable .

4.5. NestStep Language Design 211

� sh<+> arithtype x; , applicable to shared variables of arithmetic types, means
that all local copies ofx in the group are added, the sum is broadcast to all processors of
the group, and then committed to the local copies. This is very helpful in all situations
where a global sum is to be computed, e.g. in linear algebra applications. There are
similar predefined combine strategies for multiplication, bitwise AND / OR, and user-
defined binary associative combine functions.

Here is an example:

sh<+> float sum; // automat. initialized to 0.0
step

sum = some_function($);
// here automatic combining of the sum copies
seq System.out.println("global sum: " + sum);

� sh<*> arithtype x; works in the same way for global multiplication,

� sh<&> int x; for global bitwise AND computation, and

� sh<|> int x; for global bitwise OR computation, the latter two being defined for
the integral types orboolean .

� sh<foo> type x; specifies the name of an arbitrary associative user-defined method
type foo(type,type) as combine function. Clearlyfoo itself should not contain
references to shared variables nor steps.

Since combining is implemented in a treelike way (see Section 5.4), prefix sums can be
computed on-the-fly at practically no additional expense. In order to exploit these powerful
operators, the programmer must specify an already declared private variable of the same type
where the result of the prefix computation can be stored on each processor:

float k;
sh<+:k> float c;

The default sharity qualifiersh without an explicit combine strategy extender is equivalent to
sh<?> .

The declared combine strategy can also be overridden for individual steps by acombine
annotation at the end of the step statement. Note however that within each superstep there
can only one combine strategy be associated with each certain shared variable or shared array
element. In fact, programs will become more readable if important combinings are explicitly
specified. For instance, at the end of the following step

sh int a, b, c; // default combine strategy <?>
int k;
......
step {

a = 23;
b = f1($);
c = f2(b); // uses modified copy of b

}
combine (a<=>, b<+:k>, c<+>);

212 Chapter 4. Design of Parallel Programming Languages

#include <stdio.h>
#include <Neststep.h>

#define N 1000000

float f(float x)
{

return 4.0 / (1.0 + x*x);
}

void main(int argc, char *argv[])
{

sh float pi;
sh float h<=>; // shared constant
int i;

step {
h = 1.0 / (float)N;
for (i=$$; i<N; i+=#)

pi += f(h*((float)i - 0.5));
}
combine (pi<+>);

step {
pi = pi*h;
if ($$==0)

printf("PI=%f\n", pi);
}
combine (pi<=>);

}

FIGURE 4.39: Example code: Pi calculation inNestStep

the local copybnewi of b on processori is assigned the sum
Pp

j=1 bj and the private variablek
on processori is assigned the prefix sum

Pi
j=1 bj. Also, the copies ofc are assigned the sum

of all copies ofc. The combining fora can be omitted for thisstep .

Example: Pi calculation

The example program in Figure 4.39 performs a calculation of� following an integration
approach. The local sums are collected in the local copies of the shared variablepi in the
first superstep. After that superstep, the local contributions are added, and now each copy
of pi contains the global sum of all copies. In the second superstep (which is only needed
for didactic purposes, not for the computation itself),pi is scaled and the result is printed.
Another combining of thepi copies at the end of the second superstep is not necessary,
although they have been written to; this is indicated by thepi<=> combine method that skips
combining ofpi for that superstep.

4.5. NestStep Language Design 213

Replicated shared arrays

For a replicated shared array, each processor of the declaring group holds copies of all ele-
ments. The combining strategy declared for the element type is applied elementwise. The
declaration syntax is similar to standard Java or C arrays:

sh<+> int[] a;

declares a replicated shared array of integers where combining is by summing the correspond-
ing element copies.

A shared array can be allocated (and initialized) either statically already at the declaration,
as in

sh int a[4] = {1, 3, 5, 7};

or later (dynamically) by calling a constructor (inNestStep-Java)

a = new sh int[N];

or

a = new_Array (N, Type_int);

in NestStep-C, respectively.

Discussion: Volatile Shared Variables, Arrays, Objects

The first approach toNestStep offered support for so-calledvolatile shared variables, arrays,
and objects, for which the implementation guarantees sequential consistency. This feature has
been removed in the current design ofNestStep.

A shared variable declaredvolatile is not replicated. Instead, it is owned exclusively
by one processor of the declaring group. This owner acts as a data server for this variable.
Different owners may be specified for different shared volatile variables, in order to balance
congestion. Other processors that want to access such a variable will implicitly request its
value from the owner by one-sided communication and block until the requested value has
arrived. Thus, accessing such variables may be expensive. Explicit prefetching is enabled by
library routines; hence, the communication delay may be padded with other computation. Be-
yond its ordinary group work, the owner of a volatile shared variable has to serve the requests.
Because all accesses to volatile shared variables are sequentialized,sequential consistencyis
guaranteed for them even within a superstep. Moreover, atomic operations likefetch&addor
atomicaddare supported by this mechanism.

The same, user-relaxable sequential consistency scheme was used for distributed arrays
in the original approach, such that, in principle, each array element has exactly one owner
processor that is responsible for serving all access requests to it from remote processors. The
run-time library offered bulk-mirror and bulk-update functions for entire sections of arrays,
which results in faster communication but relaxes sequential consistency.

Volatile shared variables have been intended for serving as global flags or semaphores that
implement some global state of computation and thus should be able to be read and written
to by any processor at any time, and that the result of a write access is made globally visible
immediately.

214 Chapter 4. Design of Parallel Programming Languages

a

a

a

a

a

a

b

a0

1

2

3

4

5

6

0
b

b2

b4

6

b1

b3

b
5

P3

P2

P1

P0

int b[7]</>;

int a[7]<%>;

FIGURE 4.40: Cyclic and
block distribution of array ele-
ments across the processors of
the declaring group.

On the other hand, volatile shared variables do not have a direct correspondence to the BSP
model, because the BSP model supports sequential consistency only at the border between
two subsequent supersteps. Moreover, the implementation of the—originally required—
sequential consistency for the distributed arrays may lead to extremely inefficient code; note
that many distributed shared memory systems use weaker forms of consistency to be efficient
in practice. For these reasons, volatile shared variables, arrays, and objects have been dropped
in the currentNestStep design.

4.5.6 Distributed Shared Arrays

Only shared arrays can be distributed. Typically, large shared arrays are to be distributed
to save space and to exploit locality. While, in the earlyNestStep approach, distributed
arrays were volatile by default, such that each array element was sequentially consistent, the
current language standard defines for distributed arrays the same superstep consistency as for
replicated shared variables, arrays, and objects. The modifications to array elements become
globally visible only at the end of a superstep. Hence, the processor can be sure to work on its
local copy exclusively until it reaches the end of the superstep. For concurrent updates to the
same array element, the corresponding declared (or default) combine policy is applied, as in
the scalar case. This strategy produces more efficient code and is more consistent with respect
to the treatment of scalar variables. Also, it is no longer necessary that the programmer takes
over control for locality and enforce explicit local buffering of elements by the now obsolete
bulk-mirror and bulk-update methods for performance tuning purposes.

The various possibilities for the distribution of arrays inNestStep are inspired by other
parallel programming languages for distributed memory systems, in particular by Split-C
[CDG+93].

Distributed shared arrays are declared as follows. The distribution may be either in con-
tiguous blocks or cyclic. For instance,

sh int[N]</> b;

denotes a block-wise distribution with block sizedN=pe, wherep is the size of the declaring
group, and

sh int[N]<%> a;

denotes a cyclic distribution, where the owner of an array element is determined by its index
modulo the group size. Such distributions for a 7-element array across a 4 processor group
are shown in Figure 4.40.

4.5. NestStep Language Design 215

Multidimensional arrays can be distributed in up to three “leftmost” dimensions. As in
Split-C [CDG+93], there is for each multidimensional arrayA of dimensionalityd a statically
defined dimensionk, 1 � k � d, k � 3, such that all dimensions1; :::; k are distributed (all
in the same manner, linearized row-major) and dimensionsk+1; :::; d are not, i.e.A[i1; :::; id]
is local to the processor owningA[i1; :::; ik]. The distribution specifier (in angle brackets) is
inserted between the declaration brackets of dimensionk andk + 1. For instance,

sh int A[4][5]<%>[7]

declares a distributed array of4 � 5 = 20 pointers to local 7-element arrays that are cyclically
distributed across the processors of the declaring group.

The distribution becomes part of the array’s type and must match e.g. at parameter pass-
ing. For instance, it is a type error to pass a block-distributed array to a method expecting a
cyclically distributed array as parameter. AsNestStep-Java offers polymorphism in method
specifications, the same method name could be used for several variants expecting differently
distributed array parameters. InNestStep-C, different function names are required for dif-
ferent parameter array distributions.

Scanning local index spaces

NestStep provides parallel loops for scanning local iteration spaces in one, two and three
distributed dimensions. For instance, theforall loop

forall (i, a)
stmt(i, a[i]);

scans over the entire arraya and assigns to the private iteration counteri of each processor
exactly those indices ofa that are locally stored on this processor. For each processor, the loop
enumerates the local elements upward-counting. The local iteration spaces may be limited
additionally by the specification of a lower and upper bound and a stride:

forall (i, a, lb, ub, st)
stmt(i, a[i]);

executes only everyst th local iterationi located betweenlb andub . Downward counting
local loops can be obtained by settinglb >ub andst < 0.

Generalizationsforall2 , forall3 for more than one distributed dimension are straight-
forward, using a row-major linearization of the multidimensional iteration space following the
array layout scheme.

Array syntax, as in Fortran90 and HPF, has been recently added toNestStep to denote
fully parallel operations on entire arrays. For example,a[6:18:2] accesses the elements
a[6] , a[8] , : : :, a[18 .

For each elementa[i] of a distributed array, the methoda.owner(i) resp. the function
owner(a[i]) returns the ID of the owning processor. Ownership can be computed either
already by the compiler or at run-time, by inspecting the local array descriptor.

The boolean predicatea.owned(i) resp.owned(a[i]) returns true iff the evaluating
processor ownsa[i] .

216 Chapter 4. Design of Parallel Programming Languages

void parprefix(sh int a[]</>)
{ int *pre; // local prefix array

int Ndp = N/p; // assuming p divides N for simplicity
int myoffset; // prefix offset for this processor
sh int sum=0; // constant initializers are permitted
int i, j = 0;
step {

pre = new_Array(Ndp, Type_int);
sum = 0;
forall (i , a) { // locally counts upward

pre[j++] = sum;
sum += a[i];

}
} combine(sum<+:myoffset>);
j = 0;
step

forall (i, a)
a[i] = pre[j++] + myoffset;

}

FIGURE 4.41: Computing parallel prefix sums inNestStep-C.

Example: Parallel prefix computation

Figure 4.41 shows theNestStep-C implementation of a parallel prefix sums computation for
a block-wise distributed arraya.

Accessing distributed array elements

Processors can access only those elements that they have locally available.
A nonlocal element must be fetched from its owner by an explicit request at the beginning

of the superstep that contains the read access (more specifically, at the end of the previous
superstep). In particular, potential concurrent updates to that element during the current su-
perstep, either by the owner or by another remote processor, are not visible to the processor; it
obtains the value that was globally valid at the beginning of the current superstep. The neces-
sary fetch instructions can be generated automatically by the compiler where the indices to be
requested can be statically determined. Alternatively, the programmer can help the compiler
with a prefetching directive.

A write access to a nonlocal element of a distributed shared array is immediately applied
to a local copy of that element. Hence, the new value could be reused locally by a writing
processor, regardless of the values written simultaneously to local copies of the same array
element held by other processors. At the end of the superstep containing the write access, the
remote element will be updated in the groupwide combine phase according to the combining
method defined for the elements of that array. Hence, the updated value will become globally
visible only at the beginning of the next superstep. Where the compiler cannot determine stat-
ically which elements are to be updated at the end of a superstep, this can be done dynamically

4.5. NestStep Language Design 217

by the runtime system. A poststore directive for the compiler could also be applied.
Prefix combining is not permitted for distributed array elements.

Bulk mirroring and updating of distributed array sections

Bulk mirroring and updating of distributed array elements avoids the performance penalty
incurred by many small access messages if entire remote regions of arrays are accessed. This
is technically supported by the use of array syntax and prefetching and poststoring directives
(mirror andupdate), as the compiler cannot always determine statically which remote
elements should be mirrored for the next superstep.

Example: BSPp-way Randomized Quicksort

Appendix C.1 contains aNestStep-C implementation of a simplified version (no oversam-
pling) of a p-way randomized Combine-CRCW BSP Quicksort algorithm by Gerbessiotis
and Valiant [GV94]. The algorithm makes extensive use of bulk movement of array elements,
formulated inNestStep as read and write accesses to distributed arrays.

Array redistribution within a group

Array redistribution, in particular redistribution with different distribution types, is only pos-
sible if a new array is introduced, because the distribution type is a static property of an array.
Redistribution is then just a parallel assignment.

Array redistribution at group splitting

Redistribution may be required at a group-splittingneststep statement. For that purpose,
the runtime system provides the routinesimportArray andexportArray . importAr-
ray must be called immediately after entry into the subgroups, that is, before control flow
may diverge25. Accordingly,exportArray should be positioned at the exit of thenest-
step statement, such that all processors of the parent group can participate in it.

For instance, consider a group that has allocated a distributed arraya. By a nest-
step(2,...) , the group is split into two subgroups. Each of the subgroups needs to have
access to some elements ofa, but not necessarily to just those that are owned by the accessing
subgroup’s processors. In order to keep updates to elements ofa group-local while maintain-
ing a distributed storage scheme,a must be redistributed across each of the subgroups. The
redistribution will pay off for better performance if it is amortized over several subsequent
accesses that are now local.

Another problem that is solved by redistribution is the case where updates toa from
different subgroups conflict with each other. For this reason, it is also not sufficient to create

25There is a chicken-and-egg problem with the specification of such redistribution, be it in the form of direc-
tives, language keywords, or calls to the runtime system, because the redistribution must reference subgroup-
local distributed arrays that are declared only within theneststep body, while the redistribution itself is global
to the subgroups, as all processors of the parent group must participate in it, and thus it should somehow precede
the neststep body. We have decided for the solution where the specification of the redistribution is moved
into theneststep body, after the declarations, but prior to any divergence of control flow.

218 Chapter 4. Design of Parallel Programming Languages

newpointersto the existing array elements but copy the array elements themselves at subgroup
creation, and copy them back at subgroup termination. Hence, group-local modifications go
to the copies and will hence only be visible within the modifying subgroup.

Redistribution for a distributed array at subgroup entry is done withimportArray :

sh int a[]<%> = ...
...
neststep(2, ...) { // split group into 2 subgroups

sh int[]<%> aa;
aa = importArray (a);
... use(aa) ...

}

importArray() virtually blocks the executing processor until it has received all ele-
ments of the array being redistributed that it is going to own. Finally, eachaa array holds a
copy of arraya, distributed across each individual subgroup.

Usually it is not the case that each subgroup needs to access every element ofa. Generally,
only the programmer knows which elements are really needed by which subgroup. Thus, (s)he
may tell this to the compiler, using array syntax to specify the necessary subarray elements to
be redistributed. The last superstep in the recursive parallel Quicksort example in Figure 4.42
gives an illustration.

When the subgroups cease to exist at the end of aneststep execution, the arrays mir-
rored subgroup-wide byimportArray are freed automatically. If values assigned to them
by the subgroups should be written back to the distributed array of the ancestor group, this
must be done explicitly by a corresponding group-export statement like

exportArray (aa, a[6:18:2]);

If several subgroups export different values to the same location ofa, it is not determined
which of these values will finally be stored.

Admittedly, the realization of the redistribution as calls to library routines is probably
not the best choice from a puristic point of view, becauseimportArray seems to cause
communication also at thebeginningof a (nested) superstep. From a pragmatic point of
view, this is less of a problem, because theimportArray calls may be thought of as still
belonging to the communication phase at the end of the preceding superstep, which is also
done in the implementation. Finally, one could invent an extension of theneststep syntax
that takes care for the redistributions.

4.5.7 Pointers

In NestStep-Java there are no pointers; references to objects are properly typed. InNestStep-
C, pointer variables could be declared as shared or private. Nevertheless, the sharity declara-
tion of a “shared pointer” variablep like

sh<+> int *p;

4.5. NestStep Language Design 219

void qs(sh int[]<%> a)
{ // a is a distributed array of n shared integers

sh<=> int l, e, u;
sh<?> int pivot;
sh float weight[2]; // replicated shared array
int j, n = a.length();
if (n<=THRESHOLD) { seq seqsort(a); return; }
if (#==1) { seqsort(a); return; }
do { // look for a good pivot element in a[]:

step { l = e = u = 0;
j = randomLocalIndex(a);
pivot = a[j];

} // randomly selects pivot among first # elements
step { // in parallel determine sizes of subarrays:

forall(j,a) // parallel loop over owned elements
if (a[j]<pivot) l++;
else if (a[j]>pivot) u++;

else e++;
} combine (l<+>, e<+>, u<+>); // group-wide sums

} while (! balanceOK(l,u,n)); // pivot bad: try again

// do partial presort in place in parallel:
partition(a, pivot, l, e, u);

weight[0]=Math.max((float)(l)/(float)(l+u),1/(float)#);
weight[1]=Math.max((float)(u)/(float)(l+u),1/(float)#);
neststep(2, weight) {

sh int[]<%> aa; // subgroup-wide distribution
thisgroup.importArray(aa, (@==0)? a.range(0,l,1)

: a.range(l+e,u,1));
qs(aa);
if (@=0) thisgroup.exportArray(aa, a.range(0,l,1))
else thisgroup.exportArray(aa, a.range(l+e,u,1));

}
}

FIGURE 4.42: A recursive parallel quicksort implementation inNestStep-Java. — The
partition function, which is not shown here, uses three concurrent parallel prefix com-
putations to compute the new ranks of the array elements in the partially sorted array. The
rank array entries are incremented in parallel with the respective subarray offset, and then
used as permutation vector in the runtime system functionpermute to produce a distributed
temporary array that is partially sorted. Finally, the temporary array is copied back toa in
parallel.

220 Chapter 4. Design of Parallel Programming Languages

Shared memory model Message passing
SIMD / dataparallel MIMD (MIMD)

Exactly NESL, V,C�, HPF, FORK, Fork,
synchronous Dataparallel C, Vienna-Fortran,ll , pm2,
execution Fortran90, Fortran-D, Modula-2* —
supported Vector-C, APL, MPP-Fortran

CM-Fortran
No exactly ParC, Cilk, CSP, Occam,
synchronous — — Sequent-C, PVM
execution PCP, LINDA, MPI, MPI-2

P4, OpenMP,
pthreads
ForkLight
NestStep

TABLE 4.7: Classification of some parallel programming languages.

refers to thepointee; the pointer variable itself is always private. For shared pointers we must
require that (a) shared pointers may point to replicated shared variables, (whole) arrays, or
objects only26, (b) pointer arithmetics is not allowed for shared pointers, and (c) all shared
pointers pointing to a (replicated) shared objectx must have been declared with the same type
and combine strategy as is used at the allocation ofx.

Private pointers may point to any private object, or to shared replicated variables, arrays,
and objects. In short, pointers can be used only as aliases for processor-local data. Hence,
dereferencing a pointer never causes communication.

4.6 Other Parallel Programming Languages

In this survey (which is definitely not exhaustive), we focus mainly on imperative languages
that support the shared memory programming model. Our classification is summarized in Ta-
ble 4.7. More general surveys of parallel programming languages are available in the literature
[BST89, ST95, GG96, ST98].

One approach of introducing parallelism into languages consists of decorating sequential
programs meant to be executed by ordinary processors with library calls for communication
resp. access to shared variables. Several subroutine libraries for this purpose extending C or
FORTRAN have been proposed and implemented on a broad variety of parallel machines.
Hence, adopting a more general view of parallel programming languages, we consider here
also parallel library packages for sequential programming languages.

26More specifically, the shared pointer points to the local copy of the shared variable, array, or object.

4.6. Other Parallel Programming Languages 221

4.6.1 MIMD Message Passing Environments

An early parallel programming language for a channel-based, synchronous variant of the mes-
sage passing model isCSP[Hoa78, Hoa85]. CSP provides language constructs for the explicit
decomposition of a computation into a fixed number of parallel tasks. Synchronization and
communication between the tasks is explicitly coded by the programmer in the form of send
and receive statements. All communication in CSP issynchronous, which means that the
sender of a message is blocked until the receiver has acknowledged the receipt of the mes-
sage. An interesting feature is the select statement that can be used to wait nondeterministi-
cally for specific messages from specific processors. The tasks are scheduled automatically to
processors by the runtime system.

The languageOccam[Inm84, JG88] is based on CSP. Occam adds configuration state-
ments for the explicit mapping of processes to processors. Communication is synchronous
and restricted to named and typed one-way links, so-called channels, between two directly
connected processors. Occam has been used as the assembly language of the Inmos trans-
puter [Inm84].

The probably most widely used library for distributed memory systems isPVM [Sun90,
GBD+94]. It offers various routines for spawning additional tasks from an existing task,
aborting tasks, sending and receiving messages, and more complex communication patterns
like gather, combine, and broadcast. PVM gained much popularity because it is freely avail-
able on many different parallel hardware platforms; because of compatibility reasons, PVM
often is used even for programming shared memory systems, although this usually degrades
performance compared with direct shared memory programming. PVM follows the fork-join
style of parallel execution.

A more recent approach with similar and slightly extended functionality is the message
passing interface libraryMPI [SDB93, SOH+96]. There exist free and commercial imple-
mentations of MPI for many different parallel hardware platforms. MPI follows the SPMD
style of parallel execution; that is, the number of processes is fixed. In MPI-2, the fork-join
style of PVM was added to MPI. We have discussed some features of MPI in more detail in
the context of their implementation inFork [B1, Chap. 7.6].

4.6.2 MIMD Asynchronous Shared Memory Environments

TheP4 library27 and its relatives support the shared memory programming model as well. The
basic primitives provided for shared memory are semaphores and locks. Moreover, it provides
shared storage allocation and a flexible monitor mechanism including barrier synchronization
[BL92, BL94].

Parallel threads packagesfor C and C++, likepthreads or Solaris threads, are de-
signed mainly for multiprocessor workstations. They allow one to spawn concurrent threads
in a fork-join style. Coordination of threads is by mutual exclusion locks. A similar environ-
ment is the DYNIX parallel programming library for the Sequent Symmetry. Asynchronous
multithreading in a way similar topthreads has also been adopted in theJavalanguage.

27The P4 library has been implemented for theSB-PRAM [Röh96].

222 Chapter 4. Design of Parallel Programming Languages

Linda [CG89, CGMS94] is another library approach for asynchronous MIMD program-
ming. It models the shared memory as an associative memory, called thetuple space, which is
accessed by the processors asynchronously by atomic put and get operations. By appropriate
use of wildcards, the put and get operations provide a powerful mechanism for the coordina-
tion of asynchronous processes. There are also distributed implementations of the tuple space
concept, such as in the Java extensionJini.

The asynchronous MIMD approach is well suited if the computations executed by the dif-
ferent threads of the program are “loosely coupled”, that is, if the interaction patterns between
them are not too complicated. Also, these libraries do not support a synchronous lockstep
mode of program execution even if the target architecture does.

4.6.3 Fork-Join-Style Shared Memory MIMD Languages

MIMD programming languages adopting a fork-join execution style do generally not offer a
mode of strictly synchronous program execution.

ParC [BAFR96] provides asynchronous processes that are scheduled preemptively. Paral-
lel processes can be spawned from a single process implicitly by aforall loop (for concur-
rent execution of loop iterations) or explicitly by thepar f :: g statement. This results in
a tree of processes where child processes share the stack of the parent process (cactus stack);
in this way there is also an implicit sharing of variables by scoping.28 Nevertheless, there are
no global private variables. Processes are mapped automatically to processors; the program-
mer can optionally specify a directive to explicitly mapforall loop iterations to processors.
ParC also offers an atomic fetch&add primitive. A nice feature is that a process is able to kill
all its siblings and their descendants in the process tree. On the other hand, control flow must
not exit a block of statements in an abnormal way (such asreturn , continue , break).

Cilk [BJK+95, BFJ+96, Lei97] is a multithreaded language extending C. It is intended
primarily for compilation to common distributed memory platforms. There are language con-
structs to define (lightweight) threads as special functions, to spawn new threads by remote
function calls, and for message passing. Since version 3.0, Cilk offers a distributed shared
memory model. Processors are not explicit in Cilk’s programming model. The scheduling of
the threads (with the goal of load balancing) is done automatically by the run-time system.
Dynamic load balancing is achieved by task stealing.

Tera-C [CS90] supports multithreading by a concept calledfutures. Threads are spawned
to compute a result to be stored in a certain memory location. Coordination is by an implicit
lock associated with this memory location that guarantees that a subsequent read operation
waits until the new value is available.

4.6.4 SPMD-Style Asynchronous Shared Memory MIMD Languages

SPMD languages, such as Denelcor HEP FORTRAN [Jor86], EPEX/FORTRAN [DGNP88],
PCP [BGW92], Split-C [CDG+93], or AC [CD95], start program execution with all available
threads and keep their number constant during program execution. The program is usually

28Note that this is different from the UNIXfork command for spawning processes where a child process
gets acopyof the parent’s stack.

4.6. Other Parallel Programming Languages 223

partitioned into parallel and serial sections separated by implicit barriers. Typically, these bar-
riers are global; recursively nested parallelism with correspondingly nested barrier scopes as
in Fork is not supported—usually only one global name space is supported. Hence, a parallel
recursive divide-and-conquer style as suggested in other sources [BDH+91, Col89, dlTK92,
HR92a, HR92b] is not supported. Only PCP has a hierarchical group concept similar to that
of Fork, but lacks support for synchronous execution and sequential memory consistency.

A standardization effort calledOpenMP[Ope97] defines a set of language extensions and
directives on top of FORTRAN and C. There are constructs to begin and end parallel sections,
for parallel loops, for declaring shared variables, and to denote critical sections and atomic
functions. The constructs have the form of compiler directives and calls to library functions;
thus an OpenMP program can be compiled and executed on uniprocessor machines as well.
An interesting feature of OpenMP are the so-called orphaned directives, which allow the scope
of parallel constructs to be extended dynamically. The iterations of parallel loops are divided
among the available parallel processors as in SPMD languages. There is no hierarchical group
concept; nested parallel regions are serialized by default. We will address the shared memory
consistency model of OpenMP in Section 5.2.2.

4.6.5 SIMD and Dataparallel Programming Languages

Data parallelism frequently arises in numerical computations. It consists mainly in the parallel
execution of simple operations on large arrays.

SIMD languages maintain a single thread of program control. This is either naturally
enforced by SIMD hardware (e.g., vector processors or array processors), or installed by the
compiler when the target is a MIMD machine. To exploit SIMD parallelism, it seems quite
natural to extend existing sequential programming languages by vector statements or special
dataparallel operators using an array syntax and suitable intrinsic functions like vector sum,
dot product, or matrix transpose. Examples are Fortran90 [MR90], CM-Fortran [AKLS88],
Vector-C [LS85], or APL[Ive62] [Ive62].

Typically, all program objects are shared, and parallelism is specified in terms of special
dataparallel operators or parallel loops. Nested parallelism, if supported at all, is either spec-
ified by nested parallel loops, or induced by nested data structures (like nested parallel lists)
that are flattened automatically by the compiler to fit the (SIMD) hardware.

For instance,NESL [Ble96] is a functional dataparallel language partly based on ML.
Its main data structure is the (multidimensional) list. All program objects are shared. Ele-
mentwise operations on lists are converted to vector instructions (flattening) and executed on
SIMD machines. Related work [CSS95, ACD+97] applies the hierarchical parallel list con-
cept of NESL to the imperative languages C (resulting in a language calledV [CSS95]) and
Fortran90 (Fortran90V, [ACD+97]).

C� [RS87, TPH92] is a SIMD language. It extracts parallelism from special program
objects calledshapesthat are explicitly parallel arrays. A grid structure of the processors must
be given; for a distributed memory machine, the compiler performs the required mapping of
shape sections to the local memory modules of the processors. A group concept or recursive
parallelism is not supported. The concept of parallel pointers is extremely complicated inC�

since in addition to the sharity of the pointer itself, the sharity of the value pointed to is, in

224 Chapter 4. Design of Parallel Programming Languages

contrast toFork, a part of the pointer’s type specification. ViC� [CC94] is a precompiler that
extendsC� for out-of-core computations and thus offers a virtual memory mechanism on top
of C�.

Dataparallel languagesgenerally maintain a single thread of program control, but al-
low one to express slightly more general dataparallel operations using sequential and paral-
lel loops. For instance, they allow a one-sidedif statement or awhile loop as inFork,
namely, non-group-splitting constructs where only a subset of the processors may participate
in a computation while the others are idle. On the other hand, a two-sidedif statement is
usually translated by serialization, that is, as two subsequent one-sidedif statements. Hence,
proper task parallelism is not provided. Dataparallel languages are targeted mainly toward
distributed memory SIMD and MIMD machines and thus require data layout directives to
perform efficiently. Since the hardware cannot offer exact synchronicity, this is emulated
by the compiler by analyzing the data dependencies and enforcing these by suitably inserted
message passing code (see Section 5.2.3). Virtual processing is done implicitly by specifying
array decompositions.

Dataparallel C[QH90, HQ91, HLQA92] is a dataparallel language that is synchronous at
the expression level; thus a processor is either active and working synchronously with all other
processors, or it is inactive. The language distinguishes between sequential and dataparallel
sections of code. Dataparallel program regions are marked by apar fg statement. For obvious
reasons,goto jumps acrosspar boundaries are forbidden (this would have a similar effect
as jumping over a synchronization point inFork). There are three different types of sharity for
a variable:mono, corresponding toFork’s sh , which means that the variable resides on the
host;poly , which denotes a shared variable being replicated such that each processor holds
a copy; andlocal , corresponding toFork’s pr , which means that one copy of the variable
resides on each processor. Pointer declarations are still more complicated than inFork; the
sharity of the pointee must be statically known, and conversions are more restricted. A group
concept does not exist.

CM-Fortran [AKLS88] extends Fortran77 with array syntax and directives for alignment
and data distribution. The virtual processing supported by the operating system of the CM
hardware is transparent to the programmer. Other dataparallel FORTRAN dialects are Vienna
Fortran [CMZ92], Fortran-D [HKT91b], MPP-Fortran [MS94], or High-Performance Fortran
(HPF) [Hig93].

Generally, the SIMD and dataparallel languages support only one global name space.
Other parallel computation paradigms like a parallel recursive divide-and-conquer style are
not supported. This is the domain of MIMD languages.

4.6.6 PRAM Languages

PRAM languages are MIMD languages that support synchronous execution as defined in
the PRAM model. Each processor has its own program pointer, processor ID, and maybe
a private address space. Moreover, sequential shared memory consistency is assumed. A
PRAM language must be able to make the synchronous program execution transparent to the
programmer at the language level. Such a mode of exact synchronicity must be supported
by the compiler that generates code to keep program counters equal and to handle the cases

4.6. Other Parallel Programming Languages 225

where exact synchronicity may be violated as a result of diverging control flow. A hierarchical
group concept supports this task considerably, as inFork. However, some PRAM languages
offer only a flat group concept, where there is only one level of exact synchronicity, only one
group containing all processors.

Dataparallel variants of Modula, namely,pm2[Juv92b] andModula-2* [PT92, HHL+93,
PM94], support a subset ofFork’s functionality. The main constructs to express parallelism
are synchronous and asynchronous parallel loops. Exact synchronicity is supported only in
special synchronousforall loops. A synchronousforall loop spawns a sub-PRAM
with one processor for each iteration. All iterations are executed simultaneously;29 hence
nesting of parallelism is by means of nestingforall loops in a fork-join execution style,
and sharing of variables follows the scoping rules of variable declarations in the forall loops.
On the other hand, there is no explicit group concept. For asynchronousforall loops, which
do not impose any constraints on the execution order of their iterations, Modula-2* offers a
signal-wait mechanism for partial synchronization. Directives for processor allocation help
the compiler to find a suitable distribution of the loop iterations across the processors. Private
variables do not exist in Modula-2*. pm2 compiles to a PRAM simulator [Juv92a] while
Modula-2* offers backends for several existing machines.

The only attempt of which we are aware allows both parallely recursive and synchron-
ous MIMD programming are the imperative parallel languagesFORK[HSS92], the predeces-
sor of Fork (see Section 4.2.12,Fork itself, its successorsForkLight andNestStep, andll
[LSRG95].

Based on a subset of Pascal (no jumps),ll controls parallelism by means of a paralleldo
loop that allows a (virtual) processor to spawn new ones executing the loop body in parallel.
Opposed to that, the philosophy ofFork is to take a certain set of processors and distribute
them explicitly over the available tasks. Given fixed sized machines, the latter approach seems
better suited to exploit the processor resources and to take advantage of synchronous execu-
tion.

4.6.7 BSP Languages

Valiant’s BSP model [Val90] is an alternative to the PRAM model. Nevertheless, BSP en-
forces a less comfortable programming style (message passing) than does the PRAM, such
that BSP programming for irregular problems becomes quite hard.

Library extensions for C supporting the BSP programming model have been developed,
including those at Oxford (BSPlib, [HMS+98]) and Paderborn (PUB, [BJvR99, BJvR98]); the

29Note that there is an important difference between a synchronousforall loop as in Modula-2* and a
synchronous use of theforall macro inFork as introduced in Section 4.2.8. In a synchronousforall loop
in Modula-2*, all iterations are guaranteed to execute simultaneously; the compiler must perform static program
analysis and apply virtualization techniques as explained in Section 5.2.1 if the number of iterations exceeds the
number of available processors. This automatic virtualization means slightly more comfort for the programmer
but may incur tremendous runtime overhead. In contrast, theforall macro ofFork is used to map a set of
iterations that may, but need not, be executed in parallel, to a smaller, fixed-size group of processors by having
each processor executing several iterations subsequently. Even if occurring in a synchronous region, the latter
does not impose any static analysis work to the compiler, as the programmer accepts here that the scope of
synchronous execution is limited to the executing group of processors and not to the overall set of iterations.

226 Chapter 4. Design of Parallel Programming Languages

latter also supports dynamic splitting of processor groups. Processors interact by two-sided
message passing or by one-sided communication [direct remote memory access (DRMA)];
collective communication is supported.

According to our knowledge,NestStep is the first proper programming language for the
BSP model.

4.6.8 Integration of Task Parallelism and Data Parallelism

Several approaches have been proposed to integrate taskparallel and dataparallel features in
a single programming language, in order to overcome some of the limitations of dataparallel
programmming especially for irregular computations. This shift away from pure dataparallel
programming was also motivated by the fact that recent parallel computing systems and su-
percomputer designs tend to offer massive MIMD parallelism. Bal and Haines have compared
several integrated task- and dataparallel programming languages [BH98].

This combination can, in principle, be done in two different ways. One possibility is
to introduce taskparallel features in an existing dataparallel language like HPF. Several ap-
proaches following this idea have been proposed, including Opus [CMRZ94], Fx [SY97],
HPF2 [Sch97] (extended and implemented in Adaptor [Bra99]), and COLTHPF [OP99]. The
construct typically adopted to allow for more individual control flow is the splitting of a group
into more or less independent subgroups, as inFork. These subgroups can then be regarded
as separate submachines, and the usual features of the dataparallel basis language, like data
mapping or dataparallel loops, apply to each submachine separately. In some cases like Opus,
group splitting is possible only at calls to special subroutines. In other cases, like Fx or Adap-
tor, group splitting can be done at practically any place in the program, as inFork. Dynamic
nesting of group splitting is also possible in several approaches (Fx, Adaptor). Intersubgroup
communication is more problematic in these languages. For instance, Opus allows one to de-
fine so-called shared data abstractions, a kind of shared data structure where different groups
can exchange data as in a shared memory. Access to a shared data abstraction is atomic,
that is, only one group can access it at the same time. Note that there is some similarity to
the inter-subgroup concurrent access to globally shared data as discussed in Section 4.2.10.
The taskparallel features in HPF2 are quite restricted, as there is no means for subgroups
to communicate with each other, and constitute only an approved extension of the language
standard. However, using the library routines defined by Brandes [Bra99], it can offer a de-
gree of flexibility similar to that in Fx or Opus. In contrast to these “top-down” approaches
which define the taskparallel units by recursively splitting a single group, the TwoL approach
[RR99, FRR99, RR98, RR00] constructs the group hierarchy “bottom-up”, starting with the
specification of a set of dataparallel, basic program modules and then constructing taskparal-
lel programs by (repeatedly) composing modules by sequencing or concurrent execution on
different processor subsets. As there is no recursion of module composition, the resulting pro-
gram can be finally represented as a series-parallel computation DAG with basic modules as
nodes and (array) data flow dependence relations as edges. Scheduling this DAG for a fixed set
of processors of a distributed memory architecture is a NP-hard, nonlinear static optimization
problem, taking into account the complicated cost formulas for the basic modules, which are
parameterized in problem sizes and array distributions, and the cost for redistributing arrays

4.7. Summary 227

at the edges between modules where the distributions do not match.
The other possibility is to build on an existing taskparallel language such as OpenMP, Java

(threads), Orca [BKT92], or an (asynchronous) MIMD version of C or FORTRAN, and intro-
duce HPF-like directives to specify array distributions, in order to compile it to distributed
memory architectures or to exploit locality of reference when compiling for cache-based
shared memory machines. Currently, such an approach based on OpenMP is under inves-
tigation [CM98, LMN+00]. A dataparallel extension of Orca has been described [BBJ98].

4.6.9 Skeleton Languages

The dream of making parallel programming as simple as sequential programming produced
a discussion of a minimal set of extensions to sequential programming languages that should
allow one to formulate a problem as a hierarchical composition of basic parallel algorithmic
paradigms, such as dataparallel computation, parallel divide-and-conquer computation, par-
allel reduction, parallel prefix, pipelining, while abstracting from explicit parallelism and/or
locality. Such extensions clearly go beyond simple library routines. They are often referred to
asskeletons[Col89, DFH+93] and regarded as higher-order functions, typically in the context
of functional programming languages. Also some imperative languages have been extended
by special language constructs to exploit and compose skeletons, such asP3L [BDP94, Pel98],
SCL [DGTY95], or Skil [BK96].

We have discussed parallel programming using skeletons and considered the implementa-
tion of several skeleton functions usingFork in Section 4.3, resulting in a structured, skeleton-
oriented style of parallel programming. However, a true skeleton programming language may
offer additional and more powerful features: Skeletons are not only a means for elegant and
machine-independent expression of parallelism. They provide also a more powerful hint for
the compiler to enable automatic transformations, generate efficient parallel code, maybe lay
out data appropriately, and predict parallel run time which is again required for controlling the
program transformations. A skeleton may thus be seen as a high-level interface to transfer the
programmer’s knowledge about the intended structure of parallel computation to the compiler,
and to allow the compiler to exploit experts’ knowledge for an efficient implementation on a
given parallel machine.

While skeletons are intended for a top-down organization of the program, a library is better
suited for bottom-up organization. At least for regular numerical applications, the bottom-up
approach is suitable for passing additional knowledge to the compiler (see also Chapter 3).
Ideally, the two approaches should complement each other.

4.7 Summary

Table 4.8 gives a synopsis of the most important features of the languagesFork, ForkLight
andNestStep that have been described in this chapter.

As ForkLight andNestStep support dynamically nestable parallelism in the same way
asFork, the skeleton-oriented style of structured parallel programming demonstrated in Sec-
tion 4.3 can be applied toForkLight andNestStep as well.

228 Chapter 4. Design of Parallel Programming Languages

Fork ForkLight NestStep

supported machine model PRAM Asynchronous PRAM BSP

memory organization shared memory shared memory shared address space

(explicit array distrib.)

memory consistency sequential c. sequential c. superstep consistency

program execution style SPMD SPMD SPMD

dyn. nested parallelism
p p p

group hierarchy forest forest tree

group splitting implicit/explicit implicit/explicit explicit

dynamic dynamic static/dynamic

barrier scope current group current group current group

group-wide sharing
p p p

concurrent write
p

resolution inherited not supported
p

deterministic combining

from target architecture (asynchronous) with programmable strategy

pointer scope global, unique global, restricted local, local copies

TABLE 4.8: A synopsis of the most characteristic features ofFork, ForkLight, andNestStep.

An exception must be noted forNestStep, however. Skeletons functions for asynchron-
ous parallel programming, in particular the asynchronous parallel task queue, can be imple-
mented well inFork [B1, Chap. 7.5] andForkLight because the implementation relies on
sequential memory consistency. AsNestStep does not support sequential consistency, the
Fork implementation of thetaskqueue skeleton function cannot be generalized toNest-
Step.

Acknowledgements

The original design of the synchronous part ofFork has been given in a proposal by Hagerup,
Schmitt, and Seidl [HSS92]. The redesign ofFork and the further development of the de-
sign ofFork andForkLight was done jointly with Helmut Seidl. The locks (simple, fair and
reader–writer) have been taken from a library by Jochen Röhrig for the asynchronous C pro-
gramming environment of theSB-PRAM. The author thanks Murray Cole and Jesper Träff
for suggestions to improve the design ofFork.

The sections 4.1, 4.2, and 4.3 follow more or less completely the presentation in Chap-
ter 5 and Section 7.2 ofPractical PRAM Programming[B1]. Thanks go to my co-authors
Jörg Keller and Jesper Träff for proofreading that material when preparing the manuscript for
Wiley. Nevertheless, the responsibility for any potentially remaining errors lies exclusively
with me.

The design ofNestStep contains several ideas taken from its two predecessorsFork and
ForkLight. The simplified variants of theneststep statement for static group splitting
have been inspired by corresponding constructs in PCP [BGW92]. The author thanks Vadim
Engelson, Michael Gerndt, and Helmut Seidl for critical comments that helped to improve the

4.7. Summary 229

design ofNestStep.
The section on related work was inspired by discussions with several colleagues work-

ing in the area of parallel programming languages. Thanks go also to the organizers of two
seminars on high-level parallel programming at IBFI Schloß Dagstuhl, specifically, Murray
Cole, Sergei Gorlatch, Chris Lengauer, Jan Prins, and David Skillicorn. Furthermore, the au-
thor thanks the organizers of a seminar on nested parallel programming environments at the
university of La Laguna, specifically, Casiano Rodriguez Léon and his group.

230 Chapter 4. Design of Parallel Programming Languages

Chapter 5

Implementation of Parallel Programming
Languages

In this chapter, we focus on compilation issues for SPMD-style MIMD parallel programming
languages, in particular, forFork, ForkLight, andNestStep. We consider various types of
parallel target architectures.

In Section 5.1 we discuss the compilation ofFork for theSB-PRAM, including the imple-
mentation of some important functions from theFork standard library and the implementation
of the trv tool. Section 5.2 introduces general techniques and problems with compiling a
synchronous MIMD language such asFork to other parallel MIMD architectures.

For the compilation ofForkLight discussed in Section 5.3 we assume a MIMD target ma-
chine with sequentially consistent shared memory and efficient support of atomic increment
and atomicfetch&incrementoperations (see Fig. 4.33), such as supported by common portable
shared memory platforms like theP4 library (shared memory part; [BL94]) andOpenMP
[Ope97]. Special optimizations forOpenMP are proposed in Section 5.3.6. This simple and
small interface enables portability across a wide range of parallel target architectures and is
still powerful enough to serve as the basic component of simple locking/unlocking and barrier
mechanisms and to enhance e.g. the management of parallel queues or self-scheduling parallel
loops [Wil88] and occur in several routines of theForkLight standard library.

Section 5.4 describes the compilation ofNestStep for a target machine with a distributed
memory.

Section 5.5 summarizes this chapter.

5.1 Compiling Fork for the SB-PRAM

The Fork compiler for theSB-PRAM, fcc , is partially based onlcc 1.9 , a one-pass
ANSI C compiler [FH91a, FH91b, FH95]. It generatesSB-PRAM assembler code which is
then processed by the assemblerprass into COFF object code and linked by theSB-PRAM
linker (see Figure 5.1).

231

232 Chapter 5. Implementation of Parallel Programming Languages

code
gene-
rator

prass ld

SBPRAM
assembler

relocatable executable
COFF fileCOFF file

standard library object files

other user link files

source file prg.o
prg.s

a.outsymbol

syntactic

type

generation
code

intermediate
checking,

analysis,
lexical
analysis

preprocessed
source fileC pre- token

streamproces-
sor

source
file

prg.iprg.c

expression
dags,
jumps,

table

FIGURE 5.1: Phases of theFork compiler for theSB-PRAM. The compiler driver (fcc) con-
tains also calls to the C preprocessor, to theSB-PRAM assemblerprass and theSB-PRAM
linker ld .

5.1.1 Extensions to the C Compiler Phases and Data Structures

All compiler phases and nearly all compiler data structures had to be modified in order to
allow the compilation ofFork. The lexical analysis phase has been extended to recognize
the new keywords and the special symbols ofFork. The symbol table entries were extended
by a field indicating the sharity of a variable and a few other flags. The type table entries
for function types were extended by a field for the synchronicity and another one for the
parameter sharities, which could be stored as a single-word bitvector, as C limits the number
of function parameters to 32. Correspondingly, type checking had to be extended. The parser
was modified to allow for declarations of sharity and synchronicity declarators, and for parsing
new expressions and statements added byFork. Correspondingly, numerous new expression
tree and dag operators have been introduced. Also, the intermediate code generator must keep
track of region synchronicity, shared group frame depths, and addressing of block local shared
variables (see Section 5.1.6). Finally, a new compiler driver had to be written.

Most of the changes made tolcc 1.9 concern the code generator, on which we focus in
the following sections. Furthermore, a large amount of work was necessary to implement the
runtime system and the standard library.

5.1.2 Shared Memory Organization and Frame Layout

The program loader of theSB-PRAM allocates the shared memory amount requested in the
.ldrc configuration file [B1, Chap. 4] and copies to the beginning of this section the non-text
segments ofa.out : some organizational entries such as the number of processors, allocated
memory size and the segment sizes, then the shared and private.data segments for initial-
ized variables, the shared and private.bss segments for noninitialized variables, and the
program arguments section. Note that the.text segment, which contains the program code,
is stored in the separate program memory by the loader.

The startup code for the runtime system reserves shared memory space for the permanent
shared heap and for the private address subspaces of the processors, loads the BASE registers
of each processor, installs a shared stack and heap for the root group at the beginning, respec-
tively at the end of the remaining shared memory block, and a private stack in each processor’s
private memory subspace. Each processor copies (in parallel) the private.data segment to
the beginning of its private memory section. A shared stack pointersps and a private stack
pointerspp are permanently kept in registers on each processor.

5.1. CompilingFork for theSB-PRAM 233

spp�!
last private local variable

... not initialized
first private local variable

fpp �! group rank$$
old eps �

old gps �

old gpp � callee-saved
old fps �

old fpp �

old pc call-saved
last saved register

... caller-saved
first saved register

last private argument only if the callee
... has private arguments

first private argument not passed in registers;
app�! old app caller-saved

FIGURE 5.2: Organization of the private procedure frame for a function. The fields for the
old fps , gpp , gps andeps exist only for synchronous functions.fpp needs not be stored
if the function has no local variables.

As in common C compilers, a procedure frame is allocated at a function call on each
processor’s private stack. It holds private function arguments, which are pointed to by a private
argument pointerapp , saved registers, return address, and private local variables, pointed to
by a private frame pointerfpp (see Figure 5.2). The group rank$$ is also stored there.

sps �!
last shared local variable the shared locals

... defined at top level
first shared local variable of the function

synchronization cell shared group frame for the
fps , gps�! old gps group of calling processors

last shared argument only if the callee
... has shared arguments;

first shared argument
aps�! old aps caller-saved

FIGURE 5.3: Organization of the shared procedure frame for a synchronous function.

In addition, for a call to a synchronous function, a shared procedure frame (Figure 5.3)
is allocated on the group’s shared stack. In particular, it stores shared function arguments
(pointed to byaps) and shared local variables declared at top level of the function (pointed

234 Chapter 5. Implementation of Parallel Programming Languages

to by fps).

The private heap is installed at the end of the private memory subspace of each processor.
For each group, its group heap is installed at the end of its shared memory subspace. The
group heap pointereps to its lower boundary is saved at each subgroup-creating operation
that splits the shared memory subspace further, and restored after returning to that group.
Testing for shared stack or heap overflow thus just means to comparesps andeps .

sps �!
last group-local shared variablethe shared variables

... defined locally to the
first group-local shared variableconstruct building this group

fps �, synchronization cell initialized by # processors in this group
gps�! old gps points to parent shared group frame

FIGURE 5.4: Organization of the shared group frame. Thefps is set only bystart and
join .

To keep the necessary information for groups, the compiler generates code to build shared
and private group frames at subgroup-creating constructs. Ashared group frame(Figure 5.4)
is allocated on each group’s shared memory subspace. It contains the synchronization cell,
which normally contains the exact number of processors belonging to this group. At a barrier
synchronization point, each processor atomically decrements this cell and waits until it sees
a zero in the synchronization cell, and then atomically reincrements the synchronization cell,
see Section 5.1.8.

The private components of the data structure for a group are stored in aprivate group
frameon the private stack of each processor of the group. It contains fields for$, saved values
of eps and sps , a reference to the parent group’s private group frame, and some debug
information. For pragmatic reasons, the group ID@is also stored in the private group frame
instead of the shared group frame.

Intermixing procedure frames and group frames on the same stack is not harmful, since
subgroup-creating language constructs like the privateif statement, private loops, and the
fork statement are always properly nested within a function. Hence, separate stacks for
group frames and procedure frames are not required.

5.1.3 Translation ofstart and join

start andjoin allocate special group frames, as they must provide the possibility of allo-
cating shared variables and group heap objects for the newly created group.

The code generation schema forjoin follows immediately the description in Section 4.2.9.

5.1. CompilingFork for theSB-PRAM 235

0B

1B

eps

sps

gps

parent group heap

eps

sps

gps
eps

sps

gps

group heap

parent group−shared variables
synchronization cell for G

(b) (c)

group−shared variables

group heap

synchr. cell (group size)
gps

sps

eps

(a)

shared memory

current

group G

shared memory

subspace of

group G

subspace of

shared memory

subspace of G1

shared memory

subspace of G0

synchr. cell (group size)
group−shared variables

parent group gps

local variables shared by G1

synchronization cell for G0
local variables shared by G0

synchronization cell for G1
parent group gps

FIGURE 5.5: Group splitting at the synchronous private two-sidedif statement: (a) situation
before deactivating the parent group; (b) situation after the two subgroups have been created
and activated; (c) situation after reactivating the parent group.

5.1.4 Translation of the Privateif Statement

For the translation of the group-splitting constructs we consider the two-sidedif statement
as an example:

if (e) statement0 else statement1

with a private (or potentially private) conditione is translated into the following pseudocode1

to be executed by each processor of the current group:

1. Divide the remaining free shared memory space of the current group (located between
the shared stack pointersps and the shared heap pointereps) into two equal-sized
blocksB0 andB1 (see Figure 5.5a).

2. Code for the evaluation of the conditione into a registerreg.

1Readers interested in theSB-PRAM code can find the corresponding part of the code generator in
fork/gen.c and the generated code by inspecting the commented assembler source fileprogram.s of a
Fork test programprogram.c compiled with-S , by searching for the keywordsplit (for the privateif
statement) andmkgrp (for thefork statement).

236 Chapter 5. Implementation of Parallel Programming Languages

3. Allocate a new private group frame on the private stack. Store the current values of
gpp , eps , andsps there, and copy the parent group’s entry for$ to the new frame.
Then setgpp to the new private group frame.

4. If (reg == 0) go to step (11).

5. Set the shared stack pointersps and the group heap pointereps to the limits ofB0.
Set the new subgroup ID@to 0.

6. Allocate a new shared group frame on that new group stack. Store the shared group
frame pointergps of the parent group there, and setgps to the new shared group
frame. Preset the synchronization cellgps[1] by zero.

7. Determine the new group’s size and ranks bympadd(gps+1,1)

8. Allocate space for group local shared variables defined in the activity region of the
subgroup enteringstatement0 (see Figure 5.5b).

9. Code forstatement0 .

10. Go to step 16.

11. Set the shared stack pointersps and the group heap pointereps to the limits ofB1.
Set the new subgroup ID@to 1.

12. Allocate a new shared group frame on that new group stack. Store there the shared
group frame pointergps of the parent group, and setgps to the new shared group
frame. Preset the synchronization cellgps[1] by zero.

13. Determine the new group’s size and ranks bympadd(gps+1,1)

14. Allocate space for group local shared variables defined in the activity region of the
subgroup enteringstatement1 (see Figure 5.5b).

15. Code forstatement1 .

16. Remove the shared and the private group frame, and restore the shared stack pointer
sps , the group heap pointereps , and the group pointersgps andgpp from the private
group frame (see Figure 5.5c).

17. Call the groupwide barrier synchronization routine (see Section 5.1.8).

The translation scheme for thefork statement and for the remaining subgroup-creating
constructs is similar.

Note that for synchronous loops with a private exit condition it is not necessary to split the
shared memory subspace of the group executing the loop, since processors that stop iterating
earlier are just waiting for the other processors of the iterating subgroup to complete loop
execution.

5.1. CompilingFork for theSB-PRAM 237

The space subdivision among the subgroups (in this example, into two halves) assumes
that the space requirements are not statically known. The shared group space fragmenta-
tion implied by this worst-case assumption for the group-splitting constructs can be partially
avoided, for example, if the space requirements of a subgroup can be statically analyzed, or
if the available shared memory subspace of the parent group is distributed only among those
subgroups that are executed by at least one processor.

5.1.5 Groups and Control Flow

Processors that leave the current group on the “unusual” way viabreak , return , andcon-
tinue , have to cancel their membership in all groups on the path in the group hierarchy tree
from the current leaf group to the group corresponding to the target of that jump statement.
The number of these groups is, in each of these three cases, a compile-time constant. For each
group on that path, including the current leaf group, its private group frame (if existing) is re-
leased, its synchronization cell has to be decremented by ampadd instruction, and the shared
stack, group, and heap pointers have to be restored. Finally, the jumping processors wait at the
synchronization point located at the end of the current iteration (in the case ofcontinue),
at the end of the surrounding loop (in the case ofbreak), or directly after the call of the
function (in the case ofreturn), respectively, for the other processors of the target group to
arrive at that point and to resynchronize with them.

As an optimization of the latter point, theFork compiler counts the number of the so-called
harmful return statements in a synchronous function. A return statement is called harmful if
it may cause asynchronous return from a synchronous function, that is, if it is nested in a
subgroup-creating construct in that function or occurs within an asynchronous region, such
that not all processors of the group that entered that function may leave it together at the same
time via the same return statement. Note that the natural exit point of the function does not
belong to this category. If there is no harmful return statement, the barrier synchronization at
return to the caller can be omitted.

In synchronous regions, agoto jump is executed simultaneously by all processors of a
group, and hence does not affect the synchronous execution. Nevertheless, the target ofgoto
may be outside the activity region of the current group, that is, it may jump across the usual
group termination point. In that case, the program is likely to hang up. Hence,goto is not
forbidden but discouraged in synchronous mode.

A goto in an asynchronous region is not harmful if the jump target is located in the same
asynchronous region (i.e., in the body of the samefarm or seq statement or an asynchronous
function called from there, with no barrier existing between the source and the target of the
jump). Otherwise, if the jumping processor skips a barrier statement or the barrier at the
normal endpoint of the asynchronous region, the other processors of its group will wait there
forever.

In C, the semantics of the expression operators&&, || , ?: is defined by short-circuit
evaluation. As discussed in Section 4.2.10, this is problematic in synchronous regions. The
current implementation renounces on creating group frames and synchronization for these
operators and emits a warning instead, which should remind the programmer to use one of the
straightforward workarounds described in Section 4.2.10.

238 Chapter 5. Implementation of Parallel Programming Languages

5.1.6 Accessing Shared Local Variables

The code (and hence, also the cost) of adressing a local shared variable depends on the site of
definition as well as of the site of the access.

sync void foo(...)
{ sh int i; // exists once for each group entering foo()

fork (...) {
sh int j; // exists once for each subgroup
fork (...) {

sh int k; // exists once for each subgroup
k = i * j ... ;

}
}

}

In synchronous functions, the shared variables defined at the top level of the function (e.g.,
variablei in the example code above) are addressed directly, relative to thefps , and thus one
instruction is sufficient.

In the other cases, the chain ofgps pointers has to be traversed backward from the current
group’s shared group frame to the shared group frame of that group that defined that variable
and hence stores it in its shared group frame. The cost of addressing is2x+1 machine cycles
wherex denotes the number of group frames between the current and the defining group’s
frame (including the defining group’s frame). In the example above, calculation of the address
of j is takes 3 machine cycles2 while one instruction is sufficient for the calculation of the
address ofk .

In order to avoid jumping along long chains ofgps pointers at every access to a group
local shared variable, thegps values for all visible ancestor groups could be stored in a table
[BAW96]. This increases slightly the overhead of a synchronous function call (for allocating
the table) and of subgroup creation (for entering thegps value), but this is likely to pay off
where many accesses to ancestor group local shared variables can now be done faster.

5.1.7 Runtime Overheads and Optimizations

Table 5.1 shows the time requirements of the different constructs of the language according to
the current implementation. These formulas can be used for the precise static analysis of the
runtime requirements of aFork program.

Some of the entries in Table 5.1 need further explanation. On theSB-PRAM, integer and
floatingpoint division must be implemented in software; this explains the large (and variable)
figures fortidiv, timod, and tfdiv . Integer division and integer modulo computation is fast if
the divisor is a power of 2; in that case the code branches to a shift operation or a bitwise
AND operation, respectively. Also, in a synchronous region, an extra barrier synchronization
is necessary after integer divisions with private operands, as the number of iterations made

2Dereferencing thegps pointer to obtain the parent group’s shared group frame pointer requires aldg
instruction with one delay slot. Then a constant displacement is added to obtain the address ofj .

5.1. CompilingFork for theSB-PRAM 239

TABLE 5.1: Runtimes for theFork Language Constructs (without Tracing Code)

Language construct Time inSB-PRAM machine cyclesa

Exact group local barrier tsync� 16 + tlcall(0) (excluding wait time)
”, with renumbering$$ tsync� 18 + tlcall(0) (excluding wait time)
Program startup code 150 + 4 � size of the private.data section
start S; 27 + tsync+ tS
join(e1; e2; e3) S tjoin(e1;e2;e3;S) =

= 120 + tshmalloc + tshfree + tsync+ te2 + te3 + tS
if (e) S1; else S2; tif(e;S1;S2) =
(synchronous,e private) = 32 + te +max(tS1 + �S1; tS2 + �S2) + tsync

while(e) S twhile(e;S)(niter) =
(synchronous,e private) = 8 + (6 + �S + tS + te) � niter + te + tsync

for(e1; e2; e3) S tfor(e1;e2;e3;S)(niter) =
(synchronous,e2 private) = 8 + (6 + �S + tS + te2 + te3) � niter + te2 + tsync

fork(k;@=e2;$= e3) S; 40 + tidiv(k) + te2 + te3 +maxk�1
@=0

(tS) + tsync

farm S tS + tsync

seq S tS + tsync+ 3
Call to synchronous function tscall(nargs) = 41 + 2#(saved registers) + nargs+ tsync

Call to asynchr./straight functiontacall(nargs) = 10 + 2#(saved registers) + nargs

Call to standard library functiontlcall(nargs) = 4 + nargs

Enter block with shared locals 1
Integer division byk /modulok tidiv(k) = timod(k) = 12 + tlcall(3) if k is a power of 2

tidiv(k) = timod(k) � 300 + tlcall(3), otherwise
(depending onk)

Floatingpoint division tfdiv = 29 + tlcall(2)
Read pr. local var./ parameter 3
Read@, $, $$ 3
Read sh. top-level local variable 5
Read sh. parameter,# 5
Read sh. group local variable 5 + 2 #(groups on path declaring!using group)
Read pr. global variable 4
Read sh. global variable 6
Assign to pr. local var./$ 2
Assign to pr. parameter 2
Assign to sh. top-level local var. 4
Assign to sh. parameter 4
Assign to sh. group local var. 4 + 2 #(groups on path declaring!using group)
Assign to pr. global variable 3
Assign to sh. global variable 5
Load a 32-bit constant 2
shalloc 6 + tlcall(1)
shallfree 3
alloc 12 + tlcall(1)

a The figures assume the worst case with respect to alignment to the modulo flag.�S is 1 if S defines
shared variables local to the group active at entry toS, and 0 otherwise.niter is the number of iterations
made by a loop,nargsdenotes the number of arguments passed to a function.

240 Chapter 5. Implementation of Parallel Programming Languages

by the division algorithm is data-dependent. Floatingpoint division is implemented by an
unrolled Newton iteration algorithm; its execution time is always the same.

The cost of function calls could be slightly reduced by passing some private arguments in
registers (this is standard for most library functions).

Group split optimizations

Group split optimizations (as K̈appner and Welter [K̈ap92, Wel92] did for the oldFORKstan-
dard) may address the potential waste of memory in the group-splitting step offork and
privateif statements. For instance, group splitting can be avoided if runtime analysis of the
condition shows that all processors happen to take the same branch, that is, one of the sub-
groups is empty. If the shared memory requirements (subgroup stack and heap) of one branch
are statically known, all remaining memory can be left to the other branch.

Synchronous loops with a shared condition may get stuck in a deadlock if a subset of the
iterating processors jumps out of the loop by abreak or return statement. As a conser-
vative solution, a barrier synchronization for the loop group is hence also required at the end
of loops with a shared loop exit condition if they contain abreak or return inside a group
splitting statement that may appear in the loop body. In certain situations, acontinue in
loops with shared exit condition may cause similar trouble, which can be avoided only if a
subgroup for the iterating processors is created in that case.

Interprocedural analysis could also ascertain for (synchronous) functions whether or under
what calling contexts the return value will be equal for all processors calling it. This informa-
tion could be used to improve the static approximation of shared and private expressions, and
may hence potentially reduce the number of subgroup creations.

Optimization of barrier calls

In the presence of anelse part, the barrier synchronization at the end of a privateif state-
ment could be saved if the number of instruction cycles to be executed in both branches is
statically known, because theSB-PRAM guarantees synchronous execution at the instruction
level. In this case the shorter branch can be padded by a sequence or loop ofnop instructions.
The barrier can also be left out at the end of afork statement if it is statically known that all
subgroups take exactly the same number of instruction cycles.

Finally, the time for a barrier could be further reduced if its code were inlined in the caller.
The subgroup creation for synchronous function execution with the barrier synchroniza-

tion immediately after a synchronous function call should avoid asynchrony due to processors
leaving the function early viareturn . Clearly, the barrier can be suppressed if the callee
does not containreturn statements nested in subgroup-creating constructs.

The barrier at the end of a subgroup-creating construct can be omitted if a second barrier
at the end of an enclosing subgroup-creating construct follows it immediately.

Generally, there are two variants of barrier synchronization that can be applied in the com-
piler: one that renumbers the group rank$$, and one that does not. The former takes two more
machine cycles (two additional multiprefix operations) than the latter. Obviously, renumber-
ing is not necessary where the ranks would not change, namely, at points where no processor

5.1. CompilingFork for theSB-PRAM 241

_barrier:
bmc 0 /*force modulo 0*/
add R0,-1,r30 /*sync, 0*/
mpadd gps,1,r30 /*sync, 1*/
FORKLIB_SYNCLOOP:
ldg gps,1,r30 /*sync:loop, 0*/
getlo 1,r31 /*sync:1, replaces nop 1*/
add r30,0,r30 /*sync:cmp ret>0?, 0*/
bne FORKLIB_SYNCLOOP /*sync:loop if not all 1*/
ldg gps,1,r30 /*sync:get sync cell, 0*/
mpadd gps,1,r31 /*repair sync cell, 1*/
add r30,0,r30 /*compare with 0, 0*/
bne FORKLIB_SYNCHRON /*sync:jump if late, 1*/
nop /*sync:delay by two, 0*/
nop /*sync:if fast, 1*/
FORKLIB_SYNCHRON:

FIGURE 5.6: The barrier code used in the runtime system of theFork compiler.

may rejoin nor leave the current group. An example situation where the nonreranking barrier
is sufficient is the barrier after divisions by a private value.

Optimization of modulo alignment code

Alignment to themodulo flag for shared stack and heap accesses is done in a quite conser-
vative way. Program flow analysis may be applied to find out where the value of themodulo
flag is statically known; in these cases nothing needs to be done if themodulo flag will
have the desired value, and a singlenop is inserted otherwise. With a one-pass compiler like
fcc , however, general program flow analysis is hardly possible. Instead, some postprocess-
ing of the generated assembler code with a peephole optimizer could be applied to optimize
for simple, frequently occurring situations.

Now we discuss the implementation of some important functions of theFork standard
library. We omit the details of the standard C library (which had to be implemented for the
SB-PRAM as well, and partially from scratch) and focus here on the points that directly
concern parallel execution.

5.1.8 Implementation of Barrier Synchronization

The exact barrier synchronization routine used by theFork compiler for group-wide syn-
chronization is also used for the implementation of thebarrier statement. ItsSB-PRAM
assembler code is given in Figure 5.6 [B1, Chap. 4].

This routine consists of an atomic decrement (mpadd -1) of the synchronization cell,
the synchronization loop (labeled withSYNCLOOPand an atomic reincrement (mpadd +1)
with a postsynchronization phase. The synchronization loop causes each processor to wait

242 Chapter 5. Implementation of Parallel Programming Languages

until the synchronization cellgps[1] reaches a zero value. Due to the sequential mem-
ory consistency, each processor will eventually observe this event within the next four clock
cycles, and exit the loop. TheSB-PRAM offers a globally visible status register bit, the so-
called modulo flag, that toggles in each machine cycle (it is the least significant bit of the
global cycle counter). Because the processors are modulo-aligned at the entry to the routine,
they leave the synchronization loop in two wave fronts separated by two clock cycles. In the
postsynchronization phase, the early-leaving processors are delayed by two cycles (the two
nop instructions); hence, at exit of the routine, all processors are exactly synchronous.

5.1.9 Implementation of the Simple Lock

TheFork implementation of thesimple lock data type and the routines

typedef int simple_lock, *SimpleLock;
SimpleLock new_SimpleLock(void);
simple_lock_init(SimpleLock);
simple_lockup(SimpleLock);
simple_unlock(SimpleLock);

has been described in Section 4.2.8. In theFork library, thesimple lockup() routine is
implemented inSB-PRAM assembler,3 and the other two are just macros defined infork.h .
The space required for aSimpleLock instance is only one memory word, the time overhead
for locking and unlocking is only a few machine cycles.

A simple lock sequentializes access to a critical section but it is not fair, that is, it does
not guarantee that processors get access in the order of their arrival at thesimple lockup
operation.

5.1.10 Implementation of the Fair Lock

A fair lock sequentializes accesses while maintaining the order of arrival times of the proces-
sors at thelockup operation. Our implementation of fair locks adapted from Röhrig’s thesis
[Röh96] works similar to an automatic booking-office management system (see Figure 5.7).
Each customer who wants to access the booking office must first get awaiting ticketfrom a
(shared) ticket automaton. After having served a customer, the booking clerk increments a
globally visible counter indicating thecurrently active ticket index. Only the customer whose
waiting ticket index equals this counter value will be served next. The others have to wait
until their ticket index becomes active.

In Fork we model this booking-office mechanism by two shared counters: one for the
ticket automaton, and one for the ready-to-serve counter.

typedef struct {
unsigned int ticket; /* the ticket automaton */
unsigned int active; /* the currently active ticket */

} fair_lock, *FairLock;

3See the assembler source fileforklib2.asm .

5.1. CompilingFork for theSB-PRAM 243

22

28

26

23

23

27

get your

HERE
ticket

24
25

active:

FIGURE 5.7: The analogy of a booking-office management for the fair lock implementation.

Both counters have to be accessed by atomicfetch&incrementoperations. They are ini-
tialized to zero. For an allocated fair lock, this is done by the following routine:

void fair_lock_init(fair_lock *pfl)
{

pfl->ticket = pfl->active = 0;
}

A new FairLock instance can be created and initialized by the following constructor
function:

FairLock new_FairLock(void)
{

pfl = (FairLock) shmalloc(sizeof(fair_lock));
pfl->ticket = pfl->active = 0;
return pfl;

}

Thefair lockup operation gets a tickett and waits untilt becomes active:

void fair_lockup(fair_lock *pfl)
{

pr int t = mpadd(&(pfl->ticket), 1); // get a ticket t
while (t != pfl->active) ; // wait until t becomes active

}

Thefair unlock operation increments theactive counter:

void fair_unlock(fair_lock *pfl)
{

mpadd(&(pfl->active), 1); // atomically increment counter
}

244 Chapter 5. Implementation of Parallel Programming Languages

The Fork library contains assembler implementations4 of theseFork routines. The as-
sembler implementation guarantees that read andmpadd accesses to the active counter are
scheduled to different cycles by alignment to different values of theMODULOflag. The space
required to store a fair lock is 2 words, twice the space of a simple lock. The runtime required
by thefair lockup and thefair unlock operation is practically the same as the time
taken bysimple lockup resp.simple unlock .

Finally, we should think about handling overflow of the counters. After232 calls to
fair lockup , the size of the unsigned integerticket is exceeded. On theSB-PRAM,
this is not a problem, becausempadd computes correctly modulo232 [Röh96]. Only if the
total number of processes exceeded232, explicit range checking would be required, but such
a large PRAM machine is very unlikely to exist in the foreseeable future.

5.1.11 Implementation of the Reader–Writer Lock

For thereader–writer lock(see Section 4.2.8), access to a critical section is classified into
read and write access. While awriter may modify a shared resource, areaderinspects it but
leaves it unchanged. The implementation of a reader–writer lock must guarantee that either at
most one writer and no reader, or no writer and any number of readers are within the critical
section.

The implementation of the reader–writer lock inFork follows the description by Wilson
and R̈ohrig [Wil88, Röh96] and the implementation by Röhrig for theSB-PRAM [Röh96].

The reader–writer lock data structure contains an integer variablereadercounter that
acts more or less as a simple lock, and a fair lockwriterlock that coordinates the writers.
This rw lock data type is declared infork.h .

typedef struct { //reader-writer-locks
unsigned int readercounter;//bits 0-29 used as reader counter

//bit 30 is used as writer flag
fair_lock writerlock; //current and next number

} rw_lock, *RWLock;

The readercounter holds the numberr 2 f0; :::; pg of readers that are currently within
the critical section, and thewriterlock is a fair lock used to sequentialize the writers
with respect to the readers, and the writers with respect of each other. Also, bit 30 of the
readercounter is used as a semaphorew 2 f0; 1g, in order to avoid that readers and
a writer that find a zero value inreadercounter simultaneously would both enter the
obviously “empty” critical section. Storing the reader counterr and the writer counterw in the
same memory word alleviates the implementation considerably, as they can be manipulated
simultaneously and atomically by the available atomic operators ofFork. The constructor
function

RWLock new_RWLock(void);

4See the library assembler source filelib/forklib2.asm .

5.1. CompilingFork for theSB-PRAM 245

allocates space for a reader–writer lockl by shmalloc() and initializesl by setting the
readercounter to zero and initializing the fair lock by

fair lock init(&(l->writerlock));

For thelockup andunlock operations, the mode of access desired by a processor is
passed in a flag valued 0 for read and 1 for write:

#define RW_READ 0
#define RW_WRITE 1

The operationint rw lockup(rw lock *l, int mode) works as follows. If
the processor is a reader (i.e.,mode is RWREAD), two cases may occur: (1) if there is a
writer in the critical section (i.e., the writer flag is set), it must wait until the flag is cleared;
or (2) if the critical section is free (i.e., the writer flag is cleared), it tries to increment the
readercounter and checks at the same time whether, in the meantime, a “fast” writer
happened to succeed in setting the writer flag again. If that happened, thereadercounter
must be decremented again, and then the processor tries again from the beginning, to leave
the critical section and thus to unlock thewriterlock , and then compete again for entering
the critical section.

If the processor is a writer (i.e.,mode is RWWRITE), it must wait until all writers that
arrived before it and all readers have left the critical section. Then it atomically sets the
writer flag by asyncor operation. Assync op andmpop instructions are scheduled by the
compiler automatically to different cycles (i.e., to different values of theMODULOflag), setting
and clearing of the writer flag is separated properly.

Here is theFork code:

#define __RW_FLAG__ 0x40000000 /* 2ˆ30 */

void rw_lockup(RWLock l, int mode)
{

int waiting;
if(mode == RW_READ) { /* I am a reader */

waiting = 1;
while(waiting) {

waiting = 0;
// wait for other writers to leave:
while(mpadd(&(l->readercounter), 0) & __RW_FLAG__) ;
// writers finished - now try to catch the lock:
if(mpadd(&(l->readercounter), 1) & __RW_FLAG__) {

// another writer was faster than me
mpadd(&(l->readercounter), -1); /* undo */
waiting = 1; /* not done, try again */

}
}

}
else { /* I am a writer */

246 Chapter 5. Implementation of Parallel Programming Languages

// wait for other writers to leave:
fair_lockup(&(l->writerlock));
// set flag to tell readers that I want to have the lock
syncor((int *)&(l->readercounter), __RW_FLAG__);
// wait for readers to leave:
while(mpadd(&(l->readercounter), 0) & (__RW_FLAG__-1)) ;

}
}

This mechanism is fair with respect to the writers, but if there are many write accesses, the
readers may suffer from starvation as the writers are prioritized by this implementation. For
this reason, this reader–writer lock implementation is called apriority reader–writer lock.5 In
order to “rank down” the writers’ advantage, the correspondingrw unlock function offers
a tuning parameterwait specifying a delay time:

int rw_unlock(rw_lock *l, int mode, int wait)
{

if (mode == RW_READ) { /* I am a reader */
mpadd (&(l->readercounter), -1);

}
else { /* I am a writer */

int i;
/* free lock for readers: */
mpadd (&(l->readercounter), -__RW_FLAG__);
/* delay loop, give readers a better chance to enter: */
for(i = 0; i < wait; i++) ;
/* free for writers: */
fair_unlock(&(l->writerlock));

}
}

Hence, the degree of fairness of the implementation is controlled by the writers.

5.1.12 Implementation of the Reader–Writer–Deletor Lock

The data typeRWDLockis declared infork.h , and the operations defined on it (see Sec-
tion 4.2.8) are implemented in theFork standard library (lib/async.c).

#define RW_DELETE 2

The most important extension to the reader–writer lock implementation is an additional
semaphore, the delete flag, that indicates whether a deletor has access to the lock. Initially
the delete flag is set to zero. Therwd lockup operation checks this flag during the waiting

5Wilson sketches an alternative implementation of a reader–writer lock prioritizing the readers over the writ-
ers [Wil88]. R̈ohrig describes a more involvedcompletely fairimplementation of a reader–writer lock [Röh96].

5.1. CompilingFork for theSB-PRAM 247

typ

pid
t g

pid pid pid

typ typ typ
t t t ggg

_tracebuf _postracebuf

event i event i+1 event i+2 event i+3

.................

FIGURE 5.8: Organization of the event records and the trace buffer. Due to the constant-time
atomic fetch&addoperationmpadd of the SB-PRAM, an arbitrary number of subsequent
event records can be allocated to the requesting processors in the same machine cycle.

loop. As soon as it is set to one, allrwd lockup operations return zero to indicate failure.
Otherwise, they return a nonzero value that indicates that the lock has been acquired normally.

The interested reader may have a look at/lib/async.c to see the complete implemen-
tation.

5.1.13 Implementation of thetrv Trace Visualization Tool

Trace events that occur within a user-defined time interval are recorded in a centraltrace buffer
that can later be written to a file and processed further. In contrast to almost any other paral-
lel tracing tool, we do not use processor-individual trace buffers in the local memories. This
design choice was motivated by three reasons: (1) On theSB-PRAM, storing and accessing
trace event records consecutively in shared memory takes the same time as for a private mem-
ory area. (2) The output routine that flushes the trace buffer to a single file can be parallelized.
(3) There is no need for a merge of up to 2048 local trace files afterwards.

An entry for a trace event in the trace buffer consists of an event type index, a (physical)
processor ID, a time stamp, and a group identifier. A unique group identifierg is derived from
the address of the group’s synchronization cell in the shared stack. In the current implemen-
tation, each event entry requires 3 words in the trace buffer (see Figure 5.8), as the event type
index and the processor ID can share one word without incurring additional time overhead.
The total number of events usually depends linearly on the number of processors.

In order to activate the tracing feature, the user program must be compiled and linked with
the -T option of theFork compiler. If tracing is not desired, the program is thus linked with
a variant of the standard library without tracing, hence there will be no loss of efficiency at
all. Otherwise, the program is instrumented with additional code that writes event records
into the trace buffer at the timet at which they occur (see Figure 5.8). The code is written in
SB-PRAM assembler for performance reasons, because it is called quite frequently and must
be executed very fast to reduce distortions of the behaviour of the computation to be traced.

startTracing starts the recording of events. A default trace buffer size is used unless
the startTracing call is preceded by aninitTracing(L) call that reallocates the
central trace buffer on the permanent shared heap withL memory words.

The actual overhead of writing a trace event record is 17 machine cycles, as can be seen
from Figure 5.9. Outside the dynamically defined time interval where tracing is enabled, the
overhead is only 5 machine cycles. The code exploits the nonsequentializing multiprefix-

248 Chapter 5. Implementation of Parallel Programming Languages

#ifdef PROFILING
// skip entries outside startTracing/stopTracing interval:
gethi __tracingenabled,r31
ldgn r31,(__tracingenabled)&0x1fff,r31
add r31,0,r31 //compare
beq forklib_barr_entry_trace_done
// issue a TRACE_BARRIER_ENTRY=3 trace entry
gethi __postracebuf,r30
add r30,(__postracebuf)&0x1fff,r30
getlo 3,r31 // size of an event record: 3 words
mpadd r30,0,r31 // r31 <- mpadd(&_postracebuf, 3);
getlo (3<<16),r30 // event type
getct par1
stg par1,r31,1 // r31[1] <- time
gethi ___PROC_NR__,par1
ldg par1,___PROC_NR__&0x1fff,par1
stg gps,r31,2 // r31[2] <- gps
add r30,par1,r30 // r30 <- (3<<16) + __PROC_NR__
stg r30,r31,0 // r31[0] <- ""
forklib_barr_entry_trace_done:
#endif

FIGURE 5.9: SB-PRAM assembler code for writing an event record at the entry of the barrier
routine. Excerpted from theFork standard library. Note that addressing of theSB-PRAM
memory is in terms of entire 32-bit words.

add instructionmpadd as an atomicfetch&addoperator (see Figure 5.8); the shared pointer
postracebuf serves as a semaphore that indicates the position of the next free record in

the trace buffer. Hence, events are stored in linear order of their occurrence; simultaneous
events are recorded simultaneously in subsequent records in the trace buffer.

Eight event types (from 0 to 7) are predefined for entry and exit of subgroups, for entry to
a group splitting operation, for entry and exit of barriers and lock acquire operations. User-
defined events are recorded by calling thetraceEntry routine with an integer parameter
indicating a user-defined event type between 8 and 31. Phases started by such a user event
will be drawn in the corresponding color taken from the standard color table ofxfig unless
the color is specified explicitly by the user.

After calling the synchronousstopTracing function, events are no longer recorded in
the trace buffer. The events stored in the trace buffer can be written to a file (trace file) by
calling the synchronouswriteTraceFile function, which takes the trace file name and
an optional title string as parameters. Formatting the data of the trace buffer is done fully
in parallel; then, a singlewrite call is sufficient to flush the formatted data to a single file
in the host’s file system, where it can be accessed bytrv . It is important that the—albeit
parallelized—somewhat time-consuming part of reformatting and file output is performed
offline, that is, outside thestartTracing /stopTracing interval.

Tracing shared memory accesses adds an overhead of about 8 clock cycles to shared mem-

5.1. CompilingFork for theSB-PRAM 249

ory accesses (load from and write to shared memory,mpadd/syncadd , mpmax/syncmax ,
mpand/syncand , andmpor /syncor). When writing the trace buffer, the values of these
counters are also written to the trace file. Hence, the corresponding counters of all proces-
sors are later just added up to obtain the global access statistics. Tracing an access to shared
memory means incrementing a local counter corresponding to that access type (read, write,
variants of multiprefix and atomic update). In any case, the execution time of programs that
are not compiled and linked with-T is not affected by the tracing feature.

trv converts the sequence of trace events in the trace file to a time-processor diagram in
xfig format. trv is very fast. It uses a simple plane-sweep technique to process the trace
events, which relies on the fact that the event records in the trace file are sorted by time. Then,
it is sufficient to keep for each processor the type, group, and time of its event record processed
last. As soon astrv encounters a new trace event for a processor, a rectangle for the now
finished phase is added in the time bar for that processor. Finally, the last-activity rectangles
of all processors are closed up to the right hand side border of the time-space diagram. The
overall processing time is thus linear in the length of the trace file. 10000 events are processed
in less than 1.5 seconds on a SUN SPARC10 workstation.

Current and future work on trv When tracing a long-running program or a large number
of processors, the screen resolution is not sufficient to display all details. Nevertheless, the
generated FIG file contains them (vector graphics). One possibility is to use a display tool with
scroll bars, maybe with an explicit time axis to be added for better orientation. Nevertheless
this results in a limited overview of the entire parallel trace.

An alternative is to apply a fish-eye view transformation with a rectangular focus poly-
gon [FK95]. Inside the focus polygon, the diagram is shown in full detail for a small time
and processor axis interval. Outside the focus polygon, the scaling of the axes continuously
decreases, ending up the smallest resolution at the image boundaries.

Moreover, it is not always necessary that all involved processors participate in tracing dur-
ing thestartTracing ...stopTracing interval. Instead, a subset of the processors to
participate could be selected, for instance, by specifying a bit mask parameter to thestart-
Tracing call that is or-ed with the processor ID. When recording an event, the nonpartici-
pating processors will then be delayed by the same number of machine cycles that the partic-
ipating processors need for the recording, in order to maintain synchronicity where necessary
and to reduce distortion effects on race conditions caused by the program’s instrumentation.

The verbose display of the shared memory access statistics could be changed into a graph-
ical representation (with bar or pie diagrams).

A recent extension oftrv in a student project at the University of Trier added events
for message passing and drawing of arcs for messages sent by the core routines of the MPI
message passing library, which have been implemented inFork in another student project.

The development of an interactive programmer interface fortrv , integrated in a GUI-
based compilation and program execution manager, has recently been started as a student
project at the University of Trier.

250 Chapter 5. Implementation of Parallel Programming Languages

5.2 Compiling Fork for Other Parallel Architectures

It appears that the compilation ofFork to efficient parallel code depends on several precondi-
tions:

� The target machine is a MIMD architecture.Compiling Fork to SIMD architectures
would lead to sequentialization6 of concurrent groups that could operate in parallel on
a MIMD architecture. The compilation of asynchronous program regions to a SIMD
architecture implies simulation of a virtual MIMD machine on a SIMD machine, which
would result in complete sequentialization and prohibitively high overhead.

� User-coded barrier synchronization for a subset of the processors is not expensive.
Most commercial parallel platforms offer a system-specific routine for global barrier
synchronization that is often (but not always) considerably faster than a user-coded
variant with semaphores, such as by providing a separate network that is dedicated to
synchronization. In the presence of group splitting, global barriers can be used only
at the top level of the group hierarchy. Also, the implementation of a barrier on cur-
rent massively parallel machines usually takes time at least logarithmic in the number
of synchronizing processors. while it takes constant time on theSB-PRAM. Further-
more, we will see in Section 5.2.2 that even for a machine with powerful, nonsequen-
tializing atomic add or fetch&add instructions, likesyncadd or mpadd on the
SB-PRAM, barrier synchronization takes more time and space if exact synchronicity
of the parallel machine at the instruction level is not supported. Also, the replacement
of barriers by suitable padding withnops, as discussed above for theSB-PRAM, is not
possible when compiling for asynchronous architectures.

� The language supports just as many processors as are available by the target archi-
tecture.A general emulation of additional processors in PRAM mode by the compiler
and its runtime system involves high overhead on any type of architecture, as we will
see in Section 5.2.1, and hence is not supported inFork. In contrast, this task is much
simpler for SIMD or dataparallel languages, where the emulation of additional process-
ing elements can be done statically by the compiler. For most MIMD languages where
processors follow individual control flow paths, an emulation of virtual processors in
software requires another layer of interpretation. Even if the multithreading capabili-
ties of modern operating systems are exploited, the need for a sequentially consistent
shared memory and groupwide barriers requires many context switches; the support of
a synchronous execution mode requires many group locks. We will further elaborate on
this issue in Section 5.2.1.

� The target architecture offers a sequentially consistent shared memory.An emulation of
a shared memory on top of a distributed memory in software (i.e., a virtual or distributed
shared memory implementation by the compiler’s runtime system) is often inefficient,
especially for irregular applications, if the memory consistency model is not relaxed

6In some cases, the concept of the maximal synchronous ancestor group introduced in Section 5.2.1 may help
to exploit SIMD parallelism beyond the current leaf group.

5.2. CompilingFork for Other Parallel Architectures 251

to a weaker form (seePractical PRAM Programming[B1, Chap. 4] for a survey of
hardware-based DSM systems and, e.g., the article by Protic et al. [PTM96] for a survey
of software DSM systems). An emulation of a shared memory on a distributed memory
multiprocessor by the compiler only is again possible only for SIMD or dataparallel
languages like HPF, which we will discuss further in Section 5.2.3.

� Private memory subspaces are embedded into the shared memory.This feature ofFork
enables keeping declaration and usage of pointers simple: dereferencing of any pointer
is done by aldg instruction. On theSB-PRAM, this simplification comes for free
and is even enforced by the architecture, as there are no private processor memories
of sufficient size available at all. Even for the small local memory modules of the
SB-PRAM processors, which are used by the operating system only (mainly as hard
disk buffers), the memory access time is in the same order of magnitude (one machine
cycle) as for an access to the global, shared memory (two machine cycles). On other par-
allel architectures, exploiting locality of memory accesses is much more critical for the
overall performance. If the private memory subspace is stored in a separate, processor-
local memory module, different memory access instructions must be used depending
on whether the address is private or shared. This can either be determined statically (by
another sharity declaration of the pointee of a pointer and appropriate type checking
rules for the compiler, as applied, e.g., inC�), or dynamically (by inspecting at runtime
the value of a pointer before dereferencing it, as applied inForkLight).

� Synchronous execution mode guarantees exact synchronicity and(in principle) the sep-
aration of reading and writing memory accesses.The entireSB-PRAM architecture is
synchronous at the instruction level. Hence processors will remain exactly synchron-
ous once they have been synchronized, as long as they make the same branch decisions
at conditional jumps (apart from asynchronous interrupts, which are switched off by
the SB-PRAM operating system when executing aFork user program). Also, on the
SB-PRAM, the effect of memory accesses is deterministic in synchronous computa-
tions, as synchronous execution implies a well-defined total order among the memory
accesses. This feature is unique to theSB-PRAM; exactly synchronous execution is not
supported by any other MIMD machine. Obviously, exact synchronicity is necessary
only at shared memory accesses; the local computation parts between shared memory
accesses need not run synchronously at all. More specifically, synchronous execution is
necessary only among accesses to thesameshared memory location. Efficient compi-
lation thus requires that the instruction/processor pairs accessing the same location can
be statically identified at sufficient precision by data dependence analysis. Hence, when
compiling Fork to an asynchronous shared memory architecture, additional synchro-
nization will be required to put the accesses to shared memory locations into the right
order. Even if exact synchronicity at the memory access level is somehow established,
read and write accesses must be properly separated to guarantee the correctness and de-
terminism of the computation. On theSB-PRAM this is achieved by alignment to the
globalmodulo flag. On asynchronous architectures, this separation must be simulated
by additional synchronization. Note that this problem also appears in asynchronous
regions.

252 Chapter 5. Implementation of Parallel Programming Languages

� Concurrent write is allowed and deterministic.This is another feature inherited from the
SB-PRAM. Obviously, a deterministic concurrent write resolution policy like Priority
CRCW makes sense only in a synchronous framework. Hence, no other MIMD archi-
tecture directly supports a comparable concurrent write conflict resolution mechanism,
simply because thereis no other synchronous MIMD architecture. Instead, accesses to
the same memory location would have to be sequentialized on an asynchronous parallel
machine, and then the values read and stored would generally depend on the relative
speed of the processors and of the corresponding memory access request messages in
the network. Hence, in addition to the sequentialization of concurrent write accesses,
further synchronization code would be necessary to guarantee the deterministic order
implied by the Priority CRCW policy. This problem also includes multiprefix operators
in synchronous regions.

We see that the compilation of theFork language in its present form will produce in-
efficient code for any other parallel hardware, if static program analysis does not succeed
in providing sufficient information for optimizing the additional synchronization code being
inserted.

On the other hand, if we relax some of the points listed above in the language definition,
we will generally improve the efficiency of code compiled for other parallel architectures, but
the language will no longer be a PRAM language. By such relaxations, the two non-PRAM
variants ofFork, namelyForkLight for the Asynchronous PRAM model andNestStep for
the BSP model, have been created.

5.2.1 Emulating Additional PRAM Processors in Software

TheSB-PRAM does not support an efficient emulation of additionalFork processors (apart
from its unused logical processor emulation feature that is quite limited in power), for good
reasons, as we will see in this section: In the general case, emulating moreSB-PRAM pro-
cessors applied to the synchronous execution mode ofFork would either compromise the
sequential memory consistency or cause tremendous inefficiency. Many of the problems and
solution strategies discussed here will occur again in a similar form when considering the
compilation ofFork for asynchronous shared memory machines in Section 5.2.2. First, we
introduce some terminology.

A cross-processor data dependencedenotes a relationship between a reading and a writing
memory access instruction or two writing memory access instructions that are executed on
different processors, such that these (may) access the same shared memory location. The
cross-processor data dependence is directed from either (1) a write access to a read access
that possibly reads the value written by the former, or (2) a read access to a write access that
possibly overwrites the value read by the former, or (3) a write access to a write access that
possibly overwrites the value written by the former. For instance, in

start { sh int x;
int y = $;

S1: x = y;
S2: y = x + 2;

5.2. CompilingFork for Other Parallel Architectures 253

}

the read access tox in S2 is cross-processor data dependent on the write access inS1, and
the write access tox in S1 is cross-processor-dependent on itself. For an introduction to the
general concept of data dependency we refer to our summary in [B1, Sect. 7.1] and to the
standard literature on parallelizing compilers [Ban93, Ban94, Ban97, Wol94, ZC90]. For now
it is sufficient to see that the original execution order of cross-processor-dependent instructions
must be preserved when emulating additional processors, in order to obtain the same program
behavior; otherwise, there would be race conditions among different processors for accesses
to the same shared memory location.

By virtualization we denote the process of emulating a set of PRAM processors, so-called
logical processors, on a smaller PRAM, in software. Note that this includes the emulation of
a PRAM by a single processor machine as a special case of an emulating PRAM. In an asyn-
chronous environment, the logical processors are often referred to asthreadsor lightweight
processes; in the synchronous PRAM environment we prefer to call themprocessors, as their
number will be a runtime constant and the set of all logical processors should behave like a
monolithic large PRAM for the programmer.

In simple cases, the virtualization may be done as a program transformation by the com-
piler only. This requires that the control flow for each processor be statically known, as for
SIMD code, and that sufficient information about cross-processor data dependencies in the
parallel program be available.

Another possibility for virtualization is to use the operating system or the runtime system
of the compiler for simulating several logical processors on each of theavailable processors
in a round-robbin manner, where a compile-time or runtime scheduler decides about how
to distribute the CPU time of the emulating processor across the emulated processors (task
scheduling). Scheduling can benonpreemptive, which means that a logical processor keeps
the CPU until it releases the CPU explicitly by acswitch operation that causes a context
switch to the logical processor to be emulated next. Or it can bepreemptive, which means
that aruntime scheduler(also calleddispatcher) assigns CPU time to the emulated processors
in a time-slicing manner. If a time slice is over, the scheduler interrupts execution of the
current logical processor, issues a context switch, and the next logical processor is emulated
during the following time slice. Acontext switchconsists in saving the current status of
the current logical processor (program counter, status register, register contents) in the main
memory and restoring the latest status of the logical processor to be simulated next. In order
to access the proper set of private variables, the emulating processor’s BASE register must be
set accordingly to the start address of the next logical processor’s private memory subspace.
This is (more or less) the method used inpramsim , where a context switch is performed
after every assembler instruction.

Let us now consider some examples for the case that a larger number ofFork processors
is to be emulated on top of a smallerSB-PRAM machine. First we look at the simpler cases:
SIMD code, which denotes synchronous program regions executed by the root group only,
without and with cross-processor data dependencies. These cases could be handled quite ef-
ficiently by the compiler. Then, we consider asynchronous program regions, and finally the
general form of synchronous execution by multiple groups that may access group-globally
declared shared variables. In these cases, simulation must be done by using explicit context

254 Chapter 5. Implementation of Parallel Programming Languages

switches, which requires support by the runtime system of the compiler and incurs consider-
able overhead if the semantics of the originalFork program is to be preserved.

Virtualization for SIMD code

For the followingFork program fragment

start // $ numbered from 0 to __STARTED_PROCS__-1
a[$] = 2 * b[$-1];

where we assume that the shared arraysa andb are disjoint, an arbitrary number ofSTAR-
TED PROCS logicalSB-PRAM processors could be easily emulated by the compiler on top
of a SB-PRAM with only __AVAIL_PROCS__physically available processors, as control
flow is the same for each processor (SIMD) and there are no cross-processor data dependen-
cies here. If the physical processor IDs, called__PPID__ on the smaller machine, are num-
bered from 0 to__AVAIL_PROCS__minus 1, the following loop, running on aSB-PRAM
with __AVAIL_PROCS__processors, produces the same result:

start
for ($=__PPID__; $<__STARTED_PROCS__; $+=__AVAIL_PROCS__)

a[$] = 2 * b[$-1];

Moreover, each occurrence of a private variable, such asi , is simply replaced by a refer-
ence, say,i[__PROC_NR__] , to a suitably defined shared array on the smallerSB-PRAM
machine.

Virtualization for irregular SIMD code

Emulation by the compiler becomes more difficult if there are cross-processor data dependen-
cies, in particular if these depend on runtime data. For instance, in

start
a[x[$]] = a[$];

with a shared arraya and a shared integer arrayx , a cross-processor data dependence among
the executions of the assignment must be assumed that require that no element ofa is over-
written before it has been read by all processors. Note that the compiler operates on the
intermediate representation of the program, where the assignment statement has already been
split into an equivalent sequence of low-level instructions:

Reg1 � $;

Reg2 � x[Reg1];

Reg3 � a[Reg1];

a[Reg2] � Reg3;

5.2. CompilingFork for Other Parallel Architectures 255

As the contents of arrayx is not known at compile time, a barrier and an explicit temporary
array is required to obtain the same behavior on the smallerSB-PRAM machine. However,
the following straightforward solution isnot correct

for ($= PPID ; $< STARTEDPROCS ; $+= AVAIL PROCS) f
Reg1 � $;

Reg2 � x[Reg1];

Reg3 � a[Reg1];

call barrier;

a[Reg2] � Reg3;

g

as thebarrier would separate only those read and write accesses toa that are executed
for the first __AVAIL_PROCS__ logical processors. Already the logical processor with
$=__AVAIL_PROC__ may access an overwritten element ofa, which contradicts the se-
mantics of the originalFork program.

Instead, the compiler must generate intermediate code for the smallerSB-PRAM machine
as follows, using a temporary arraytemp :

start f
for ($= PPID ; $< STARTEDPROCS ; $+= AVAIL PROCS) f

Reg1 � $;

Reg3 � a[Reg1];

temp[$] � Reg3;

g // implicit barrier
for ($= PPID ; $< STARTEDPROCS ; $+= AVAIL PROCS) f

Reg1 � $;

Reg2 � x[Reg1];

a[Reg2] � temp[$];

g
g

Virtualization for asynchronous regions

Larger problems with emulating more processors occur where control flow is individual (MIMD)
and not statically known, which is the common case forFork programs (except for parts of
synchronous regions where processors are known to be working in the root group only). In
such cases, the compiler cannot use loops for the virtualization.

For example, consider the following program fragment, which was taken from an imple-
mentation of the CRCW Quicksort algorithm [CV91] described in Chapter 1 ofPractical
PRAM Programming[B1]:

farm {
if (IAmALeaf[$])

256 Chapter 5. Implementation of Parallel Programming Languages

done[$] = 1;
else {

if (lchild[$]<N)
while (! done[lchild[$]]) ;

if (rchild[$]<N)
while (! done[rchild[$]]) ;

a[$] = a[lchild[$]] + a[rchild[$]];
done[$] = 1;

}
}

For the compiler it is no longer possible to determine statically which processor will follow
which control flow path, as the branch decisions depend on runtime data. Hence, it cannot
know where to put loops or barriers to obtain the same behavior with virtualization.

One solution would be to use a nonpreemptive scheduler in the operating system or run-
time system of the compiler. In this case, each logical processor is responsible itself for
releasing the CPU by an explicit context switch, for example, if it must wait at a barrier. Note
that, if a context switch is forgotten, it may happen that processors are waiting for an event
that will be simulated later, and thus get caught in a deadlock (because they do not reach
the nextcswitch statement that would enable the event-triggering processor to be simu-
lated). This problem would not be there without virtualization. The alternative solution is
preemptive scheduling. This avoids the abovementioned problem, as the control over context
switching is held by the operating system only. On the other hand, this may lead to more con-
text switches than are really necessary. Both constructions incur considerable overhead due to
context switching and thread management. On theSB-PRAM we can assume that a context
switch always takes the same number of CPU cycles, and thus does not affect synchronous
execution adversely.

The asynchronous mode ofFork makes no assumptions on the relative speed of proces-
sors, and hence cross-processor data dependence is not to be handled by the compiler but by
the programmer. Nevertheless, with nonpreemptive scheduling it is not sufficient to have a
single context switch just at the end of afarm body, for instance, as processors may wait for
each other, as in the example above, and the other logical processors simulated in an earlier
time slice must be given the chance to find the updated value in a written shared memory
location. Hence, as a conservative solution, a context switch is to be executed after each write
access and before each read access to the shared memory. Note that the implementation of a
barrier or of a lock acquire operation will accordingly contain context switches as well, such
that all logical processors have the chance to see the zero in the synchronization cell before it
is reincremented again.

Virtualization for synchronous MIMD code

In synchronous mode, however, we are faced with the problem of maintaining (at least)
memory-level synchronicity. For synchronous code where control flow is irregular or cross-
processor data dependencies cannot be resolved at compile time, because of problems such
as aliasing by pointers, the compiler must, in the worst case, conservatively assume that each

5.2. CompilingFork for Other Parallel Architectures 257

pair of shared memory access instructions where at least one write access is involved may
cause a cross-processor data dependency, which must be protected by synchronization and a
context switch.

For example, consider the following synchronous program fragment:

start {
sh int x = 3, z = 4;
pr int y;
...
if ($<2) z = x;
else y = z;

}

Note that we have here a cross-processor data dependence, caused by the store to the
shared variablez and the load fromz , which are executed by different processors in different
groups that are asynchronous with respect to each other. A read or write access to a shared
variable that is declared global to the group performing the access is called anasynchronous
accessto that variable [K̈ap92, Wel92, Lil93]. In this example, the two branches of theif
statement contain asynchronous occurrences ofz , while the access in the previous initializa-
tion is synchronous.

By the semantics of the synchronous mode inFork, all emulated logical processors exe-
cuting theelse part must read thesamevalue ofz . Because of the simulation on a smaller
machine, not all emulated processors can execute the load ofx resp.z or the store toz simul-
taneously. Rather, some of these that evaluate the condition to zero might complete theelse
branch before theif branch has been executed by any processor, and some might arrive after.
These processors would store a different value fory , thus compromising the semantics of the
synchronous mode of execution.

In order to maintain the semantics of the synchronous mode inFork, it would be required
to keep a group lock for each shared variable that may eventually be accessed by a proper
subgroup of the group declaring it. Because of the presence of pointers and weak typing in C,
it is hardly possible to determine these variables statically. Hence, a lock would be required
for each shared memory cell! Clearly, this waste of shared memory space can be considerably
reduced by keeping only a small numbern of such locks, stored in an arraySMlock of
simple locks, and hashing the memory accesses across then locks, wheren should be a power
of 2 for fast modulo computation. But this is to be paid by sequentialization of independent
accesses to different shared memory locations that happen to be hashed to the same lock. Also,
the overhead of locking and unlocking (see Section 4.2.8) is not negligible even if efficient
hardware support such as the powerfulmpadd instruction is used extensively. In the example
above, we would obtain the following pseudocode:

start // compiler initializes logical processor
// emulation by the runtime system

if ($<10) {
seq {

simple_lockup(SMlock+z%n);
} // implicit barrier, contains context switch

258 Chapter 5. Implementation of Parallel Programming Languages

z = x;
seq {

simple_unlock(SMlock+z%n);
} // implicit barrier, contains context switch

}
else {

seq {
simple_lockup(SMlock+z%n);

} // implicit barrier, contains context switch
y = z;
seq {

simple_unlock(SMlock+z%n);
} // implicit barrier, contains context switch

}
// implicit barrier - contains context switch

This means that execution for the subgroup that acquires the lock first will be simulated
completely, while the other processors wait and just repeatedly switch context in theirsim-
ple lockup call. Only when the first subgroup is finished and waits at the implicit bar-
rier after theif statement (which also contains context switches) does the second subgroup
succeed in acquiring the lock. The overhead caused by the locking, unlocking, the context
switches, and the sequentialization of the two subgroups would lead to considerable ineffi-
ciency.

As we would like to avoid this inefficiency,Fork renounces an option of emulating ad-
ditional processors; instead the programmer is responsible for writing more flexible parallel
code that works with any number of available processors.

An optimization for the locking of asynchronous accesses to shared variables on PRAM
architectures has been proposed for the oldFORKstandard [HSS92]. At any timet of the
execution of aFork program, themaximal synchronous ancestor groupms(g; t) of the
current groupg denotes the least-depth ancestor group�g of g in the group hierarchy tree
for which all groups in the subtree rooted at�g still work synchronously at timet. For instance,
the fork instruction does not immediately lead to asynchrony of its subgroups; rather, these
proceed synchronously up to the execution of the first branch instruction where the control
flow of the different subgroups may diverge. A combination of static and runtime program
analysis [Lil93] can compute for each instruction a safe underestimationms of the possible
values forms(g; t) for all its executions. The value ofms may change at branching points of
control flow. For an asynchronous access to a shared variablez defined by an ancestor group
g0 of the current group, group locking of the access toz is not necessary if all groups that may
accessz concurrently (in the worst case,g0 and all its successor groups) are located within the
group hierarchy subtree rooted atms(g; t), that is, ifms(g; t) is equal tog0 or to an ancestor
group ofg0.

Note that the concept of the maximal synchronous ancestor group may, at least in princi-
ple, also be used to save synchronization cells, as all successor groupsg0 of ms(g; t) could
use the same synchronization cell. Nevertheless, this hardly improves the performance of bar-
rier synchronization on asynchronous MIMD architectures; rather, on the contrary, the barrier

5.2. CompilingFork for Other Parallel Architectures 259

overhead will generally grow with an increasing number of processors on non-SB-PRAM ar-
chitectures. On the other hand, analysis of the maximal synchronous ancestor group may lead
to more efficient code when compilingFork programs to SIMD architectures (like vector pro-
cessors, SIMD processor arrays, VLIW architectures, or EPIC processors), as several active
groups could share a SIMD instruction and thus reduce the effect of serialization of concurrent
groups on SIMD machines. On the other hand, when compiling for asynchronous (and non-
combining) MIMD architectures, the concept of the maximal synchronous ancestor group is
not helpful at all; on the contrary, the artificially enlarged groups would incur more overhead
of barrier synchronization than barrier-synchronizing each leaf group independently, because,
on such architectures, barrier synchronization does no longer perform in constant time. On
theSB-PRAM, where barrier synchronization takes constant time, the concept of the maximal
synchronous ancestor group implies no substantial advantage (beyond optimizing asynchron-
ous accesses), but determining the maximal synchronous ancestor group requires some space
and runtime overhead. Hence, it is not used in the prototype compiler for theSB-PRAM.

5.2.2 Compiling for Asynchronous Shared Memory Architectures

Now we leave theSB-PRAM as a compilation target and consider instead an asynchronous
parallel machine with a sequentially consistent shared memory, also known as anAsynchron-
ous PRAM[Gib89, CZ89]. Such a machine with an abstract shared memory access interface
is summarized in Figure 5.10. An implementation of the necessary functions for controlling
concurrent execution and accessing the shared memory, as defined in Figure 5.10, for an ex-
isting shared memory machine or a portable interface like P4 or OpenMP is straightforward
[C16].

Hatcher and Quinn provided a detailed presentation of the issues in compiling dataparallel
programs for such an asynchronous shared memory machine [HQ91, Chap. 4], describing
a compiler for Dataparallel C to a Sequent multiprocessor. Note that inFork the activity
region of each group defines a SIMD computation, except for asynchronous accesses to shared
variables. Hence, the code generation scheme for SIMD or dataparallel code must be extended
for Fork by groupwide barriers and groupwide sharing of variables. This implementation of
the group concept is nearly identical to the mechanism described in Section 5.1, with one
exception: The groupwide barrier requires major modifications if the target architecture is
asynchronous, which we will describe next. Then, we describe the emulation of a synchronous
computation on an asynchronous machine. Finally, we discuss the necessary extensions for a
target machine supporting only a weaker form of memory consistency.

Implementation of a groupwide barrier

As in the compilation for theSB-PRAM described in Section 5.1, a compiler for an Asyn-
chronous PRAM, such as theForkLight compiler, keeps for each group a shared group frame
and, on each processor of the group, a private group frames.

Theshared group frame(see Figure 5.11) is allocated in the group’s shared memory. The
shared group frame contains the shared variables local to this group and (in contrast to a single
cell as before)three synchronization cellssc[0], sc[1], sc[2]. Again, each processor holds a

260 Chapter 5. Implementation of Parallel Programming Languages

.......
SHARED MEMORY

M M M
0 1 2 p-1

M....... beginparallelsection

endparallelsection

shmalloc
P 2PP0 1 Pp-1.......

NETWORK (add an integer to a cell)

(add an integer to a cell and
 return its previous value)

fetch_add

(read a value from a shared memory cell)SMread

atomic_add

SMwrite (write a value into a shared memory cell)
access primitives:

Atomic shared memory

furthermore:

processors / threads

private memory modules

(shared memory allocation)

(spawn p threads)

(kill spawned threads)

FIGURE5.10: Asynchronous PRAM model with shared memory access operations. The seven
operations on the right side are sufficient to handle shared memory parallelism as generated by
the compiler. The processors’ native load and store operations are used for accessing private
memory. Other functions, such as inspecting the processor ID or the number of processors,
are implemented by the compiler’s runtime library.

registergps pointing to its current group’s shared group frame, and additionally a private
countercsc indexing thecurrent synchronization cell, hence it holds one of the indices 0,
1, or 2. csc may be stored in the private group frame. When a new group is created,csc
is initialized to 0,sc[0] is initialized to the total number of processors in the new group,
andsc[1] andsc[2] are initialized to 0. If no processor of the group is currently at a barrier
synchronization point, the current synchronization cellsc[csc] contains just the number of
processors in this group.

At a groupwide barrier synchronization, each processor atomically increments the next
synchronization cell by 1, then atomically decrements the current synchronization cell by
1, and waits until it sees a zero in the current synchronization cell; see Figure 5.11. The
algorithm guarantees that all processors have reached the barrier when a zero appears in the
current synchronization cell. Only then they are allowed to proceed. At this point of time,
though, the next current synchronization cell,sc[Rnext], already contains the total number of
processors, i.e. is properly initialized for the following barrier synchronization. Oncesc[Rcsc]
is 0, all processors of the group are guaranteed to see this, as this value remains unchanged at
least until after the following synchronization point.

The execution time of a barrier synchronization is, for most shared memory systems, dom-

async barrier:
Rcsc csc ;
Rnext Rcsc+ 1;
if (Rnext > 2) Rnext 0 // wrap-around
atomic add(gps +Rnext, 1);
atomic add(gps +Rcsc, -1);
while (SMread(sc[Rcsc]) 6= 0) ; // wait
csc Rnext;

"
group-local
shared var’s

sc[2]
sc[1]

gps! sc[0]

FIGURE 5.11: Barrier synchronization pseudocode and shared group frame for asynchronous
shared memory architectures.

5.2. CompilingFork for Other Parallel Architectures 261

inated by the groupwideatomic add andSMread accesses to shared memory, while all
other operations are local. If the hardware does not support combining ofatomic add or
fetch add shared memory accesses, execution of these will be sequentialized, and hence
a barrier will take time linear in the number of processors in the group. For that case, there
are other barrier algorithms than this one based on shared counters. For instance, tree-based
algorithms using a tree of semaphores or message passing along a spanning tree of the pro-
cessors of the group lead (in principle) to logarithmic time complexity of a barrier execution.
Furthermore, various methods exploiting special hardware features of particular parallel ma-
chines have been proposed. A survey and practical evaluation of barrier algorithms for shared
and distributed memory architectures is available [HS96].

Emulating synchronous execution

In the asynchronous program regions of aFork program, all potentially present cross-processor
data dependencies must be handled explicitly by the programmer. Hence, nothing has to be
changed there when compiling for an Asynchronous PRAM.

If a synchronous region is to be compiled for an Asynchronous PRAM, additional syn-
chronization must be inserted. In principle, synchronization is required between any two
subsequent assignment statements. In cases where a memory location addressed by the left
side of an assignment may be accessed concurrently also on its right side, a temporary vari-
able must be used, and a synchronization must occur even within the assignment statement.
For instance, in

start {
sh int x[N], y[N];

S1: x[$+1] = 2 * x[$];
S2: y[$] = x[$+1] + 1;
}

there are cross-processor data dependences fromS1 to S1 and fromS1 to S2, due to accesses
to the same elements ofx . Hence, barrier synchronizations must be placed as follows:

start {
sh int x[N], y[N], temp[N];

S1a: temp[$] = 2 * x[$];
S1b: _barrier;
S1c: x[$+1] = 2 * temp[$+1];
S1d: _barrier;
S2: y[$] = x[$+1] + 1;
}

As in the case of logical processor emulation, there are several methods that differ in
their efficiency and in their applicability, depending on how precise static information on the
cross-processor data dependencies is available.

If the control flow is statically known, as in SIMD or dataparallel code, a simple graph-
oriented method [SO97] can be used to cut all cross-processor dependences in the data de-
pendency graph with a minimum number of barriers. Related methods have been described

262 Chapter 5. Implementation of Parallel Programming Languages

[PDB93, PH95]. Thecross-processor data dependence graphGc is a directed graph that
consists of the (parallel) assignment statements as nodes, and the cross-processor data depen-
dences as edges. Although polynomial in time [Gav72], generating parallel target code from
a dataparallel program with aminimal number of barriers is an expensive computation, as
a minimum cut ofGc must be determined. Linear-time heuristics for dataparallel code have
been proposed [QHS91, SO97]. The greedy algorithm used by Quinn et al. [QHS91] applies a
sequence of iterative steps to the cross-processor data dependence graphGc. In each step, the
algorithm determines the dependency edge with earliest target node. Before this target node,
a barrier is inserted, and all edges cut by this barrier are removed fromGc before applying the
next step to the reducedGc. Sẗohr and O’Boyle [SO97] propose a similar heuristic called “fast
first sink” and prove that it generates a minimum number of barriers for straight-line code. Ob-
viously, the more precise the data dependency analysis is, the less edges will be inGc, which
usually results in less barriers being generated. In some cases, even runtime analysis of the
dependency structure [MSS+88, KMR90] may be profitable, namely, if this runtime analy-
sis can be reused several times, such as for iterative computations in a dataparallel program.
Generally, restructuring of the program may help to reduce the number of barriers needed
[PH95]. For instance, where the data dependencies permit, statements may be reordered to
allow more dependence edges to share barriers. Conversely, Jeremiassen and Eggers [JE94]
describe a static program analysis that detects sharing of barriers by independent threads of
computation in a coarse-grained parallel program. An improvement of the Hatcher–Quinn
barrier generation mechanism [HQ91] has been proposed for loops [UH95]. An optimization
of the Hatcher–Quinn code generation technique [HQ91] for cache-based DSM systems has
also been given [Kla94].

If the processors at the source and the sink of a cross-processor data dependency can be
statically determined, the global barrier can be replaced by simplerbilateral synchronization,
with semaphores or message passing [PDB93, Tse95, KHJ98]. Bilateral synchronization may
be more efficient than a global barrier if the memory access patterns involved can be statically
analyzed and match one of a few common situations like nearest-neighbor communication,
reduction, or broadcast. Also, fuzzy barriers [Gup89] can help to avoid idle times at barriers.

Shared memory consistency issues

The PRAM model, and thus alsoFork, assume a sequentially consistent shared memory. In
theFork compiler for theSB-PRAM, this was guaranteed because (1) theSB-PRAM has no
caches, hence there is only one copy of each shared memory location in the main memory;
and (2) the compiler does not hold the value of a shared variable in registers after a store
instruction; hence the copies in the processor-local registers will always have the same value
as the memory location itself.

Some commercial shared memory parallel machines like Tera MTA inherently support se-
quential memory consistency by hardware mechanisms. On the other hand, many distributed-
shared memory systems are cache-based and rely on a weaker form of shared memory consis-
tency. Nevertheless, these architectures also provide some additional means for establishing
sequential memory consistency.

One such mechanism is explicitly enforcing sequential consistency for a given program

5.2. CompilingFork for Other Parallel Architectures 263

point by a memory barrier instruction, such as theflush directive in OpenMP [Ope97],
which flushes pending shared memory write requests, such that subsequent memory accesses
will always find the most recent value. The scope of theflush directive may also be limited
to a given list of special shared memory objects. Another possibility provided by some pro-
gramming languages (likeNestStep) or user interfaces (like OpenMP) is to declare sequen-
tial consistency by default for special shared program variables, such as for all lock objects
(OpenMP) or for all shared variables declared asvolatile (OpenMP,NestStep).

Hence, when compilingFork to a nonsequentially consistent parallel machine, either a
directiveflush(a) must be inserted after each write access to a shared memory locationa,
or the entire shared memory must be declared as avolatile shared array and addressed by
suitable array accesses, if this is supported by the target environment.

Again, in special situations it is possible to eliminate some of theflush directives if
the existence of corresponding cross-processor data dependences can be disproved by static
program analysis. For instance, if the value written is guaranteed to be read only by the writing
processor itself, the corresponding memory barrier is not necessary.

5.2.3 Compiling for Distributed Memory Architectures

There are several ways to compileFork to a distributed memory architecture. The simplest
one is to use a software DSM emulation, which reduces the problem to compiling for an
asynchronous shared memory architecture.

Another possibility is to use a message passing interface that supportsone-sided com-
munication, also known asdirect remote memory access(DRMA), as in MPI-2 [MPI97] or
BSPlib [HMS+98]. One-sided communication means that the recipient of a message needs
not to execute an explicit receive instruction in order to write the arrived data to a well-defined
memory location. Instead, the sender decides where the data will be stored in the receiver’s
local memory, and the receiver is not explicitly informed7 about this. In that case, the shared
memory can be hashed over the local memories of the processors, and a write access results
in a one-sided send command to the processor owning the shared variable. Read accesses
request the data from the owning processor and block until the requested data have arrived.
This scheme guarantees sequential memory consistency, as there is only one version of each
shared memory cell. Note that this constitutes a very simple implementation of a distributed
shared memory, and thus again reduces the problem to compiling for asynchronous shared
memory architectures. Processor idle times due to waiting for the result of a read request can
be avoided by multithreading, where several logical processors share an available processor
and are controlled by a scheduler (see Section 5.2.1). After issuing a read request, a context
switch is performed. When the requesting processor is executed again, the requested value
may already have arrived.

For SIMD or dataparallel code, in particular if generated by parallelizing compilers, the

7A possible implementation of one-sided communication may spawn a second thread on each processor that
listens for incoming messages all the time. Whenever a message arrives, it receives it and (depending on the
desired action stated in the message) writes the data to an address specified in the message or sends the requested
contents of a memory location back to the sender. Of course, alsofetch add or atomic add requests can
be served in this way. A generalization of this method is known asActive Messages[CGSvE92].

264 Chapter 5. Implementation of Parallel Programming Languages

shared stack

automatic shared heap

Global shared heap

shared global variables

sps

eps

FIGURE 5.12: Organization of the shared memory.

compiler can directly generate two-sided communication [CK88, ZBG88, RP89, KMR90,
LC90, ZC90, HKT91b, HKT91a]. Data, in particular large arrays, are distributed across the
processors. The choice of this data distribution is critical for the performance of the generated
code and is hence left to the programmer, such as in the form of HPF directives. Usually, the
data distribution implies the distribution of computation; the owner of the memory location
addressed by the left side of an assignment is responsible for evaluating the right-side expres-
sion (owner-computes rule). If the processors involved in a cross-processor data dependence
are statically known, as is the case for simple array indexing schemes, the corresponding
send and receive instructions are generated directly. A receive instruction waits until the cor-
responding message has arrived; hence the message passing mechanism can be used at the
same time for bilateral synchronization. If the source and the sink of a cross-processor data
dependence cannot be determined statically, runtime techniques like the inspector–executor
technique [MSS+88, KMR90] may be used.

Prefetchingis a compile-time technique to partially hide the latency of a read access to a
remote memory location. The read access is split into two phases. In the first phase, a load
request is sent to the remote processor owning the desired value. This send operation must be
scheduled to the earliest point where it is still guaranteed that the most recent value will be
returned, namely, immediately after that preceding barrier or interprocessor communication
that guarantees the consistency of the requested value. Furthermore, a receive buffer must
be available from that point on. The second phase is a receive operation that waits until the
remote processor has sent the requested value. If data dependency analysis unveils that enough
statements can be scheduled between the first and the second phase without compromising the
semantics of the program, the latency of the access can thus be padded with useful work.

5.3 Compiling ForkLight for an Asynchronous PRAM

The ForkLight implementation uses its own shared memory management to implement the
hierarchical group concept, in a very similar way as described in Section 5.1.2 for the com-
pilation of Fork for theSB-PRAM, using a sufficiently large slice of shared memory. To the
bottom of this shared memory slice we map the shared global initialized resp. noninitialized
variables. In the remainder of this shared memory part we arrange a shared stack and an auto-

5.3. CompilingForkLight for an Asynchronous PRAM 265

matic shared heap, again pointed to by the shared stack pointersps and the automatic shared
heap pointereps , respectively (see Figure 5.12). Group splitting operations cause splitting of
the remaining shared stack space, creating an own shared stack and automatic heap for each
subgroup, resulting in a “cactus” stack and heap). Another shared memory slice is allocated
to install the global shared heap. A private stack and heap are maintained in each processor’s
private memory by the native C compiler.

Initially, the processor on which the user has started the program executes the startup code,
initializes the shared memory, and activates the other processors as requested by the user. All
these processors start execution of the program in asynchronous mode by callingmain() .

As for the compilation ofFork, the ForkLight compiler keeps for each group a shared
and a private group frame, where the shared group frame (see Figure 5.11), pointed to by the
pointer variablegps , is allocated on the group’s shared stack. As usual, the shared group
frame contains the shared variables local to this group. In contrast toFork, there arethree
synchronization cellssc[0], sc[1], sc[2] instead of a single one, as discussed in Section 5.2.2,
where we described the algorithm for a groupwide barrier synchronization on an asynchronous
PRAM. Also, for ForkLight, the pointer to the parent group’s shared group frame is stored
on the private group frame: shared memory accesses are much more expensive than private
memory accesses, and thus all information that needs not necessarily be stored in a shared
memory location should be kept in the local memory. Moreover, the private group frame
holds a private countercsc indexing thecurrent synchronization cell. When a new group
is created,csc is initialized to 0,sc[0] is initialized to the total number of processors in the
new group, andsc[1] andsc[2] are initialized to 0. If no processor of the group is currently
at a barrier synchronization point, the current synchronization cellsc[csc] contains just the
number of processors in this group. Furthermore, the private group frame, pointed to by a
pointergpp , contains a reference to that group’s shared group frame and to the parent group’s
private group frame. It also contains fields for the group index@, the processor ID$, and
the processor rank$$. @needs not be stored on the shared group frame since it is read-only.
Finally, the private group frame also holds the pointerseps andsps .

Note that many parallel machines offer hardware support forglobal barrier synchroniza-
tion, which is usually more efficient than our software mechanism with explicit handling of
semaphores. Thus, where the group is statically known to contain all started processors, the
global barrier routine can be called instead.

Note that in theFork compiler, some constructs (the loops) do not require a private group
frame as there is only one child group and thus no need for redefining$. Nevertheless, code
generation becomes simpler if all subgroup-creating constructs build private group frames in
the same way. In particular, this simplifies the generation of code forreturn , break , and
continue . In theForkLight compiler, the additional overhead of constructing private group
frames also for loops is marginal, as it involves only local operations.

5.3.1 Translation of a Function Call

Asynchronous functions are just compiled as known from sequential programming, as no care
has to be taken for synchronicity.

A control-synchronous function with shared local variables needs to allocate a shared

266 Chapter 5. Implementation of Parallel Programming Languages

group frame. As these variables should be accessed only after all processors have entered the
function, there is an implicit group-wide barrier at entry to a control-synchronous function.

5.3.2 Translation of thefork Statement

A straightforward implementation of thefork statement inForkLight assumes that allk
subgroups will exist and distributes shared stack space equally8 among these. For

fork (k; @=e) <stmt>
the following code is generated:

(1) Rk eval(k); R@ eval(e); slice b(eps-sps)=Rkc;
(2) if (0 � R@< Rk)

f sc sps +R@� slice;
SMwrite(sc, 0) ; g

(3) barrier local to the (parent) group //necessary to guarantee a zero insc[0]
(4) if (0 � R@< Rk) f

R$ fetch add(sc,1);
allocate a private group framepfr
and store theregps , eps , sps , gpp ;
initialize the newcsc field to 0,@field toR@, $ field toR$
if (R$ = 0)

f sc[1] 0; sc[2] 0; g
g

(5) barrier local to the (parent) group //guarantees final subgroup sizes insc[0]
(6) if (0 � R@< Rk) // enter subgroupR@ otherwise skip
f gps sc ; gpp pfr ; sps gps+3+#sh.locals;eps gps+slice; g else goto (9)

(7) code for<stmt>
(8) atomic add(gps+csc, -1); // cancel membership in the subgroup

leave the subgroup by restoringgps , sps , eps , gpp from the private group frame
(9) (next statement)

The overhead of the above implementation mainly consists of the parallel time for two
groupwide barriers, one subgroupwide concurrentSMwrite , and one subgroupwidefetch-
add operation. Also, there are two exclusiveSMwrite accesses to shared memory loca-

tions. The few private operations can be ignored, since their cost is usually much lower than
shared memory accesses.

A first optimization addresses the fact that group splitting and barriers can be skipped
if the current group consists of only one processor. In that case, also group-wide barrier
synchronizations can be skipped. A private status flagONE(stored in the private group frame)
keeps track of this property; it is set to 1 when at entry to a subgroup the group size reaches
1, and 0 otherwise. The number of skipped subgroup constructions may just be handled in a

8The shared stack memory may be distributed among the groups also in the ratio of subgroup sizes. While
this proportional splitting method seems, on the average, to be the better choice with respect to memory frag-
mentation compared to the uniform splitting of the shared stack, it may nevertheless be disadvantageous if the
subgroups turn out to have equal memory requirements independent of the number of processors executing them.
A possible solution may be to install a compiler option that causes the compiler to generate code for proportional
splitting if desired by the user.

5.3. CompilingForkLight for an Asynchronous PRAM 267

counterignframes stored in the private group frame. Initially set to zero when allocating
that frame, the counter is incremented when a new subgroup should have been entered, and
decremented when it is left.9

A second optimization exploits the observation that some of the subgroups may be empty.
In that case, space fragmentation can be reduced by splitting the parent group’s stack space in
only that many parts as there are different values ofR@. The additional cost is anatomic-
incr operation to a zero-initialized scratch cell executed by the leader (R$ == 0) of each

new subgroup, another barrier on the parent group, and aSMread operation. Static program
analysis may help to avoid this dynamic test in some situations. For instance, if the exact
space requirements of one subgroup were statically known, all remaining space could be left
to the other subgroups. Unfortunately, the presence of nonexact synchronicity, pointers and
weak typing makes such analysis quite difficult.

Third, not all group splitting operations require the full generality of thefork con-
struct. Splitting into equally (or weighted) sized subgroups, as provided, for instance, in
PCP [BGW92] andNestStep, can be implemented with only one barrier and without the
fetch add call, as the new subgroup sizes and ranks can be computed directly from locally
available information. The extension ofForkLight by corresponding customized variants of
thefork statement toForkLight is straightforward.

5.3.3 Accessing Local Shared Variables

ForForkLight, we slightly modify the method used in theFork compiler for accessing group-
local shared variables: The necessary pointer chasing operations to access a shared group
frame in the statically visible part of the group hierarchy tree are now performed as local
memory accesses, as these pointers are stored in the private group frames. Hence, there is
only one, expensive shared memory access involved.

5.3.4 Optimization of Barriers

Implicit barriers are generated by the compiler before shared data is allocated, for instance
when entering acsync function with shared local variables. This guarantees that space for
them on the shared stack can be safely reused. In addition, the programmer may add explicit
barrier statements where considered necessary.

In order to incur minimum overhead due to synchronization, the total number ofbar-
rier s generated must be minimized. Minimization of group-wide barriers in the same group
activity region can be done using the framework discussed in Section 5.2.2. Moreover, if two
fork statements are immediately nested (i.e. there is no branch of control flow between their
headers) such that there is no shared memory access between their exit points

fork(...) {
... /*no branch of control flow*/
fork(...) {

...

9Note that the value of the group index must be stacked if it changes for a subgroup.

268 Chapter 5. Implementation of Parallel Programming Languages

}
... /*no shared memory access*/

}

then the barrier at the end of the innerfork can be eliminated, since the barrier for the parent
group is already sufficient to avoid reuse of the shared group frames.

5.3.5 Virtual Processing

Up to now we required the number of processors (or threads)p executing the program to be a
runtime constant limited to the hardware resources, that is, each of theP hardware processors
executes exactly one process. Now we discuss what has to be done ifp > P threads should be
generated. In this case, each of thep physical processors could simulatek = dp=P e threads,
in a round-robbin fashion.

We have seen in Section 5.2.1 that a virtual processor emulation in software is impossible
to realize for thefully synchronous languageFork without incurring prohibitive overhead
in time and space. But the relaxed synchronicity ofForkLight permits a straightforward
implementation.

Context switching is often supported by the native language programming environment
and/or the processor hardware. The remaining question is where to insert context switches in
the generated C program.

If no detailed program dependence analysis is made, it is conservatively safe if a context
switch is inserted
� before each read access to shared memory (i.e.,SMread andfetch add).
� after each write access to shared memory (i.e.,SMwrite , atomic add andfetch-

add)
because each emulated thread must have the possibility to see (and react to) the modifica-
tion of a memory location by another thread. Context switching before read accesses can be
combined with prefetching to hide the delay of a remote read access.

This implies that for a barrier statement at least three context switches would be executed.
An optimization is also possible here, similar to the optimizations of barriers discussed in the
previous subsection. For instance, if there occurs no access to shared memory between two
subsequent context switches, one of these switches can be eliminated. This means for the
barrier implementation that the context switch to be inserted immediately after theatomic-
incr can be omitted.

More optimizations are possible if cross-processor data dependencies are computed. Con-
text switches between subsequent read accesses to the same shared memory location are not
necessary if no write access to that location by another processor may occur in between, and
subsequent accesses that are guaranteed to access different shared memory locations need no
context switch in between.

5.3.6 Translation to OpenMP

OpenMP [Ope97] is a shared memory parallel application programming interface for For-
tran77 and C/C++, consisting of a set of compiler directives and several run time library

5.3. CompilingForkLight for an Asynchronous PRAM 269

functions. The C/C++ API had just been released after the prototype implementation of the
ForkLight compiler was finished (end of 1998), although no implementation of the C/C++
API was available even at that time (only implementations of the Fortran77 API).

A transcription of the existingForkLight back-end to OpenMP is straightforward:begin-
parallelsection() andendparallelsection() correspond to aomp paral-
lel directive at the top level of the program. The shared stack and heap are simulated by
two large arrays declaredshared volatile at this directive,SMread and SMwrite
become accesses of these arrays. Explicitflush directives afterSMwrite s are not neces-
sary forvolatile shared variables.omp barrier and other synchronization primitives
of OpenMP cannot be used forForkLight because they are not applicable to nested SPMD
computations; thus we will use our own implementation for the synchronization routines.
OpenMP also offers support for hardware-suppliedatomic inc andatomic dec instruc-
tions by theatomic directive which is applicable to increment and decrement operators, but
neverthelessfetch add has to be expressed using the sequentializingcritical directive.
We propose the following simple optimization to increase scalability:
Hashing of critical section addressesThe omp critical directive optionally takes a
compile-time constant name (string) as a parameter.critical sections with different names
may be executed concurrently, while entry to allcritical sections with the same name is
guarded by the same mutual exclusion lock. For our software implementation of a specific
atomic memory operation (e.g.,fetch add) we generatec copies, wherec � 1 is a power
of 2. Each copyt, 0 � t < c, is guarded by acritical directive parameterized by the
binary representation oft. Furthermore we selectl = log c bit positionsi1; :::; il and define
a hash functionh for addressesx by h(x) = xi1xi2:::xil , wherexj denotes thejth bit of ad-
dressx. Consequently,fetch add accesses to addressesx1 andx2 are not sequentialized if
h(x1) 6= h(x2). The choice ofc and ofi1,...,il is a performance tuning operator.

5.3.7 Performance Results

We have implemented the compiler for two parallel platforms that have been supported by
P4: multiprocessor Solaris workstations and theSB-PRAM. As we shall see, these two
completely different types of architecture represent two quite extremal points in the spectrum
of shared memory architectures regarding execution of P4 /ForkLight programs.

On a loaded four-processor SUN workstation running Solaris 2.5.1, where atomic memory
access is sequentialized, we observed good speedup for well-parallelizable problems like pi
calculation or matrix multiplication but only modest or no speedup for problems that require
frequent synchronization:

Pi-calculation (stochastic method,N = 5000000):

#processors 1 2 3 4
time [s] 22.61 14.55 11.37 7.86

matrix–matrix multiplication , 200� 200 integers:

#processors 1 2 3 4
time [s] 41.08 24.16 19.22 14.49

270 Chapter 5. Implementation of Parallel Programming Languages

parallel mergesort for 48000 integersusing a handwritten routine for sequential sorting:

#processors 1 2 4
time [ms] 4390 3581 2325

parallel quicksort for 120000 integersusing the host’s optimizedqsort() routine for
sequential sorting:

#processorss 1 2 4
time [ms] 4447 4656 4417

parallel quicksort for 120000 integersusing a handwritten quicksort routine for sequential
sorting:

#processorss 1 2 4
time [ms] 14498 9834 6350

On theSB-PRAM we obtained an important improvement by exploiting its native fetch-
add (mpadd) and atomic-add (syncadd) operators which do not lead to sequentialization, in
comparison to standard P4 which does not efficiently support atomic fetch-add or atomic-add.

For the 128 PE prototype10 of theSB-PRAM (1998) at Saarbrücken running theSB-PRAM
operating system PRAMOS, we obtained the following performance results:

parallel mergesort on 1000 integersusing the optimized sequentialqsort() function:

#processors 1 2 4 8 16 32 64
time [ms] 573 373 232 142 88 57 39

parallel mergesort on 10000 integersusing a hand-written sequential quicksort routine:

#processors 1 2 4 8 16 32 64
time [ms] 2892 4693 3865 1571 896 509 290

parallel quicksort on 1000 integersusing a handwritten sequential quicksort routine:

#processors 1 2 4 8 16 32 64
time [ms] 1519 807 454 259 172 145 130

These figures allow the following interpretations:

� Efficient support for nonsequentializing atomicfetch add andatomic add , as in
theSB-PRAM or Tera MTA, is essential when runningForkLight programs with large
numbers of processors. (ForkLight) executables relying only on pure P4 suffer from
serialization and locking/unlocking overhead and are thus not scalable to large numbers
of processors.

� On a nondedicated, loaded multiuser / multitasking machine like our Solaris multipro-
cessor workstation, parallel speedup suffers from poor load balancing due to stochastic

10Due to some operating system restrictions, only up to 124 PE’s can be used for the application program, the
other ones (one PE per processor board) are reserved as I/O servers by PRAMOS.

5.4. CompilingNestStep to a Distributed Memory System 271

delaying effects: the processors are unsymmetrically delayed by other users’ processes,
and at barriers these delays accumulate.

� Even when running several P4 processes on a single processor, performance could be
much better forp > 1 if the ForkLight run time system had complete control over
context switching for its own processors. Otherwise, much time is lost spinning on
barriers to fill the time slice assigned by an OS scheduler that is unaware of the parallel
application. This is an obvious weakness of P4.

� Explicit load balancing in an SPMD application may be problematic in particular for
small machine sizes (quicksort), or when the hardware scheduler does not follow the
intentions of the user, for instance when the scheduler maps several P4 processes to a
processor where only one process was intended for.

� Where these requirements are met, our prototype implementation achieves acceptable
speedups and performance scales quite well even for rather small problem sizes.

5.4 Compiling NestStep to a Distributed Memory System

In this section we describe an inexpensive implementation ofNestStep on top of a worksta-
tion cluster with a uniform message passing interface like MPI or Java Sockets.NestStep
programs are translated by a pre-compiler to ordinary source programs in the basis language.
These, in turn, are compiled as usual by the basis language compiler and linked with the
NestStep runtime library.

5.4.1 Group Objects and Group Splitting

The runtime system keeps on each processor a pointerthisgroup to aGroup object that
describes the current group of that processor. TheGroup object contains (see also Table 4.6)
the size of the group, its initial size at group creation, the rank of that processor within the
group, its initial rank at group creation, the group index, the depth in the group hierarchy tree,
a superstep counter, and a pointer to theGroup object for the parent group. Furthermore,
there are fields that are used internally by the runtime system when splitting the group, such
as counter arrays. There are also pointers to a list of shared variables declared by that group,
to a list of references to variables that are to be combined in the next combine phase, and
to a list of references to variables that are to be combined in the final combine phase of
that group. Finally, there is a list of hidden organizational shared variables that are used for
communicating distributed shared array sections, which we will discuss in Section 5.4.9.

Dynamic group splitting, in its full generality of data-dependent subgroup selection, re-
quires in principle a prefix computation to determine the future rank of each processor in its
desired subgroup, and the future subgroup sizes. This prefix computation may be done either
in parallel or in sequential. The necessary communication required by a parallel prefix com-
putation can, especially for small and medium group sizes, easily outweigh the advantage of
a parallel prefix computation. Instead, the implementation applies, by default, a replicatedse-
quentialprefix computation, where each processor evaluates the subgroup selector expression

272 Chapter 5. Implementation of Parallel Programming Languages

of all processors in the group. Provided that these expressions are not too complicated, the
sequential version is usually faster because it is communication-free. Another advantage of
this scheme is that each processor can, at practically no additional expense, store the absolute
IDs of all processors belonging to its group in its currentGroup object; this information is
needed anyway for point-to-point communication of distributed array sections.11 Depending
on the underlying network and the size of the group being split, the runtime system can select
the parallel or the sequential variant.

As in the sequential variant, each processor evaluates the subgroup index of every proces-
sor in the group.NestStep-C requires in the second parameter of the most generalnest-
step statement not just an integer-valued expression to determine the subgroup index, but a
pointer to a function that takes an integer parameter (the rank) and returns an integer, namely
the new subgroup index. This function should behave in the same way on each processor. For
instance, it should call the pseudorandom number generator only if that is guaranteed to pro-
duce the same sequence of pseudorandom numbers on each participating processor. Also, the
function should not access variables that may contain different values on different processors.

The static group splitting that is applied for the simplerneststep variants, such as
neststep(k) , is communication-free anyway.

5.4.2 Naming Schemes for Addressing Shared Variables

If the different processors, such as the Java Virtual Machines (JVMs) forNestStep-Java,
may use different object file formats or load classes in different order, the same (shared) class
or object variable could have different relative addresses on different processors. In that case, a
system-wide unique, symbolic reference must be passed with the update value in the combine
or access messages.

In the NestStep-Java prototype implementation we used the full name string of the
shared variable, prefixed by the declaring group’spath() string, and applied hashing to
avoid excessive string handling. This scheme also allows to distinguish between different
instances of a local shared variable in the different calls of a recursive function executed by
different groups, as in thequicksort example in Figure 4.42.

In theNestStep-C prototype implementation, unique names were coded as aNamestruc-
ture consisting of four integer components:

� theprocedure name code, which is 0 for global variables and a positive value for proce-
dures, computed by the frontend. The procedure code must be globally unique, account-

11Indeed, this is just what is done at subgroup creation by the communicator and processor group concept of
MPI. Nevertheless, for theNestStep-C runtime system, the communicator concept of MPI isnotused, in order
to avoid excessive overhead of subgroup creation. Instead, all communication is relative to the global commu-
nicatorMPI COMMWORLD; eachGroup object holds a dynamically allocated arraypids that contains the
global indices of the processors belonging to that group, indexed by their (initial) group-local rankrankinit .
As these arrays have to be computed anyway in the prefix computation discussed above, there is no need to
recompute these in the corresponding MPI group functions. In particular, the customized routines implementing
the variants of theneststep statement maintain the following invariant

thisgroup->pids[thisgroup->rankinit] == PID

wherePID holds the global processor rank (within the MPI system) of the current processor.

5.4. CompilingNestStep to a Distributed Memory System 273

ing for the case of separate compilation of multiple source files. Negative procedure
names are used for internal shared variables of the runtime system.

� the group name code. It must be dynamically unique with respect to all predecessors
and all siblings of the declaring group in the group hierarchy tree. Such a naming
scheme can be obtained by the following straightforward enumeration approach: The
group code for the root group is 0; theith child of a group receives the parent’s group
code plusi+ 1, where children are counted starting at 0.

� a relative name. This is a positive integer which is given by the frontend to distinguish
between different shared variables in the same activity region. Negative relative names
are used internally by the runtime system.

� anoffset value, which is used to address individual array elements and structure fields.
It is �1 for scalar variables and positive for array elements and structure fields. For
multidimensional arrays, the index space is flattened according to the relevant basis
language policy.

Hence, equality of variables can be checked fast and easily by three or at most four integer
comparisons.

5.4.3 Values and Array Objects

Values are internally represented byValue objects. AValue can be an integer or floating-
point value, or a pointer to anArray or DArray object.

Array objects represent replicated shared arrays. AnArray object contains the number
of elements, the elementType , and a pointer to the first array element in the processor’s local
copy.

DArray objects represent distributed arrays. ADArray object contains the number of
elements, the elementType , the distribution type, the size of the owned array section, the
global index of the first owned array element, and anArray object containing the owned
array elements.

5.4.4 Shared Variables

Shared variables can be declared and allocated for each group activity region. They are ac-
cessed viaShVar objects, which are wrapper data structures for the local copies of program
variables declared as shared. AShVar object contains theNameentry identifying the vari-
able, itsType , and itsValue . TheGroup object associated with each group holds a list of
ShVar objects containing the shared variables it has declared. Global shared variables are
stored in a separate global list.

Lists of shared variables are represented byShVars objects. There are methods for
inserting, retrieving, and deletingShVar objects from such lists. The implementation uses
unsorted, dynamically allocated arrays, because in most programs the lists of shared variables
are usually quite short.

274 Chapter 5. Implementation of Parallel Programming Languages

Searching for a shared variable starts in theShVars list of shared variables local to the
current group. If the group name code in theNamebeing searched for does not match the
current group, the search method recurses to the parent group, following the path upward in
the group hierarchy tree until the static scope of visibility of local variables is left (this scope
is computed by the frontend). Finally, theShVars list of global shared variables is searched.

5.4.5 Combine Items

A CombineItem object is a wrapper data structure that represents either a combine request
with a value contributed to the groupwide combine phase at the end of a superstep or a commit
request from another processor returning a combined value; additionally, combine items may
also contain requests for remote distributed array sections and replies to such requests. These
will be discussed in Section 5.4.9.

Combine items are designed for traveling across processor boundaries. Hence, a combine
item must not contain processor-local pointers to values but the values themselves. ACom-
bineItem object thus consists of theNameidentifying the shared variable to be combined,
theType , aValue (which may include entireArray objects), the name of the contributing
processor, and an integer characterizing the binary combine function that determines the com-
bine policy. Combine items have an optional secondNameentry that refers to the identifier of
a private variablek, which is, for technical reasons, nevertheless registered as aShVar object
as well. This entry indicates the private target variable of a prefix computation for prefix com-
bine items, and the private target array section for combine items that represent read requests
to remote distributed array sections.

Combine items participating in the combine phase for the same superstep are collected in
a combine list that is pointed to from the currentGroup object. ACombineList object has
a similar structure as aShVars variable list, that is, it supports dynamic insertion, retrieval,
and deletion ofCombineItem s, with the exception that the combine items in a combine list
are sorted byNamein lexicographic order.

5.4.6 Serialization of Combine Lists

Combine lists can be posted to other processors in the groupwide combine phase. For this pur-
pose, all relevant objects (i.e.,Value , Array , DArray , Name, CombineItem andCom-
bineList objects) have serialization routines that allow to pack them into a dynamically
allocated byte array. They also offersize routines that allow to estimate the prospective
space requirement for the byte array. In Java, such routines come automatically with each
Serializable object; in C they have been written by hand and are considerably faster.

A message is represented by aMsg object, which is just a dynamically allocated buffer
typedvoid * . It contains the abovementioned byte array, prefixed by the byte array length,
the message tag (i.e., whether it is a combine/commit message or a distributed array read/update
request or reply) and the number of serialized combine items.Msg objects can be easily
shipped across processor boundaries, for instance by using MPI routines or Java socket com-
munication, and are deserialized toCombineList s on the receiver side. For this purpose,
all serializable objects provide a deserialization routine as well.

5.4. CompilingNestStep to a Distributed Memory System 275

5.4.7 Combine Trees

For each groupg, a staticcombine treeis embedded into the given processor network. The
necessary entries are collected in aTree object that is pointed to by theGroup object for the
current group on each processor. The combine tree may be any kind of spanning tree, such as
ad-ary tree of heightblogd g:size() c+1 or a binomial tree of heightdlogd g:size() e. The
d-ary tree is better suited where processing and committing of the combine lists in the nodes
is the performance bottleneck, as the length of the longest communication path is minimized.
In contrast, the binomial tree is better suited where the (sequentialized) receiving of combine
lists (for reduction and gather communications along the tree) or forwarding (for broadcast and
scatter communications) is the time-critical part. The degreed may be chosen individually for
each group depending on the group size and expected average message length12. In both cases
the processors are linked such that the initial group-relative processor ranksg.rankinit
correspond to a preorder traversal of the tree, see Figure 5.13. Hence, a combine tree fulfills
(1) the heap property (i.e., increasing ranks along any path from the root to a leaf) and (2)
that for any inner node, all ranks in its left subtree are smaller than those in its right subtree
(if existing). These properties are exploited for parallel prefix computation in the downwards
part of the combine phase.

In theTree object, each processor stores the processor IDs of its parent node and of its
child nodes in the combine tree.

Hardware support for treelike communication structures is clearly preferable to our soft-
ware combine trees, at least for the root group. However, in the presence of runtime-data-
dependent group splitting, a static preallocation of hardware links for the subgroup combine
trees is no longer possible.

5.4.8 Combining

The combine phase at the end of astep consists of an upwards wave of messages going from
the leaves towards the root of the tree, followed by a downwards sweep. It is guaranteed that
each processor participates (if necessary, by an empty contribution) in each combine phase of
a group. Hence, groupwide barrier synchronization is covered by the messages of the combine
phase and needs not be carried out separately.

Upwards combining

Now consider a processorpi that has reached the end of astep statement and wants to
combine its modified shared variable copies, collected in a listm of combine items sorted
by the variables’ names, with array indices considered as a part of the variable name. For
brevity, we denote combine items by 4-tuples: an ordinary combine item for a variable named
x and a contributed valuev as a 4-tuple(x; v; :; :), and a corresponding prefix item with prefix
destination variableq and accumulated prefix valuek as a 4-tuple(x; v; q; k). If pi has nothing
to contribute, the listm is empty. In that case,pi is only interested in the implicit barrier
associated with this combine operation.

12In our prototype implementations we used, for simplicity, a flat tree withd = p� 1. This is acceptable for
small numbers of processorsp.

276 Chapter 5. Implementation of Parallel Programming Languages

P

P

P

P P P

P P P P

0

1

2

8

9

P

5

3 4 6 7 10 P11

P12

P0

P1

P2

P3

P4

P

P

P

P7

8

P9

P10

P11

P12

1 2 3 4

4 3 4

3 4 4 4

4

1 2

2 3 3 4

3 4 4 5 4 5

4

32

5

6

FIGURE 5.13: Two possible combine trees for a group of 13 processors: (left hand side:) a
d-ary tree with maximum degreed = 2, (right hand side:) a binomial tree. The numbers an-
notated with the edges indicate the broadcast time distance from the root (assuming sufficient
bandwidth), where the time to compose and forward a message to a node is counted as one
time unit.

If pi is a leaf in the combine tree, it just sendsm as acombinerequest message to its
parent. Otherwise,pi waits for thecombinerequestsm0,...,mnc�1 from its nc children. A
shared variablex may thus occur in a combine item(x; v; :; :) contributed bypi itself and/or
in combine items(x; vi; :; :) in some of the messagesmi, i = 0; :::; nc � 1. If the combine
method declared forx is sh<?> (arbitrary), it is sufficient to pick one of these combine
items and append it to the resulting message�m. Otherwise,pi accumulatively applies the
specified combine functionfx (fx 2 f+; �;&; jg or user-defined) to all these contributed
values. The accumulated value�v is then added as a combine item(x; �v; :; :) to the resulting
message�m. Note that this list processing corresponds to a kind of merge operation if the lists
m,m0,...,mnc�1 are sorted. The resulting listmi is then sorted as well. If the lists are long, this
merging could, in the sorted case, also be pipelined by splitting the lists into several packets.
Once all variables occuring inm, m0,...,mnc�1 have been processed, the resulting message�m
is sent as acombinerequest to the tree parent ofpi, if pi is not the root of the tree. The root
node adds its contributions for modifiedsh<0> variables. This finishes the upwards combine
phase.

Downwards combining

After this first phase, the main result of combining, namely the future valuesvx of the com-
bined shared variablesx, is available as list�m at the root processorp0 of the tree.p0 creates
commitmessages consisting of commit items from�m and sends them downwards the tree to
its children. All other processorspi wait for a commitmessageM from their parent. The
commit items contain the shared variable’s name, its new value, and an accumulated prefix
value for prefix commit items. The local copies of shared variables are updated as requested
byM . For prefix commit items, the corresponding private variablesq are updated, and where

5.4. CompilingNestStep to a Distributed Memory System 277

necessary, modified prefix commit items are forwarded to the children. Finally, the commit
items are forwarded to the children (if there are any). Note that, if no prefix computation is
involved, the downwards combining phase corresponds just to a groupwide broadcast of�m.

The pseudocode of the downwards combine phase is given in Figure 5.14.

Detection of group termination

Termination of a group is detected by keeping track of the group size. Each combine list
has a flagdecrSizeFlagthat can be used to signal the other processors that a processor has
terminated its work for the current group (see Figure 5.15). By a prefix-sum combining of
all decrSizeFlagcontributions13, the current rank and size fields are updated in each combine
phase. In this way, the group remains in a consistent state as long as some of its processors
may decide to continue and perform further supersteps. The leaving processors must stay with
the group asshadowmembers, in order to serve requests to owned distributed shared array
elements and to forward messages in the combine tree14. The group has completely finished
its work as soon as its size field becomes zero.

Inter-subgroup combining for nested supersteps

Consider a groupg with d � 2 subgroupsg0; :::; gd�1 executing aneststep statement. As
illustrated in Figure 4.38, aninter-subgroup combining phasetakes place immediately before
the subgroupsgi are deleted and the parent groupg is reactivated.

Each subgroupgi, i = 0; :::; d � 1, has committed groupwide some changes to shared
variables. For shared variables declared globally togi (i.e. declared byg or one of its ancestor
groups in the group hierarchy tree) the update requests are collected in a listLi and must now
be combined with the changes potentially requested by other subgroupsgj, j 6= i. The listLi

of pending global update requests is maintained by the root processor of the group hierarchy
tree for each group; it is initialized to the empty list when the group is created.

As soon asgi has finished its work, the root noderi in the combine tree ofgi sends its
list Li of collected global update requests as afinalCombinerequest message to the combine
tree root noder of g. If Li is empty,ri sends an emptyfinalCombinemessage to indicate
termination ofgi.

Oncer has received the update requests from allri, i = 0; :::; d � 1, it computes theg-
wide combined value for each variable to be updated, using its respectivecombinefunction.
These values are then broadcast downwards to theri as afinalCommitmessage. Eachri
commits these values for its subgroupgi by propagating thefinalCommitmessage downwards
its subgroup combine tree. Note that thefinalCommitmessage may be empty if there is
nothing to commit. Each processor ofgi receiving thefinalCommitmessage from its parent in
the combine tree forwards it to its children (if there are any), locally performs the requested
updates and then returns to execution of the parent groupg.

Also, r compiles a listL0 of update requests in[d�1
i=0Li for the variables that are declared

global tog, and appends it to its own listL of global updates.
13This is easily integrated into the combining mechanism discussed above by introducing an artificialShVar

wrapper object for the size field.
14The combine tree is, up to now, not dynamically adjusted when processors leave the group.

278 Chapter 5. Implementation of Parallel Programming Languages

protected voidcommit()
f
int[] tchild myGroup.tree.child;
int nc tchild.length ; // number of children in combine tree
m is the list that I contributed to the upwards combine phase;

if (rankinit==0) then // I am the root
M �m, the list that I compiled at the end of the upwards combine phase,
with combine items converted to commit items, plus updates ofsh<0> variables

else receivecommit messageM from tparent ;

if (nc > 0) then // I am an inner node:
f letmi be thecombinerequest message

that I got from my childi, 0 � i < nc
initialize empty downwards messagesM0; :::;Mnc�1;

for all commit items(x; v; q; p) in M
f if (x; v; :; :) is not a prefix commit itemthen f

append(x; v; :; :) to allMi, i = 0; :::; nc� 1;
locally updatex v; g

else // (x; v; q; p) is a prefix commit item
f x is declaredsh< fx:q> with a private variableq

and combine methodfx 2 f+; �;&; jg or user-defined;
p is the accumulated prefix sum for my subtree.
if 9 (x; v0) 2 m then f

locally updateq leftarrow p; p fx(p; v
0); g

for (int i = 0; i < nc; i++)
if 9 (x; v0i) 2 mi then f

add a prefix commit item(x, v,q, p) toMi; p fx(p; v
0
i); g

else add a commit item(x, v,q, 0) toMi;
g g
for (int i = 0; i < nc; i++)

sendcommitmessage containingMi to tchild[i] ;
g
else // I am a leaf in the combine tree:

for all commit items(x; v; q; p) in M f
locally updatex v;
if (x; v; q; p) is a prefix itemthen locally updateq p; g

update thesize field if requested inM ;

if (rankinit==0) then // I am the root:
for all updatesu in �m to shared variables declared global to this group:

appendu to listL, to be used later in the final combine phase of this group
g
end commit

FIGURE 5.14: Thecommitmethod implements the downwards part of the combine phase for
replicated shared variables.

5.4. CompilingNestStep to a Distributed Memory System 279

protected void leave()
f
Groupmg = Group.myGroup;
mg.decrSizeFlag= true; // signal the others that I will leave the group
while (mg.size> 0) // more steps: run in shadow mode, participate in combining only
f mg.combine(); // upwards
mg.commit(); // downwards
serve requests for owned distributed array elements;
mg.decrSizeFlag= false;
g
Group.finalCombine();
Group.finalCommit();
Group.myGroup= mg.parent;
g

FIGURE 5.15: Group.leave() is executed when a processor has finished its work for this group.

Note that with this scheme, concurrent prefix computations performed in different sub-
groups do not work when addressing the same shared variable declared global to these sub-
groups, since the subgroupwide prefix results have already gone to some private variables or
expressions and thus cannot be updated a posteriori. Hence, the compiler must warn if the
programmer applies prefix combine operations to group-global shared variables.

5.4.9 Bulk Mirroring and Updating of Distributed Arrays

According to the language definition in Section 4.5.6, an update to a remote array element
becomes effective at the end of the current superstep, while reading a remote array element
yields the value it had at the beginning of the superstep. This implies communication of values
of array elements at the boundaries of supersteps. For efficiency reasons, updates and reads
to entire sections of remote array elements should be communicated together in a bulk way;
the routinemirror for explicit registering of a bulk array read andupdate for explicit
registering of a bulk array update are available for this purpose.

We propose a new method that overlaps the requests for reading and updating remote
sections of distributed arrays with the standard combining mechanism for the replicated shared
variables (as described above) and the synchronization at the end of a superstep. We show
how the combining mechanism can be utilized to avoid the need of a thread-based system for
one-sided communication that would otherwise be required for serving these requests.

The basic idea is to compute at runtime, by standard combining, the number of requests
that each processor will receive. Then, each processor performs that many blocking receive
operations as necessary to receive and serve the requests. This partially decouples the commu-
nication of distributed array sections and of the standard combine communication, such that
requests for distributed array sections can be already silently sent during the computation part
of the superstep. The runtime system distinguishes between these two types of messages by
inspecting the message tag in theMPI Recv calls, such that always the right type of message

280 Chapter 5. Implementation of Parallel Programming Languages

can be received.
Each processor keeps in itsGroup object a hidden, replicated shared integer array, called

N DAmsgs[] , whose (dynamically allocated) length is equal to the group sizep. Entry
N DAmsgs[i] is intended to hold the number of messages with requests for reading or updat-
ing distributed array sections owned by processori, 0 � i < p, that are to be sent at the end of
the current superstep. Initially, all entries in this array are set to zero. Whenever a processor
j sends, during a superstep computation, a message taggedDA REQwith a distributed array
request to a remote processori, it increments the corresponding counterN DAmsgs[i] in its
local copy. For each processorj itself, its entryN DAmsgs[j] in its local copy of that array
remains always zero. If any entry has been incremented in a superstep, the arrayN DAmsgs
is appended to the list of combine items for the next combine phase, with combine method
Combine IADD (integer addition). Hence, after the combine phase, arrayN DAmsgsholds
the global numbers of messages sent to each processor, as desired.

Now, each processori executesN DAmsgs[i] times MPI Recv() with message tag
DA REQ. In the case of a read request, the processor sends the requested value back to the
sender with message tagDA REP. In the case of a write request, it performs the desired up-
date computation with its owned array section, following the precedence rules implied by the
combine method15. Finally, each processor executes that many timesMPI Recv as it had pre-
viously issued read requests, and stores the received array elements in the destination variable
indicated in the combine item holding their values. Although this variable is, in principle, a
private array, it is nevertheless registered as aShVar object, such that it can be retrieved at
this point. Finally, the counter arrayN DAmsgs is zeroed again to be ready for the following
superstep.

5.4.10 Optimizations

For step s, combining and detection of group termination can be skipped if the executing
group consists of only one processor. Correspondingly, at subgroup-creatingneststep
statements also the construction and destruction of thethisgroup objects for the subgroups
is not necessary for one-processor groups. Only the subgroup ID may change; in that case the
current group ID is temporarily saved on a hidden stack in thethisgroup object.

The tree-based combining mechanism is a general strategy that supports programmable,
deterministic concurrent write conflict resolution, programmable concurrent reductions, and
programmable parallel prefix computations on shared variables. Nevertheless, for supersteps
where the combining phase requires no prefix computations, the downwards combining phase
may be replaced by a simple native broadcast operation, which also includes the desired bar-
rier synchronization effect. Furthermore, where it is statically known for a superstep that
combining is only needed for a single shared variable which is written by just one processor,
the combining phase could be replaced by a (blocking) broadcast from that processor to the
group, thus bypassing the combine tree structure. Generally, static analysis of cross-processor
dependences may help to replace some supersteps with point-to-point communication, which

15Note that prefix combining for elements of distributed arrays is not supported. Hence, potential combining
for concurrent write updates to the same element of a distributed array can be done just in the order of arriving
messages.

5.4. CompilingNestStep to a Distributed Memory System 281

includes replacing groupwide barrier synchronization with bilateral synchronization, without
compromising the superstep consistency from the programmer’s point of view.

5.4.11 Prototype Implementation

Implementation of NestStep-Java in Java

Our prototype implementation for a subset ofNestStep(without volatile and distributed ar-
rays) is based on Java as basis language and implementation language. A precompiler trans-
latesNestStep-Java source code to ordinary Java source code. As back end we use the SUN
Java compilerjavac to produce Java bytecode that is executed by a set of JVM’s running
on the participating processors. TheNestStep-Java run time system encapsulates message
passing, updating of shared variables, and group management. The necessary communication
between processors (i.e., JVMs residing on different physical processors) is based on Java
object serialization and the Java API for TCP/IP socket communication16.

A NestStep program is started by a shell script invoking JVM instances on the machines
involved. Each processor gets a copy of ahost filecontaining the parallel system configuration.
From this host file each processor creates a table containing the IP addresses and port numbers
of all processors.

The NestStep-Java runtime system is operational for replicated shared variables, ob-
jects, and arrays17, and the driver is finished. Hence, simple hand-translatedNestStep-Java
programs can be executed.

For theNestStep-Java version of theparprefix example (cf. Section 4.5.6) we obtain
the following measurements for ourNestStep-Java prototype implementation.

parprefix seq p = 2 p = 4 p = 8 p = 16

N = 1000000 5.4 s 7.8 s 5.6 s 3.7 s 2.2 s

These times are maximized across the processors involved (JVMs running on loaded SUN
SPARC 5/10 machines and Linux PCs), averaged over several runs. We used SUN’sjavac
compiler andjava interpreter from JDK 1.1.5 (Solaris 2.4).

The implementation is optimized to avoid the overhead of parallelism if only one processor
is involved. Note that the efficiency of the parallel prefix algorithm is bounded by 50 % since
it must perform two sweeps over the array while one sweep is sufficient for the sequential
algorithm.

Implementation of NestStep-C in C

We used the freeMPICHimplementation [ANL99] of MPI as the communication layer of the
NestStep-C runtime system.

16As an alternative, one could use an MPI binding for Java, as described e.g. for HPJava [CZF+98].
17Distributed arrays are only available in the C version.

282 Chapter 5. Implementation of Parallel Programming Languages

NestStep-C BSP parameters In our current prototype implementation ofNestStep-C,
we found that the time for an empty superstep (thel parameter of the BSP model) is approxi-
mately

l(p) = 1:3 + 0:1 � p milliseconds

where the factorp is due to the fact that the network is a bus network (Ethernet), which sequen-
tializes all point-to-point communications, even where these may, in principle, be performed
concurrently.

In contrast, on an architecture based on a hypercube network, for instance, a combine tree
could—at least for the root group—be embedded immediately into the host network, such
that communication within different subtrees can proceed concurrently and each tree edge
coincides one-to-one with a physical hypercube link [BT89, Sect. 1.3]. In that case, the factor
p could be replaced by a term linear in the maximum node degree,log p, times the tree depth,
which is�(log p). The node degree factor disappears if transmission along all thelog p links
of a node can proceed concurrently.

The inverse-bandwidth parameterg is also a function ofp. We found that for large array
updates,g is dominated by the network speed:

g(p) = 1:5 + 0:8 � p microseconds per array element

For updates of only a few elements of an array,g is at least the inverse bandwidth for scalar
updates:

g(p) = 80 + 8 � p microseconds per scalar variable updated

which is dominated by the software overhead of processing the combine items. The above
discussion of the factorp holds here accordingly.

As the valueh for theh-relation, we use the number of (replicated) shared variables up-
dated (for scalar variables) or the number of replicated shared array elements updated (for ar-
ray section updates), respectively. Then we obtain the following time formula for aNestStep-
C superstep:

t(p) = max
0�i<p

w(i; p) + max
0�i<p

h(i; p) � g(p) + l(p)

wherew(i; p) denotes the local computation work performed by the processor rankedi in a
group ofp processors.

Measurements for example programs For theNestStep-C version of theparprefix
example as shown in Section 4.5.6 we obtain the following measurements for ourNestStep-
C prototype implementation.

parprefix seq p = 2 p = 3 p = 4 p = 5

N=1000000 0.790 s 0.397 s 0.268 s 0.205 s 0.165 s
N=10000000 7.90 s 4.00 s 2.70 s 1.98 s 1.59 s

For the integration-based PI calculation example in Figure 4.39, we obtain the following

5.5. Summary 283

figures:

picalc seq p = 2 p = 3 p = 4 p = 5 p = 6

N=1000000 0.838 s 0.466 s 0.337 s 0.277 s 0.255 s 0.230 s
N=10000000 8.354 s 4.224 s 2.844 s 2.158 s 1.758 s 1.495 s

For the randomized BSP quicksort program in Appendix C.1 the parallel speedup is less
impressive because large array sections must be shipped around in the bulk remote read and
write operations, and all this communication is sequentialized on the bus network. We obtain
the following figures:

quicksort seq p = 2 p = 3 p = 4 p = 5 p = 6

N=80000 0.641 s 0.393 s 0.428 s 0.437 s 0.391 s 0.375 s
N=120000 0.991 s 0.622 s 0.582 s 0.564 s 0.502 s 0.485 s

All measurements are wall clock times that were taken on a network of PCs running Linux,
connected by Ethernet. TheNestStep application had no exclusive use of the network.

Summary and Future Work

For the prototype implementations ofNestStep-Java andNestStep-C, we observe a similar
effect as in the implementation ofForkLight: A substantial amount of performance is lost
in programs with frequent synchronization because the runtime system working on top of
MPI or on top of JVM processes, which are scheduled by the local system scheduler on
their machines, has no control about the scheduling mechanism. Hence, delays incurred by a
processor when working on a critical path in the communication tree accumulate during the
computation. We expect that this effect will be less dramatic on homogenous multiprocessors
whereNestStep can use the processors and the network exclusively.

Further work on the present two implementations ofNestStep could unfortunately not
be done at the University of Trier due to manpower limitations. The author, who has now
too many other commitments to continue working on these implementations alone, hopes to
be able to continue this work in the future when the current shortage of master students is
overcome. In particular, further development and more experiments with theNestStep-C
implementation are deferred to future work. For instance, we plan, time permitting, to run
NestStep-C applications on real, massively parallel supercomputers. For now, the current
status of implementation is sufficient—from a research point of view—to demonstrate the
feasibility of our approach.

5.5 Summary

We have discussed the compilation aspects for synchronous, control-synchronous and super-
step-synchronous languages that support static and dynamic nesting of parallelism. We have
also considered compilation for various types of target machines.

For all three languages,Fork, ForkLight andNestStep, the group concept is implemented
by maintaining some group frame data structure that holds all relevant data for a group. This

284 Chapter 5. Implementation of Parallel Programming Languages

data structure is split into a part residing in shared memory (if there is one) and another part
that resides in the local processor memory. Only when compiling for theSB-PRAM where
shared memory access takes the same time as a private memory access, it makes sense to hold
as much information as possible in the shared memory part, in order to save overall memory
space (which is a scarce resource on theSB-PRAM). Otherwise, it is advisable to hold as
much group information locally as possible to take advantage of the faster local memory
access. ForForkLight, only the synchronization cells and shared variables must be kept in
shared memory, and forNestStep, all group information is replicated across the processors
and kept consistent at superstep boundaries.

Unfortunately, theSB-PRAM is just a research prototype and not generally accessible.
Moreover, theSB-PRAM is optimized for irregular applications and is, at least in terms of
peak performance, not competitive—even if the same chip technology would be applied—
with massively parallel supercomputers that are mainly designed to solve regular, LINPACK-
like problems fast. Also,Fork can, in general, not be compiled to efficient code for any
other parallel architecture than theSB-PRAM. Hence,Fork is, based on the present compiler
and theSB-PRAM simulator, limited in its applicability to teaching purposes and to gaining
more insights into the practical behaviour of PRAM algorithms devised by the parallel theory
community [B1].

ForkLight is some kind of compromise between the high programming comfort known
from Fork and the features offered by modern, asynchronous MIMD shared memory ma-
chines. Hence, it has much better chances to be compiled to efficient code for sequentially
consistent shared memory architectures such as the Tera MTA. Retargeting theForkLight im-
plementation to further shared memory platforms based on the recent Open-MP interface is
an issue of future work that could unfortunately not be done at the University of Trier due to
manpower limitations.

NestStep has the largest potential for practical use, as it is compiled to workstation and
PC clusters that are now ubiquitous, and that may even be heterogeneous if the underlying
message passing interface supports heterogeneity. Future work should investigate the potential
of the new implementation of remote access to distributed shared array sections inNestStep-
C. Further research and implementation work onNestStep may consider static and dynamic
load balancing and other static optimizations such as automatic prefetching or fuzzy barriers.

When considering the sequence of implementations as language–platform pairsFork–
SB-PRAM, ForkLight–P4, andNestStep–MPI, we observe that

� the implementation platform becomes more and more realistic and available,

� the features of the source language are more and more relaxed to allow compact and
efficient implementations for the corresponding implementation platform,

� the software part of the implementation, in particular the runtime system, becomes more
and more dominant,

� virtualization becomes simpler,

� the relative cost of group management and of groupwide barriers increases, and

5.5. Summary 285

� thus the support of customized variants of the group-splitting operations gains impor-
tance.

Acknowledgements

The material presented in Sections 5.1 and 5.2 largely follows the presentation in Chapter 6
of Practical PRAM Programming[B1].

The main strategy for the implementation of the group concept ofFork for theSB-PRAM,
such as the frame concept and the translation scheme for theif statement and the loops
in synchronous regions, has been described in a diploma thesis by Joachim Lillig [Lil93]
supervised by Helmut Seidl and Reinhard Wilhelm at the University of Saarbrücken. This
work, which was based on the oldFORKstandard of 1989, described also the principles of
simulating larger PRAMs on a smaller one, including the self-restoring barrier with three cells
that we used with the asynchronous PRAM, and the problem of asynchronously accessed
shared variables inFork. The ideas for the implementation of the simple lock, the fair lock
and the reader–writer lock have been taken from the diploma thesis by Jochen Röhrig [Röh96]
at the University of Saarbrücken, who in turn was inspired by the work of Wilson [Wil88] for
the NYU Ultracomputer.

The author thanks the current and former members of theSB-PRAM group around Wolf-
gang Paul, in particular, Michael Bosch, Stefan Franziskus, Jochen Röhrig, and Dieter Schee-
rer, for their help with system-specific questions and for the support of theSB-PRAM system
software.

The author thanks also all the users of theFork compiler for many bug reports and com-
ments that helped to improve the compiler.

286 Chapter 5. Implementation of Parallel Programming Languages

Appendix A

Supplementary Material to Chapter 2

A.1 Proof of the optimality of labelfs2

In this appendix we show that a calllabelfs2(v) (see Section 2.3.5) generates an optimal
contiguous schedule of a tree with import and export nodes rooted atv, which useslabel(v)
registers. We prove this by two lemmata:

Lemma A.1 LetT = (V;E) be a tree andv 2 V be an arbitrary inner node ofT . labelfs2
generates a schedule for cone(v) that uses label(v) registers.

Proof: By induction. Letv be an inner node with two childrenv1 andv2. S1 is the subtree with rootv1,
S2 is the subtree with rootv2. We suppose that the algorithm generates schedules forconeDAG(T; v1)
andconeDAG(T; v2) that use label(v1) and label(v2) registers. To evaluatev, we have two possibilities
if we use contiguous schedules: If we evaluatev1 beforev2, we use

m1 = max(label(v1); label(v2) + occ(v1) + 1� freed(v1))

registers. We needocc(v1) registers to hold the export nodes ofT1 and one register to holdv1. On the
other hand, we freefreed(v1) registers when evaluatingS1. If we evaluatev2 beforev1, we use

m2 = max(label(v2); label(v1) + occ(v2) + 1� freed(v2))

registers. The algorithm evaluatesv1 beforev2 iff

label(v1) + occ(v2)� freed(v2) � label(v2) + occ(v1)� freed(v1)) (A.1)

If condition (A.1) is true, thenm1 � m2 and the algorithm uses the best schedule. If condition
(A.1) is not true, then the algorithm evaluatesv2 beforev1. In this case, we havem2 � m1 and the
algorithm again uses the best schedule.2

Lemma A.2 LetT = (V;E) be a tree andv 2 V be an arbitrary inner node ofT . label(v) is
a lower bound for the minimal number of registers needed by a contiguous schedule forv.

287

288 Appendix A. Supplementary Material to Chapter 2

Proof: LetS be the smallest subtree ofT for which a violation of the lemma occurs. Letv be the root
of S with childrenv1 andv2. LetS1 denote the subtree ofS rooted atv1, andS2 the subtree rooted at
v2.

We consider the case that

label(v1) + occ(v2)� freed(v2) � label(v2) + occ(v1)� freed(v1) (A.2)

(the case< is symmetric). Then

label(v) = max(label(v1); label(v2) + occ(v1) + 1� freed(v1))

The lemma holds forS1 andS2, otherwise we have found a smaller violation tree. There are two
possibilities to evaluateS: EvaluatingS1 beforeS2, uses at leastlabel(v1) registers forS1. occ(v1)
registers are required to hold the export nodes ofS1 and one register is needed to holdv1. freed(v1)
registers are freed. We need at leastlabel(v2) registers forS2. So we need at leastlabel(v) registers
for S.

EvaluatingS2 beforeS1, uses at leastlabel(v2) registers forS2. occ(v2) registers are required to
hold the export nodes ofS2 and one register is needed to holdv2. freed(v2) registers are free. Forv1
we need at leastlabel(v1) registers, thus we need at leastm = max(label(v2); v1) + occ(v2) + 1 �
freed(v2)) registers forS. Because of equation (A.2) we have

label(v) = max(label(v1); label(v2) + occ(v1) + 1� freed(v1)) � m

and hence we need at leastlabel(v) registers to evaluateS. 2

Until now, we have assumed that two different import nodes of a treeTi have different
corresponding export nodes. We now explain what has to be done if this is not true. Let
A = fw1; : : : ; wng � Vi be a set of import nodes ofTi with the same corresponding export
node that is stored in a registerr. As described above we have set

impp(w1) = : : : = impp(wn) = 1 andimpnp(w1) = : : : = impnp(wn) = 0

But r can be freed, after the last node ofA is evaluated. By choosing an appropriate node
w 2 A to be evaluated last,Ti eventually can be evaluated with one register less than the label
of the root specifies. We determinew by a top–down traversal ofTi. Let v be an inner node of
Ti with childrenv1 andv2. LetSj be the subtree with rootvj , j = 1; 2. If only one ofS1 and
S2 contains nodes of A, we descend to the root of this tree. If bothS1 andS2 contain nodes
of A, we examine, whether we can decrease the label value ofv by choosingS1 or S2. Let be
a = label(v1)+ occ(v2)� freed(v2) andb = label(v2)+ occ(v1)� freed(v1) If a > b, this can
only be achieved by searchingw in S1. If a < b, this can only be achieved by searchingw in
S2. If a = b, we cannot decrease the register need and can search inS1 or S2.

We repeat this process until we reach a leafw 2 A. We setimpp(w) = 0; impnp(w) = 1.

Appendix B

Supplementary Material to Chapter 3

B.1 An Example for SPARAMAT Analysis

As an example, consider the following Fortran implementation of a Hopfield neural network
simulation based on a sparse matrix describing the synapse interconnections of the neurons.

program main
integer wfirst(21), wcol(20), i, j, k, n, nz
real wdata(100), xst(20), stimul(20), val(20),
real alpha, beta, tinv, mexp, pexp, accum, tanhval

c read test matrix in csr format:
wfirst(1)=1
read(*,*) n
do i = 1, n

read(*,*) k
wfirst(i+1) = wfirst(i)+k
do j = wfirst(i),wfirst(i+1)-1

read(*,*) wdata(j)
read(*,*) wcol(j)

enddo
enddo
nz = wfirst(n+1)-1

c simulate a hopfield network (learning online)
c with interconnection matrix (wdata,wcol,wfirst):

niter=100
alpha=0.2
beta=0.7
tinv=1.0
do i = 1, n

stimul(i) = -1.0
xst(i) = 0.0

enddo
do k = 1, niter

do i = 1, n
accum = 0.0
do j = wfirst(i), wfirst(i+1)-1

accum = accum + wdata(j)*xst(wcol(j))
enddo
val(i) = beta*accum + alpha*stimul(i)

enddo
do i = 1, n

pexp = exp(val(i))
mexp = exp(-val(i))
tanhval = (pexp-mexp) / (pexp+mexp)
xst(i) = tanhval

enddo
do i = 1, n

do j = wfirst(i), wfirst(i+1)-1
wdata(j)=wdata(j)+tinv*(xst(i)*xst(wcol(j)))

enddo
enddo
tinv = tinv * 0.9

enddo
do i = 1, n

289

290 Appendix B. Supplementary Material to Chapter 3

write (*,*) xst(i)
enddo
end

After applying concept matching and optimizing the format property conditions, the unparsed
program looks as follows:

program main

integer wfirst(21), wcol(20), k, n, nz
real wdata(100), xst(20), stimul(20), val(20), tinv
real mexp(20), pexp(20), accum(20)

MREAD(CSR(V(wdata,1,nz,1),IV(wfirst,1,n+1,1),
IV(col,1,n,1),n,nz, stdin, _simplehb))

<assume monotonicity of wfirst(1:n+1)>
<assume injectivity of wcol(wfirst(i):wfirst(i+1)) forall i in 1:n>

SINIT(tinv,1.0)
VINIT(V(stimul,1,n,1), -1.0)
VINIT(V(xst,1,n,1), 0.0)
do k = 1, 100

VMATVECMV(V(accum,1,n,1),
CSR(V(wdata,1,nz,1),IV(wfirst,1,n+1,1), IV(col,1,n,1),n,nz),
V(xst,1,n,1), VCON(0.0,n)

VMAPVV(V(val,1,n,1), ADD, VMAPVS(MUL, V(accum,1,n,1), 0.7),
VMAPVS(MUL, V(stimul,1,n,1), 0.2))

VMAPV(V(pexp,1,n,1), EXP, V(val,1,n,1))
VMAPV(V(mexp,1,n,1), EXP, VMAPV(NEG, V(val,1,n,1)))
VMAPVV(V(xst,1,n,1), DIV,

VMAPVV(ADD, V(pexp,1,n,1), VMAPV(NEG, V(mexp,1,n,1))),
VMAPVV(ADD, V(pexp,1,n,1), V(mexp,1,n,1)))

MOUTERVV(CSR(V(wdata,1,nz,1),IV(wfirst,1,n+1,1), IV(col,1,n,1),n,nz),
VMAPVS(MUL, V(xst,1,n,1), tinv), V(xst,1,n,1))

SCAL(tinv, 0.9)
enddo
VWRITE(V(xst,1,n,1), stdout)
end

B.2 Example for theSTRIP Concept

While scanning FORTRAN source codes for concepts and templates of sparse matrix compu-
tations, we discovered a new type of memory access concept that is encountered in practically
all occurrences of CSR sparse matrix computations. We refer to this memory access concept
as theSTRIP concept (see also Section 3.3.1).

We illustrate theSTRIP concept at a typical occurrence in a particular SPARSKIT imple-
mentation of matrix–matrix multiplication for the CSR format. Instead of building the values
of the elements in the output matrix consecutively, this implementation creates partial sums
in a temporary vector corresponding to elements for a particular row in the output matrix.
For each nonzero elementAi;k in the current row ofA the column indexk is used to select
the corresponding row inB, and that rowk is multiplied withAi;k. Each product is added
to a zero-initialized temporary array that is indexed by the column indexk. Then, the same
process is repeated with the next nonzero value in the current rowi of A and the correspond-
ing row k0 of B. Once the iteration over rowi of A is finished, the values in the temporary
array are copied into the output matrixC, and the temporary array entries are restored to
zero. This process continues until all rows ofA are processed. Figure B.1 shows the situation
where the values of the first row of the input matrixA are selected, together with the selected
corresponding column indices inB.

B.2. Example for theSTRIP Concept 291

C

A B

+
temporary array

FIGURE B.1: Matrix–Matrix Multiplication for CSR.

This algorithm is driven by the column indicesk for the current rowi of A. The first-in-
row array ofA yields, indexed byi, the starting position in the array of the column valuesk
of A. As, after matching the inner loops, all thesek values are considered simultaneously as a
single vector access, they select a set of entire rows (i.e., a set of vector accesses to the same
array) inB, as the elements selected inB’s first-in-row array indicate the beginning and end
positions of the selected rows inB. This multiple-indirect memory access pattern is referred to
as theSTRIP concept.STRIP earned its name by how it selects a set of contiguous regions,
i.e. strips, of an array (here,B). See Figure B.2 for theSTRIP concept instance representing
the situation shown in Figure B.3.

STRIP(B, {IVX(FirB, {IVX(ColA, {IV(FirA, {RANGE(1,2,1)})})})})

FIGURE B.2: A STRIP instance.

292 Appendix B. Supplementary Material to Chapter 3

��
��
��
��
��

��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

��
��
��
��

����
����
����
����

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

B

FirB

ColA

FirA

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

FIGURE B.3: Visualization of theSTRIP concept.

Appendix C

Supplementary Material to Chapters 4
and 5

C.1 NestStep Implementation of BSPp-way Quicksort

The following code implements a simplified version of a randomized BSP algorithm by
Gerbessiotis and Valiant [GV94] forp-way Quicksort.

We are given a distributed shared arrayA that holdsN numbers to be sorted. Thep
processors sample their data and agree onp � 1 pivots that are stored in a replicated shared
array pivs . Now processori, 1 < i < p � 1, becomes responsible for sorting all array
elements whose value is betweenpivs[i� 1] andpivs[i] ; processor0, for all elements
smaller thanpivs[0] , and processorp � 1, for all elements larger thanpivs[p � 2] ,
respectively. A bad load distribution can be avoided with high probability if oversampling
is applied, so that the pivots define subarrays of approximately equal size. The partitioned
version of arrayA is temporarily stored in the distributed target arrayB, by a remote write
operation. For this operation, the processors determine the sizes and prefix sums of global
sizes of the subarrays they will become responsible for. Then, they perform a remote read
from B to local subarraysT. These are sorted in parallel, and then the sorted sections are
copied back toB by a remote write operation.

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include "NestStep.h"

/**
* p-way randomized Combine-CRCW BSP-Quicksort implementation
* variant by Gerbessiotis/Valiant JPDC 22(1994)
* implemented in NestStep-C.
*/

int N=10; // default value

#define debmain 1 // switch off to debug only the run time system
#define MAXNDISPLAY 20 // max. size of local partition to be printed

/** findloc():

293

294 Appendix C. Supplementary Material to Chapters 4 and 5

* find largest index j in [0..n-1] with a[j] <= key < a[j+1]
* (where a[n] = +infty).
* C’s bsearch() cannot be used, as this requires a[j]==key.
*/

int findloc(void *key, void *a, int n, int size,
int (*cmp)(const void *, const void *))

{
int j;
// for the first, use a naive linear search:
for (j=0; j<n; j++)

if (cmp(key, a+j*size) <= 0) return j;
return n-1;

}

int flcmp(const void *a, const void *b) // compare two floats
{

if (*(float *)a < *(float *)b) return -1;
if (*(float *)a > *(float *)b) return 1;
return 0;

}

int main(int argc, char *argv[])
{

// shared variables:
sh float *A</>, *B</>; // block-wise distributed arrays
sh float *size, *pivs; // replicated shared arrays
// private variables such as T used as destination of remote read
// are automatically treated in a special way by the compiler:
float *T;
int *mysize, *Ssize, *prefsize;
float **myslice;
// local variables:
int i, j, ndp, nmp, myndp, pivi, psumsize, ctr;
double startwtime, endwtime;

NestStep_init(&argc, &argv); // sets NUM and PID

if (argc > 1) // N is passed as a parameter:
sscanf(argv[1], "%d", &N);

ndp = N / #;
nmp = N % #;
if (PID < nmp) myndp = ndp+1;
else myndp = ndp;
A = new_DArray(N, Type_float); // dynamic allocation of distr. A[1:N]
B = new_DArray(N, Type_float); // dynamic allocation of distr. B[1:N]
mysize = new_Array(#, Type_int); // dynamic allocation of private array
Ssize = new_Array(#, Type_int);
size = new_Array(#, Type_int);
prefsize = new_Array(#, Type_int);
pivs = new_Array(#, Type_int);

forall (i, A) // useful macro supplied by NestStep
A[i] = (double)(rand()%1000000); // create some values to be sorted

// print the unsorted distributed input array:
myndp = DArray_Length(A); // the size of my owned local partition
if (myndp < MAXNDISPLAY)

forall (i, A)

C.1. NestStep Implementation of BSPp-way Quicksort 295

fprintf(stderr,"P%d: A[i=%d] = %2.2f\n", $$, i, A);

startwtime = NestStep_time(); // here starts the algorithm

// STAGE 1: each processor randomly selects a pivot element
// and writes (EREW) it to pivs[PID].
// Pivot intervals are defined as follows:
// I(P_0) =] -\infty, pivs[0]]
// I(P_i) =] pivs[i-1], pivs[i]], 0<i<NUM-2
// I(P_NUM-1) =] pivs[NUM-2], \infty [

step { /*1*/
int pivi = DArray_index(rand()%myndp); // random index in my partition
pivs[PID] = A[pivi]; // write (now only locally visible)

} // here the writes to A in this step are combined and globally committed
// now the pivs are in pivs[0..NUM-1]

// STAGES 2, 3, 4 form a single superstep:

step { /*2*/
// STAGE 2: locally sort pivots. This computation is replicated
// (which is not work-optimal, but faster than performing the computation
// on one processor only and communicating the result to the others.)

qsort(pivs, NUM, sizeof(float), flcmp);

// STAGE 3: local p-way partitioning in my local array A->array
// I have no in-place algorithm, so I overallocate O(p*(ndp-p)) space,
// only npd elements of which will be actually filled by the partitioning.
myslice = (float **)malloc(NUM * sizeof(float *));
myslice[0] = (float *)malloc(NUM * ndp * sizeof(float));
for (i=1; i<NUM; i++) myslice[i] = myslice[0] + i*ndp;
for (i=0; i<NUM; i++) size[i] = 0;
forall (i, A) { // insert my owned elements into slices:

j = findloc(&(A[i]), pivs, NUM, sizeof(float), flcmp);
myslice[j][size[j]++] = A[i];

}
for (i=0; i<NUM; i++) mysize[i] = size[i]; // keep the local sizes for later

// Now write the partitions back to the contiguous local array partition:
ctr=0;
for (i=0; i<NUM; i++)

for (j=0; j<mysize[i]; j++)
A[ctr++] = myslice[i][j];

// STAGE 4: Globally compute the array size of global slice sizes
// and the prefixes of the individual processor contributions.
// This is just done as a side-effect of combining:

} combine (size[:]<+:prefsize[:]>); // end of superstep 2

// This array ˆˆˆˆ notation in the optional combine annotation
// is a hint for the compiler that the shared array "size"
// needs not be packed elementwise, thus creating smaller messages.
// Here, the effect is marginal, as "size" is usually small.

// After combining, size[i] holds the global size of pivot interval I(i),
// and prefsize[i] holds the accumulated length of contributions of the
// processors P0..P{PID-1} from pivot interval I(i).

296 Appendix C. Supplementary Material to Chapters 4 and 5

// now prefsize[i] holds the prefix sum of all size[i] contributions
// made by processors 0...PID-1

// STAGE 5: Write the local slices to the corresponding parts in array B.

step { /*3*/
psumsize = 0;
for (i=0; i<NUM; i++) {

// remote write to distributed array B:
B[psumsize+prefsize[i], psumsize+prefsize[i] + mysize[i]-1]

= myslice[0: mysize[i]-1];
Ssize[i] = psumsize; // prefix sum size[0]+...+size[i-1]
psumsize += size[i]; // is computed by replicated computation

}
}
// this combining includes the updates to B

// STAGE 6:
// Allocate space for all elements in my pivot interval I(PID),
// and bulk-read the myslice slices from the partitioned array A.

step { /*4*/
T = NestStep_new_Array(size[PID], Type_float); // dynamic allocation
// remote read from distributed array B:
T[0 : size[PID]-1]

= B [Ssize[PID] : Ssize[PID]+size[PID]-1];
}

// Stages 7 and 8 can be combined into a single superstep,
// because Stage 7 contains only local computation.

step { /*5*/

// STAGE 7: Now each processor sorts its array T.

qsort(T, /* this is recognized as a NestStep array by the compiler */
size[PID], sizeof(float), flcmp);

// STAGE 8: Now write T back to B.

// bulk remote write to B:
B [Ssize[PID] : Ssize[PID]+size[PID]-1]

= T [0 : size[PID] - 1]
}

endwtime = NestStep_Wtime();

// print distributed result array:
if (myndp < MAXNDISPLAY)

forall (i, B)
fprintf(stderr, "P%d: B[%d]=%2.2f\n", PID, i, B[i]);

fprintf(stderr,"P%d: wall clock time = %f\n", PID, endwtime-startwtime);
fprintf(stderr,"P%d: Number of supersteps = %d\n", PID,

thisgroup->stepcounter /*which is 5 here*/);

NestStep_finalize();
} // main

Bibliography

[ACC+90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera
Computer System. InProc. 4th ACM Int. Conf. Supercomputing, pp. 1–6. ACM Press, 1990.

[ACD+97] K. T. Au, M. M. Chakravarty, J. Darlington, Y. Guo, S. Jähnichen, M. K̈ohler, G. Keller, W. Pfan-
nenstiel, and M. Simons. Enlarging the Scope of Vector-Based Computations: Extending Fortran
90 by Nested Data Parallelism. InProc. APDC’97 Int. Conf. Advances in Parallel and Distributed
Computing, pp. 66–73. IEEE Computer Society Press, 1997.

[ADK+93] F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and D. Scheerer. On the physical design of
PRAMs. Computer J., 36(8):756–762, Dec. 1993.

[AEBK94] W. Ambrosch, M. Ertl, F. Beer, and A. Krall. Dependence–conscious global register allocation. In
Proc. Conf. on Programming Languages and System Architectures, pp. 125–136. Springer LNCS
782, Mar. 1994.

[AG85] A. V. Aho and M. Ganapathi. Efficient Tree Pattern Matching: an Aid to Code Generation. InProc.
ACM SIGPLAN Symp. Principles of Programming Languages, pp. 334–340, 1985.

[AGT89] A. V. Aho, M. Ganapathi, and S. W. Tjiang. Code Generation Using Tree Matching and Dynamic
Programming.ACM Trans. Program. Lang. Syst., 11(4):491–516, Oct. 1989.

[AH90] Z. Ammarguellat and W. L. Harrison III. Automatic Recognition of Induction Variables and Recur-
rence Relations by Abstract Interpretation. InProc. ACM SIGPLAN Conf. Programming Language
Design and Implementation, pp. 283–295. ACM Press, June 20–22 1990.

[AI91] C. Ancourt and F. Irigoin. Scanning Polyhedra with DO Loops. InProc. ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, pp. 39–50, 1991.

[AJ76] A. Aho and S. Johnson. Optimal Code Generation for Expression Trees.J. ACM, 23(3):488–501,
July 1976.

[AJU77] A. Aho, S. Johnson, and J. D. Ullman. Code generation for expressions with common subexpres-
sions.J. ACM, 24(1), Jan. 1977.

[AKLS88] E. Albert, K. Knobe, J. D. Lukas, and G. L. Steele Jr. Compiling Fortran 8x Array Features for
the Connection Machine Computer Systems. InACM SIGPLAN Symp. Parallel Programming:
Experiences with Applications, Languages and Systems, pp. 42–56, 1988.

[AKP91] F. Abolhassan, J. Keller, and W. J. Paul. On the cost–effectiveness of PRAMs. InProc. 3rd IEEE
Symp. Parallel and Distributed Processing, pp. 2–9. IEEE Computer Society Press, Dec. 1991.

[AN88] A. Aiken and A. Nicolau. Optimal Loop Parallelization. InProc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 308–317. ACM Press, 1988.

[ANL99] ANL Argonne National Laboratories. MPICH - a portable implementation of MPI, version 1.2.
www-unix.mcs.anl.gov/mpi/mpich/, 1999.

[ANN95] A. Aiken, A. Nicolau, and S. Novack. Resource-Constrained Software Pipelining.IEEE Trans.
Parallel and Distrib. Syst., 6(12):1248–1270, Dec. 1995.

[ANS90] ANSI American National Standard Institute, Inc., New York. American National Standards for
Information Systems, Programming Language C. ANSI X3.159–1989, 1990.

297

298 BIBLIOGRAPHY

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.COMPILERS: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

[BAFR96] Y. Ben-Asher, D. G. Feitelson, and L. Rudolph. ParC — An Extension of C for Shared Memory
Parallel Processing.Software Pract. Exp., 26(5):581–612, May 1996.

[Bal90] V. Balasundaram. A Mechanism for Keeping Useful Internal Information in Parallel Programming
Tools: The Data Access Descriptor.J. Parallel and Distrib. Comput., 9:154–170, 1990.

[Ban93] U. Banerjee.Loop Transformations for Restructuring Compilers:Vol. I: The Foundations. Kluwer
Academic Publishers, 1993.

[Ban94] U. Banerjee.Loop Transformations for Restructuring Compilers:Vol. II : Loop Parallelization.
Kluwer Academic Publishers, 1994.

[Ban97] U. Banerjee.Loop Transformations for Restructuring Compilers:Vol. III : Dependence Analysis.
Kluwer Academic Publishers, 1997.

[BAW96] Y. Ben-Asher and R. Wilhelm. Compilation Techniques for Fair Execution of Shared Memory
Parallel Programs over a Network of Workstations. http://cs.haifa.ac.il/YOSI/PAPERS/pcomp.ps,
1996.

[BBC+94] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. van der Vorst.Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, 1994.

[BBJ98] S. Ben Hassen, H. E. Bal, and C. Jacobs. A Task and Data Parallel Programming Language based
on Shared Objects.ACM Trans. Program. Lang. Syst., 1998.

[BCKT89] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for register allocation. In
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 275–284,
1989.

[BCT92] P. Briggs, K. Cooper, and L. Torczon. Rematerialization. InProc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 311–321, 1992.

[BDH+91] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. Improved Deterministic
Parallel Integer Sorting.Information and Computation, 94, 1991.

[BDO+95] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A structured high level
programming language and its structured support.Concurrency – Pract. Exp., 7(3):225–255, 1995.

[BDP94] B. Bacci, M. Danelutto, and S. Pelagatti. Resource Optimisation via Structured Parallel Program-
ming. In [DR94], pp. 1–12, Apr. 1994.

[BE91] J. Boyland and H. Emmelmann. Discussion: Code Generator Specification Techniques (summary).
In Code Generation: Concepts, Tools, Techniques [GG91], pp. 66–69, 1991.

[BEH91] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating Register Allocation and Instruction
Scheduling for RISCs. InProc. 4th Int. Conf. Architectural Support for Programming Languages
and Operating Systems, pp. 122–131, Apr. 1991.

[BFJ+96] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An analysis of DAG-
consistent distributed shared-memory algorithms. InProc. 8th Annual ACM Symp. Parallel Algo-
rithms and Architectures, pp. 297–308, 1996.

[BG89] D. Bernstein and I. Gertner. Scheduling expressions on a pipelined processor with a maximal delay
on one cycle.ACM Trans. Program. Lang. Syst., 11(1):57–67, Jan. 1989.

[BGM+89] D. Bernstein, M. Golumbic, Y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon. Spill
code minimization techniques for optimizing compilers. InProc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 258–263, 1989.

[BGS95] D. A. Berson, R. Gupta, and M. L. Soffa. HARE: A Hierarchical Allocator for Registers in Multiple
Issue Architectures. Technical report, Computer Science Department, University of Pittsburgh,
Pittsburgh, PA 15260, Feb. 1995.

BIBLIOGRAPHY 299

[BGW92] E. D. Brooks III, B. C. Gorda, and K. H. Warren. The Parallel C Preprocessor.Sci. Progr., 1(1):79–
89, 1992.

[BH98] H. E. Bal and M. Haines. Approaches for Integrating Task and Data Parallelism.IEEE Concurr.,
6(3):74–84, 1998.

[BHRS94] S. Bhansali, J. R. Hagemeister, C. S. Raghavendra, and H. Sivaraman. Parallelizing sequential
programs by algorithm-level transformations. In V. Rajlich and A. Cimitile, eds.,Proc. 3rd IEEE
Workshop on Program Comprehension, pp. 100–107. IEEE Computer Society Press, Nov. 1994.

[BHS+94] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chatterjee. Implementation of a
portable nested data-parallel language.J. Parallel and Distrib. Comput., 21:4–14, 1994.

[Bik96] A. J. C. Bik. Compiler support for sparse matrix computations. PhD thesis, Leiden University,
1996.

[BJK+95] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk:
an efficient multi-threaded run-time system. InProc. 5th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, pp. 207–216, 1995.

[BJR89] D. Bernstein, J. M. Jaffe, and M. Rodeh. Scheduling arithmetic and load operations in parallel with
no spilling. SIAM J. Comput., 18:1098–1127, 1989.

[BJvR98] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn University BSP (PUB) Li-
brary: Design, Implementation and Performance. Technical Report tr-rsfb-98-063, Heinz Nixdorf
Institute, Dept. of Computer Science, University of Paderborn, Germany, Nov. 1998.

[BJvR99] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn University BSP (PUB)
Library: Design, Implementation and Performance. InProc. IPPSSPDP’99 IEEE Int. Parallel
Processing Symp. and Symp. Parallel and Distributed Processing, 1999.

[BK96] G. H. Botorog and H. Kuchen. Skil: An Imperative Language with Algorithmic Skeletons for Effi-
cient Distributed Programming. InProc. 5th Int. Symp. High Performance Distributed Computing
(HPDC), pp. 243–252. IEEE Computer Society Press, 1996.

[BKK93] R. Bixby, K. Kennedy, and U. Kremer. Automatic Data Layout Using 0-1 Integer Programming.
Technical Report CRPC-TR93349-S, Center for Research on Parallel Computation, Rice Univer-
sity, Houston, TX, Nov. 1993.

[BKT92] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: a Language for Parallel Programming of
Distributed Systems.IEEE Trans. on Software Engineering, 18(3):190–205, Mar. 1992.

[BL92] R. Butler and E. L. Lusk. User’s Guide to the P4 Parallel Programming System. Technical Report
ANL-92/17, Argonne National Laboratory, Oct. 1992.

[BL94] R. Butler and E. L. Lusk. Monitors, Messages, and Clusters: The P4 Parallel Programming System.
Parallel Computing, 20(4):547–564, Apr. 1994.

[Ble96] G. Blelloch. Programming Parallel Algorithms.Comm. ACM, 39(3):85–97, Mar. 1996.

[Blu94] W. Blume et al. Polaris: The next generation in parallelizing compilers,. InProceedings of the
Seventh Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY, Aug. 1994.

[Bos88] P. Bose. Interactive Program Improvement via EAVE: An Expert Adviser for Vectorization. In
Proc. ACM Int. Conf. Supercomputing, pp. 119–130, July 1988.

[BPRD97] R. Boisvert, R. Pozo, K. Remington, and J. Dongarra. Matrix-market: a web resource for test matrix
collections. In R. B. et al., ed.,The Quality of Numerical Software: Assessment and Enhancement,
pp. 125–137. Chapman and Hall, 1997.

[Bra99] T. Brandes. Exploiting Advanced Task Parallelism in High Performance Fortran via a Task Library.
In Amestoy, P. and Berger, P. and Dayde, M. and Duff, I. and Giraud, L. and Frayssé, V. and Ruiz,
D., ed.,Proc. Int. Euro-Par Conf., pp. 833–844. Springer LNCS 1685, Sept. 1999.

[BRG89] D. Bernstein, M. Rodeh, and I. Gertner. On the complexity of scheduling problems for paral-
lel/pipelined machines.IEEE Trans. Comput., 38(9):1308–1314, Sept. 1989.

300 BIBLIOGRAPHY

[BS76] J. Bruno and R. Sethi. Code generation for a one–register machine.J. ACM, 23(3):502–510, July
1976.

[BS87] T. Brandes and M. Sommer. A Knowledge-Based Parallelization Tool in a Programming Environ-
ment. InProc. 16th Int. Conf. Parallel Processing, pp. 446–448, 1987.

[BSB96] M. J. Bourke, P. H. Sweany, and S. J. Beaty. Extended List Scheduling to Consider Execution
Frequency. InProc. 29th Annual Hawaii Int. Conf. System Sciences, Jan. 1996.

[BSBC95] T. S. Brasier, P. H. Sweany, S. J. Beaty, and S. Carr. Craig: A practical framework for combin-
ing instruction scheduling and register assignment. InProc. Int. Conf. Parallel Architectures and
Compilation Techniques(PACT), 1995.

[BSC96] R. M. Badia, F. Sanchez, and J. Cortadella. OSP: Optimal Software Pipelining with Minimum Reg-
ister Pressure. Technical Report UPC-DAC-1996-25, DAC Dept. d’arquitectura de Computadors,
Universitat Polytecnica de Catalunya, Barcelona, Campus Nord. Modul D6, E-08071 Barcelona,
Spain, June 1996.

[BST89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming Languages for Distributed Computing
Systems.ACM Computing Surveys, 21(3):261–322, Sept. 1989.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis.Parallel and Distributed Computation, Numerical Methods.
Prentice-Hall, 1989.

[BW96] A. J. C. Bik and H. A. G. Wijshoff. Automatic Data Structure Selection and Transformation for
Sparse Matrix Computations.IEEE Trans. Parallel and Distrib. Syst., 7(2):109–126, Feb. 1996.

[CAC+81] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register allocation
via coloring.Computer Languages, 6:47–57, 1981.

[Cal91] D. Callahan. Recognizing and parallelizing bounded recurrences. InProc. 4th Annual Workshop
on Languages and Compilers for Parallel Computing, 1991.

[CBS95] J. Cortadella, R. M. Badia, and F. Sanchez. A Mathematical Formulation of the Loop Pipelining
Problem. Technical Report UPC-DAC-1995-36, Department of Computer Architecture, Universitat
Politecnica de Catalunya, Campus Nord. Modul D6, E-08071 Barcelona, Spain, Oct. 1995.

[CC92] I. A. Carmichael and J. R. Cordy.TXL - Tree Transformational Language Syntax and Informal
Semantics. Dept. of Computing and Information Science, Queen’s University at Kingston, Canada,
Feb. 1992.

[CC93] I. A. Carmichael and J. R. Cordy.The TXL Programming Language Syntax and Informal Semantics
Version 7. Dept. of Computing and Information Science, Queen’s University at Kingston, Canada,
June 1993.

[CC94] T. H. Cormen and A. Colvin. ViC*: A preprocessor for virtual-memory C*. Technical Report
PCS-TR94-243, Dartmouth College, Computer Science, Hanover, NH, 1994.

[CC95] H.-C. Chou and C.-P. Chung. An Optimal Instruction Scheduler for Superscalar Processors.IEEE
Trans. Parallel and Distrib. Syst., 6(3):303–313, 1995.

[CCK91] D. Callahan, S. Carr, and K. Kennedy. Register Allocation via Hierarchical Graph Coloring. In
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 192–203,
June 1991.

[CD95] W. W. Carlson and J. M. Draper. Distributed Data Access in AC. InProc. ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, pp. 39–47. ACM Press, 1995.

[CDG+93] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick. Parallel Programming in Split-C. InProc. Supercomputing’93, Nov. 1993.

[CG72] E. Coffman and R. Graham. Optimal scheduling for two–processor systems.Acta Informatica,
1:200–213, 1972.

[CG89] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the Perplexed.ACM
Computing Surveys, 21(3):323–357, Sept. 1989.

BIBLIOGRAPHY 301

[CGMS94] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman. The Linda alternative to message-
passing systems.Parallel Computing, 20(4):633–656, Apr. 1994.

[CGSvE92] D. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken. Active Messages: a Mechanism
for Integrated Communication and Computation. InProc. 19th Int. Symp. Computer Architecture,
May 1992.

[CH84] F. C. Chow and J. L. Hennessy. Register allocation by priority-based coloring.ACM SIGPLAN
Notices, 19(6):222–232, 1984.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring.ACM SIGPLAN Notices, 17(6):201–
207, 1982.

[Cha87] D. Chase. An improvement to bottom-up tree pattern matching. InProc. ACM SIGPLAN Symp.
Principles of Programming Languages, pp. 168–177, 1987.

[CK87] D. Callahan and K. Kennedy. Analysis of Interprocedural Side Effects in a Parallel Programming
Environment. InFirst Int. Conf. on Supercomputing, Athens (Greece). Springer LNCS 297, June
1987.

[CK88] D. Callahan and K. Kennedy. Compiling Programs for Distributed Memory Multiprocessors.J.
Supercomputing, 2:151–169, 1988.

[CM98] B. Chapman and P. Mehrotra. OpenMP and HPF: Integrating Two Paradigms. InProc. Int. Euro-
Par Conf., 1998.

[CMRZ94] B. Chapman, P. Mehrotra, J. V. Rosendale, and H. Zima. A software architecture for multidisci-
plinary applications: Integrating task and data parallelism. InProc. CONPAR, Sept. 1994.

[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.Sci. Progr., 1(1):31–50,
1992.

[Cof76] E. Coffman Jr. (Ed.).Computer and Job/Shop Scheduling Theory. John Wiley & Sons, 1976.

[Col89] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman and
MIT Press, 1989.

[Coo73] S. A. Cook. An observation on time–storage trade–off. InProc. 5th Annual Symposium on Theory
of Computing, pp. 29–33, 1973.

[CS90] D. Callahan and B. Smith. A Future-based Parallel Language for a General-Purpose Highly-parallel
Computer. Report, Tera Computer Company, Seattle, WA,http://www.tera.com , 1990.

[CSG99] D. E. Culler, J. P. Singh, and A. Gupta.Parallel Computer Architecture. A Hardware/Software
Approach. Morgan Kaufmann Publishers, 1999.

[CSS95] M. M. T. Chakravarty, F. W. Schröer, and M. Simons. V - Nested Parallelism in C. In W. Giloi,
S. J̈ahnichen, and B. Shriver, eds.,Proc. 2nd Int. Conf. Massively Parallel Programming Models,
pp. 167–174. IEEE Computer Society Press, 1995.

[CV91] B. S. Chlebus and I. Vrto. Parallel Quicksort.J. Parallel and Distrib. Comput., 11:332–337, 1991.

[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating Asynchrony into the PRAM model. InProc.
1st Annual ACM Symp. Parallel Algorithms and Architectures, pp. 169–178, 1989.

[CZ95] R. Cole and O. Zajicek. The Expected Advantage of Asynchrony.J. Comput. Syst. Sciences,
51:286–300, 1995.

[CZF+98] B. Carpenter, G. Zhang, G. Fox, X. Li, X. Li, and Y. Wen. Towards a Java Environment for SPMD
Programming. InProc. 4th Int. Euro-Par Conf., pp. 659–668. Springer LNCS 1470, 1998.

[DF84] J. W. Davidson and C. W. Fraser. Code Selection through Object Code Optimization.ACM Trans.
Program. Lang. Syst., 6(4):505–526, Oct. 1984.

[DFH+93] J. Darlington, A. J. Field, P. G. Harrison, P. H. B. Kelly, D. W. N. Sharp, and Q. Wu. Parallel
Programming Using Skeleton Functions. InProc. Conf. Parallel Architectures and Languages
Europe, pp. 146–160. Springer LNCS 694, 1993.

302 BIBLIOGRAPHY

[DGNP88] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A single-program-multiple-data compu-
tational model for EPEX/FORTRAN.Parallel Computing, 7:11–24, 1988.

[DGTY95] J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel skeletons for structured composition. In
Proc. 5th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming. ACM Press,
July 1995.SIGPLAN Notices30(8), pp. 19–28.

[Dha88] D. M. Dhamdhere. A fast algorithm for code movement optimization.SIGPLAN Notices,
23(10):172–180, 1988.

[Dha91] D. M. Dhamdhere. A fast practical adaptation of the global optimization algorithm of Morel and
Renvoise.ACM Trans. Program. Lang. Syst., 13(2):291–294, 1991.

[DI94] B. DiMartino and G. Ianello. Towards Automated Code Parallelization through Program Compre-
hension. In V. Rajlich and A. Cimitile, eds.,Proc. 3rd IEEE Workshop on Program Comprehension,
pp. 108–115. IEEE Computer Society Press, Nov. 1994.

[DJ79] J. Dongarra and A. Jinds. Unrolling Loops in Fortran.Software Pract. Exp., 9(3):219–226, 1979.

[dlTK92] P. de la Torre and C. P. Kruskal. Towards a Single Model of Efficient Computation in Real Parallel
Machines.Future Generation Computer Systems, 8:395–408, 1992.

[DR94] K. M. Decker and R. M. Rehmann, eds.Programming Environments for Massively Parallel Dis-
tributed Systems. Birkhäuser, Basel (Switzerland), 1994. Proc. IFIP WG 10.3 Working Conf. at
Monte Verita, Ascona (Switzerland), Apr. 1994.

[Duf77] I. S. Duff. MA28– a set of Fortran subroutines for sparse unsymmetric linear equations. Tech. rept.
AERE R8730, HMSO, London. Source code available via netlib [NET], 1977.

[EK91] M. A. Ertl and A. Krall. Optimal Instruction Scheduling using Constraint Logic Programming. In
Proc. 3rd Int. Symp. Programming Language Implementation and Logic Programming(PLILP),
pp. 75–86. Springer LNCS 528, Aug. 1991.

[EK92] M. A. Ertl and A. Krall. Instruction scheduling for complex pipelines. InCompiler Construction
(CC’92), pp. 207–218, Paderborn, 1992. Springer LNCS 641.

[Ell85] J. R. Ellis. Bulldog: A Compiler for VLIW Architechtures. PhD thesis, Yale University, 1985.

[ELM95] C. Eisenbeis, S. Lelait, and B. Marmol. The meeting graph: a new model for loop cyclic register
allocation. InProc. 5th Workshop on Compilers for Parallel Computers, pp. 503–516. Dept. of
Computer Architecture, University of Malaga, Spain. Report No. UMA-DAC-95/09, June 28–30
1995.

[EN89] K. Ebcioglu and A. Nicolau. A global resource-constrained parallelization technique. InProc. 3rd
ACM Int. Conf. Supercomputing. ACM Press, 1989.

[Ers71] A. P. Ershov.The Alpha Programming System. Academic Press, London, 1971.

[Ert99] M. A. Ertl. Optimal Code Selection in DAGs. InProc. ACM SIGPLAN Symp. Principles of Pro-
gramming Languages, 1999.

[Far98] J. Farley.JAVA Distributed Computing. O’Reilly, 1998.

[Fea91] P. Feautrier. Dataflow Analysis of Array and Scalar References.Int. J. Parallel Programming,
20(1):23–53, Feb. 1991.

[Fer90] C. Ferdinand. Pattern Matching in TRAFOLA. Diplomarbeit, Universität des Saarlandes,
Saarbr̈ucken, Germany, 1990.

[FH91a] C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C.Software Pract. Exp.,
21(9):963–988, Sept. 1991.

[FH91b] C. W. Fraser and D. R. Hanson. A retargetable compiler for ANSI C.ACM SIGPLAN Notices,
26(10):29–43, Oct. 1991.

[FH95] C. W. Fraser and D. R. Hanson.A Retargetable C Compiler: Design and Implementation. Benjamin
Cummings Publishing Co., 1995.

BIBLIOGRAPHY 303

[FHP92a] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a Simple, Efficient Code Generator
Generator.ACM Letters on Programming Languages and Systems, 1(3):213–226, Sept. 1992.

[FHP92b] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG — Fast Optimal Instruction Selection and
Tree Parsing.ACM SIGPLAN Notices, 27(4):68–76, Apr. 1992.

[Fis81] J. A. Fisher. Trace scheduling: A technique for global microcode compaction.IEEE Trans. Com-
put., C–30(7):478–490, July 1981.

[FK95] A. Formella and J. Keller. Generalized Fisheye Views of Graphs. InProc. Graph Drawing ’95, pp.
242–253. Springer LNCS 1027, 1995.

[FOP+92] A. Formella, A. Obe, W. Paul, T. Rauber, and D. Schmidt. The SPARK 2.0 system – a special
purpose vector processor with a VectorPASCAL compiler. InProc. 25th Annual Hawaii Int. Conf.
System Sciences, volume 1, pp. 547–558, 1992.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and Its Use in
Optimization.ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.

[FR92] S. M. Freudenberger and J. C. Ruttenberg. Phase Ordering of Register Allocation and Instruction
Scheduling. InCode Generation: Concepts, Tools, Techniques [GG91], pp. 146–170, 1992.

[Fre74] R. Freiburghouse. Register allocation via usage counts.Comm. ACM, 17(11), 1974.

[FRR99] U. Fissgus, T. Rauber, and G. Rünger. A framework for generating task parallel programs. InProc.
7th Symp. Frontiers of Massively Parallel Computation, pp. 72–80, Annapolis, Maryland, 1999.

[FSW92] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree Automata for Code Selection. InCode Generation:
Concepts, Tools, Techniques[GG91], pp. 30–50, 1992.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. InProc. 10th Annual ACM Symp.
Theory of Computing, pp. 114–118, 1978.

[FWH+94] K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M. Petersen. The Polaris
internal representation.International Journal of Parallel Programming, 22(5):553–586, Oct. 1994.

[GA96] L. George and A. W. Appel. Iterated Register Coalescing.ACM Trans. Program. Lang. Syst.,
18(3):300–324, May 1996.

[Gav72] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph.SIAM J. Comput., 1(2):180–187, 1972.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 user’s guide
and reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, Sept. 1994.

[GE92] C. H. Gebotys and M. I. Elmasry.Optimal VLSI Architectural Synthesis. Kluwer, 1992.

[GE93] C. H. Gebotys and M. I. Elmasry. Global optimization approach for architectural synthesis.IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, CAD-12(9):1266–
1278, Sept. 1993.

[GG78] R. Glanville and S. Graham. A New Method for Compiler Code Generation. InProc. ACM SIG-
PLAN Symp. Principles of Programming Languages, pp. 231–240, Jan. 1978.

[GG91] R. Giegerich and S. L. Graham, eds.Code Generation - Concepts, Tools, Techniques. Springer
Workshops in Computing, 1991.

[GG96] W. Gellerich and M. M. Gutzmann. Massively Parallel Programming Languages – a Classification
of Design Approaches. InProc. Int. Symp. Computer Architecture, volume I, pp. 110–118. ISCA,
1996.

[GH88] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic blocks. In
Proc. ACM Int. Conf. Supercomputing, pp. 442–452. ACM Press, July 1988.

[Gib89] P. B. Gibbons. A More Practical PRAM Model. InProc. 1st Annual ACM Symp. Parallel Algo-
rithms and Architectures, pp. 158–168, 1989.

304 BIBLIOGRAPHY

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979. With an addendum, 1991.

[GJS96] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, 1996.

[GLR83] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient Coordination of
Large Numbers of Cooperating Sequential Processes.ACM Trans. Program. Lang. Syst., 5(2):164–
189, Apr. 1983. (see also: Ultracomputer Note No. 16, Dec. 1980, New York University).

[GM86] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a pipelined architecture. In
Proc. ACM SIGPLAN Symp. Compiler Construction, pp. 11–16, July 1986.

[GP99] S. Gorlatch and S. Pelagatti. A transformational framework for skeletal programs: Overview and
case study. In J. Rohlim et al., ed.,IPPS/SPDP’99 Workshops Proceedings, IEEE Int. Parallel
Processing Symp. and Symp. Parallel and Distributed Processing, pp. 123–137. Springer LNCS
1586, 1999.

[GR90] M. Golumbic and V. Rainish. Instruction scheduling beyond basic blocks.IBM J. Res. Develop.,
34(1):94–97, Jan. 1990.

[Gri84] R. G. Grimes. SPARSE-BLASbasic linear algebra subroutines for sparse matrices, written in
Fortran77. Source code available via netlib [NET], 1984.

[Gro92] J. Grosch. Transformation of Attributed Trees using Pattern Matching. In U. Kastens and P. Pfahler,
eds.,Fourth Int. Conf. on Compiler Construction (CC’92), Springer LNCS vol. 641, pp. 1–15, Oct.
1992.

[GS90] R. Gupta and M. L. Soffa. Region scheduling: An approach for detecting and redistributing paral-
lelism. IEEE Trans. on Software Engineering, 16(4):421–431, Apr. 1990.

[GSW95] M. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables: Detecting and classifying se-
quences using a demand-driven SSA form.ACM Trans. Program. Lang. Syst., 17(1):85–122, Jan.
1995.

[Gup89] R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Processors. In
Proc. 3rd Int. Conf. Architectural Support for Programming Languages and Operating Systems
(ASPLOS-III), pp. 54–63. ACM Press, 1989.

[Güt81] R. G̈uttler. Erzeugung optimalen Codes für series–parallel graphs. InSprinter LNCS 104, pp.
109–122, 1981.

[Güt82] R. G̈uttler. Die Erzeugung optimalen Codes für series–parallel-graphs in polynomieller Zeit. PhD
thesis, Universiẗat des Saarlandes, Saarbrücken, Germany, 1982.

[GV94] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms.J. Parallel and
Distrib. Comput., 22:251–267, 1994.

[GYZ+99] R. Govindarajan, H. Yang, C. Zhang, J. N. Amaral, and G. R. Gao. Minimum register instruction
sequence problem: Revisiting optimal code generation for dags. CAPSL Technical Memo 36,
Computer Architecture and Parallel Systems Laboratory, University of Delaware, Newark, Nov.
1999.

[GZG99] R. Govindarajan, C. Zhang, and G. R. Gao. Minimum Register Instruction Scheduling: a New
Approach for Dynamic Instruction Issue Processors. InProc. Annual Workshop on Languages and
Compilers for Parallel Computing, 1999.

[HB94] D. Hearn and M. P. Baker.Computer Graphics, Second Edition. Prentice-Hall, 1994.

[HE91] M. Heath and J. Etheridge. Visualizing the performance of parallel programs.IEEE Software,
8(5):29–39, 1991.

[HFG89] W.-C. Hsu, C. N. Fischer, and J. R. Goodman. On the minimization of loads/stores in local register
allocation.IEEE Trans. on Software Engineering, 15(10):1252–1262, Oct. 1989.

[HG83] J. Hennessy and T. Gross. Postpass Code Optimization of Pipeline Constraints.ACM Trans.
Program. Lang. Syst., 5(3):422–448, July 1983.

BIBLIOGRAPHY 305

[HHG+95] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E. Haab, J. C. Gyl-
lenhaal, and D. I. August. Compiler Technology for Future Microprocessors.Proc. of the IEEE,
83(12):1625–, Dec. 1995.

[HHL+93] S. U. Ḧanßgen, E. A. Heinz, P. Lukowicz, M. Philippsen, and W. F. Tichy. The Modula-2* Environ-
ment for Parallel Programming. InProc. 1st Int. Conf. Massively Parallel Programming Models.
IEEE Computer Society Press, 1993.

[Hig93] High Performance Fortran Forum HPFF. High Performance Fortran Language Specification.Sci.
Progr., 2, 1993.

[HK91] P. Havlak and K. Kennedy. An Implementation of Interprocedural Bounded Regular Section Anal-
ysis. IEEE Trans. Parallel and Distrib. Syst., 2(3):350–359, July 1991.

[HKT91a] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler Optimizations for Fortran D on MIMD
Distributed Memory Machines. InProc. 5th ACM Int. Conf. Supercomputing, pp. 86–100, Nov.
1991.

[HKT91b] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler-Support for Machine-Independent Par-
allel Programming in Fortran-D. Technical Report Rice COMP TR91-149, Rice University, Mar.
1991.

[HL91] V. Herrarte and E. Lusk. Studying parallel program behaviour withupshot . Technical report,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1991.

[HLG+99] C. Herrmann, C. Lengauer, R. Günz, J. Laitenberger, and C. Schaller. A Compiler forHDC. Tech-
nical Report MIP-9907, Fakultät für Mathematik und Informatik, Universität Passau, Germany,
May 1999.

[HLQA92] P. J. Hatcher, A. J. Lapadula, M. J. Quinn, and R. J. Anderson. Compiling Data-Parallel Programs
for MIMD Architectures. In H. Zima, ed.,Proc. 3rd Workshop on Compilers for Parallel Comput-
ers, pp. 347–358. Technical report ACPC/TR 92-8 of the Austrian Center of Parallel Computation,
July 1992.

[HMS+98] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsan-
tilas, and R. Bisseling. BSPlib: the BSP Programming Library.Parallel Computing, 24(14):1947–
1980, 1998.

[HN90] M. Harandi and J. Ning. Knowledge-based program analysis.IEEE Software, pp. 74–81, Jan. 1990.

[HO82] C. M. Hoffmann and M. J. O’Donnell. Pattern Matching in Trees.J. ACM, 29(1):68–95, Jan. 1982.

[Hoa62] C. A. R. Hoare. Quicksort.Computer J., 5(4):10–15, 1962.

[Hoa78] C. A. R. Hoare. Communicating sequential processes.Comm. ACM, 21(8):667–677, Aug. 1978.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall International Series in Com-
puter Science, 1985.

[HP96] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann, second edition edition, 1996.

[HQ91] P. J. Hatcher and M. J. Quinn.Data-Parallel Programming on MIMD Computers. MIT Press,
1991.

[HR92a] T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel Computation. I: The Model.
J. Parallel and Distrib. Comput., 16:212–232, 1992.

[HR92b] T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel Computation. II: Binary Tree
and FFT Algorithms.J. Parallel and Distrib. Comput., 16:233–249, 1992.

[HS93] R. Heckmann and G. Sander. TrafoLa-H Reference Manual. In B. Hoffmann and B. Krieg-
Brückner, eds.,Program Development by Specification and Transformation: The PROSPECTRA
Methodology, Language Family, and System, pp. 275–313. Springer LNCS Vol. 680, 1993.

306 BIBLIOGRAPHY

[HS96] J. M. D. Hill and D. B. Skillicorn. Practical Barrier Synchronisation. Technical Report PRG-TR-16-
96, Programming Research Group, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford OX1 3QD, 1996.

[HSS92] T. Hagerup, A. Schmitt, and H. Seidl. FORK: A High-Level Language for PRAMs.Future Gener-
ation Computer Systems, 8:379–393, 1992.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems.Operations Research, 9(11), 1961.

[IBM] IBM. Visualization Tool (VT): Execution Analysis on the IBM SP.
http://www.tc.cornell.edu/UserDoc/Software/PTools/vt/.

[Inm84] Inmos Ltd.OCCAM Programming Manual. Prentice-Hall, New Jersey, 1984.

[Ive62] K. E. Iverson.A Programming Language. Wiley, New York, 1962.

[JE94] T. E. Jeremiassen and S. J. Eggers. Static analysis of barrier synchronization in explicitly parallel
programs. InProc. Int. Conf. Parallel Architectures and Compilation Techniques(PACT), pp.
171–180, Aug. 1994.

[JG88] G. Jones and M. Goldsmith.Programming in Occam 2. Prentice-Hall, 1988.

[Jor86] H. F. Jordan. Structuring parallel algorithms in an MIMD, shared memory environment.Parallel
Computing, 3:93–110, 1986.

[JR96] K. Jansen and J. Reiter. Approximation Algorithms for Register Allocation. Technical Report
96-13, Universiẗat Trier, FB 4 - Mathematik/Informatik, D-54286 Trier, Germany, 1996.

[Juv92a] S. Juvaste. An Implementation of the Programming Language pm2 for PRAM. Tech-
nical Report A-1992-1, Dept. of Computer Science, University of Joensuu, Finland, 1992.
ftp://cs.joensuu.fi .

[Juv92b] S. Juvaste. The Programming Language pm2 for PRAM. Technical Report B-1992-1, Dept. of
Computer Science, University of Joensuu, Finland, 1992.ftp://cs.joensuu.fi .

[Käp92] K. Käppner. Analysen zur̈Ubersetzung von FORK, Teil 1. Diploma thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1992.

[Käs97] D. K̈astner. Instruktionsanordnung und Registerallokation auf der Basis ganzzahliger linearer Pro-
grammierung f”ur den digitalen Signalprozessor adsp-2106x. Diplomarbeit, Universität des Saar-
landes, Saarbrücken, Germany, 1997.

[KE93] D. R. Kerns and S. J. Eggers. Balanced Scheduling: Instruction Scheduling When Memory Latency
is Uncertain. InProc. ACM SIGPLAN Conf. Programming Language Design and Implementation.
ACM Press, June 1993.

[Keß94] C. W. Keßler, ed.Automatic Parallelization—New Approaches to Code Generation, Data Distri-
bution and Performance Prediction. Vieweg, Wiesbaden (Germany), 1994.

[KG92] T. Kiyohara and J. C. Gyllenhaal. Code Scheduling for VLIW/Superscalar Processors with Limited
Register Files. InProc. 25th Annual IEEE/ACM Int. Symp. Microarchitecture. IEEE Computer
Society Press, 1992.

[KH93] P. Kolte and M. J. Harrold. Load/Store Range Analysis for Global Register Allocation. InProc.
ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 268–277, June
1993.

[KHJ98] J.-S. Kim, S. Ha, and C. S. Jhon. Relaxed barrier synchronization for the BSP model of computation
on message-passing architectures.Inform. Process. Lett., 66:247–253, 1998.

[Kla94] A. C. Klaiber.Architectural Support for Compiler-Generated Data-Parallel Programs. PhD thesis,
University of Washington, 1994.

[KMR90] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Supporting shared data structures on distributed
memory architectures. InProc. ACM SIGPLAN Symp. Principles and Practice of Parallel Pro-
gramming, pp. 177–186, 1990.

BIBLIOGRAPHY 307

[KNE93] W. Kozaczynski, J. Ning, and A. Engberts. Program concept recognition and transformation.IEEE
Trans. on Software Engineering, 18(12):1065–1075, Dec. 1993.

[KNS92] W. Kozaczynski, J. Ning, and T. Sarver. Program concept recognition. InProc. 7th Knowledge-
Based Software Engineering Conf. (KBSE’92), pp. 216–225, 1992.

[KP95] S. Kannan and T. Proebsting. Register Allocation in Structured Programs. InProc. 6th Annual
ACM/SIAM Symp. Discrete Algorithms, 1995.

[KPF95] S. M. Kurlander, T. A. Proebsting, and C. N. Fisher. Efficient Instruction Scheduling for Delayed-
Load Architectures.ACM Trans. Program. Lang. Syst., 17(5):740–776, Sept. 1995.

[KPS94] J. Keller, W. J. Paul, and D. Scheerer. Realization of PRAMs: Processor Design. InProc. WDAG’94
8th Int. Workshop on Distributed Algorithms, pp. 17–27. Springer Lecture Notes in Computer Sci-
ence 857, 1994.

[Kri90] S. M. Krishnamurthy. A brief survey of papers on scheduling for pipelined processors.ACM
SIGPLAN Notices, 25(7):97–106, 1990.

[Kro75] H. Kron. Tree Templates and Subtree Transformational Grammars. PhD thesis, UC Santa Cruz,
Dec. 1975.

[KRS92] J. Knoop, O. R̈uthing, and B. Steffen. Lazy code motion. InProc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, 1992. ACM SIGPLAN Notices27(7):224–234.

[KRS94] J. Knoop, O. R̈uthing, and B. Steffen. Lazy code motion.ACM Trans. Program. Lang. Syst.,
16(4):1117–1155, 1994.

[KRS98] J. Knoop, O. R̈uthing, and B. Steffen. Code motion and code placement: Just synonyms? InProc.
European Symp. Programming. Springer LNCS, 1998.

[Kun88] K. S. Kundert.SPARSE 1.3 package of routines for sparse matrix LU factorization, written in C.
Source code available via netlib [NET], 1988.

[Lam88] M. Lam. Software pipelining: An effective scheduling technique forVLIW machines. InProc.
ACM SIGPLAN Symp. Compiler Construction, pp. 318–328, July 1988.

[Lan97] M. Langenbach. Instruktionsanordnung unter Verwendung graphbasierter Algorithmen für den
digitalen Signalprozessor ADSP-2106x. Diploma thesis, Universität des Saarlandes, Saarbrücken
(Germany), Oct. 1997.

[LC90] J. Li and M. Chen. Synthesis of Explicit Communication from Shared Memory Program Refer-
ences. InProc. Supercomputing ’90, Nov. 1990.

[LE95] J. L. Lo and S. J. Eggers. Improving Balanced Scheduling with Compiler Optimizations that In-
crease Instruction-Level Parallelism. InProc. ACM SIGPLAN Conf. Programming Language De-
sign and Implementation. ACM Press, June 1995.

[Lei97] C. E. Leiserson. Programming Irregular Parallel Applications in Cilk. InProc. IRREGULAR’97
Int. Symp. Solving Irregularly Structured Problems in Parallel, pp. 61–71. Springer LNCS 1253,
June 1997.

[Li77] H. Li. Scheduling trees in parallel / pipelined processing environments.IEEE Trans. Comput.,
C-26(11):1101–1112, Nov. 1977.

[Lil93] J. Lillig. Ein Compiler für die ProgrammierspracheFORK. Diploma thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1993.

[LLG+92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. S. Lam. The Stanford DASH multiprocessor.IEEE Comput., 25(3):63–79, 1992.

[LLM +87] E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer. Pipeline Scheduling: A Survey.
Technical Report Computer Science Research Report, IBM Research Division, San Jose, CA, 1987.

[LM97] R. Leupers and P. Marwedel. Time-constrained code compaction for DSPs.IEEE Transactions on
VLSI Systems, 5(1), 1997.

308 BIBLIOGRAPHY

[LMN+00] M. Leair, J. Merlin, S. Nakamoto, V. Schuster, and M. Wolfe. Distributed OMP — A Programming
Model for SMP Clusters. InProc. 8th Workshop on Compilers for Parallel Computers, pp. 229–
238, Jan. 2000.

[LMW88] P. Lipps, U. Möncke, and R. Wilhelm. Optran: A Language/System for the Specification of Pro-
gram Transformations: System Overview and Experiments. In D. Hammer, ed.,Compiler Compil-
ers and High–Speed Compilation, pp. 52–65. Springer LNCS vol. 371, 1988.

[LS85] K.-C. Li and H. Schwetman. Vector C: A Vector Processing Language.J. Parallel and Distrib.
Comput., 2:132–169, 1985.

[LSRG95] C. Léon, F. Sande, C. Rodríguez, and F. García. A PRAM Oriented Language. InProc. EUROMI-
CRO PDP’95 Workshop on Parallel and Distributed Processing, pp. 182–191. IEEE Computer
Society Press, Jan. 1995.

[LVA95] J. Llosa, M. Valero, and E. Ayguade. Bidirectional scheduling to minimize register requirements.
In Proc. 5th Workshop on Compilers for Parallel Computers, pp. 534–554. Dept. of Computer
Architecture, University of Malaga, Spain. Report No. UMA-DAC-95/09, June 28–30 1995.

[LVW84] J. Leung, O. Vornberger, and J. Witthoff. On some variants of the bandwidth minimization problem.
SIAM J. Comput., 13:650–667, 1984.

[MAL93] D. Maydan, S. Amarasinghe, and M. Lam. Array data-flow analysis and its use in array privatiza-
tion. InProc. ACM SIGPLAN Symp. Principles of Programming Languages, pp. 2–15. ACM Press,
Jan. 1993.

[Man82] B. B. Mandelbrot.The Fractal Geometry of Nature. W. H. Freeman, 1982.

[Mar97] M. I. Marr. Descriptive Simplicity in Parallel Computing. PhD thesis, University of Edinburgh,
1997.

[Mat90] N. Mathis. Weiterentwicklung eines Codeselektorgenerators und Anwendung auf den NSC32000.
Diplomarbeit, Universiẗat des Saarlandes, Saarbrücken, Germany, 1990.

[McC96] W. F. McColl. Universal computing. InProc. 2nd Int. Euro-Par Conf., volume 1, pp. 25–36.
Springer LNCS 1123, 1996.

[MD94] W. M. Meleis and E. D. Davidson. Optimal Local Register Allocation for a Multiple-Issue Machine.
In Proc. ACM Int. Conf. Supercomputing, pp. 107–116, 1994.

[Met95] R. Metzger. Automated Recognition of Parallel Algorithms in Scientific Applications. InIJCAI-95
Workshop Program Working Notes: “The Next Generation of Plan Recognition Systems”. spon-
sored jointly by IJCAII/AAAI/CSCSI, Aug. 1995.

[MI96] B. D. Martino and G. Iannello. Pap Recognizer: a Tool for Automatic Recognition of Parallelizable
Patterns. InProc. 4th IEEE Workshop on Program Comprehension. IEEE Computer Society Press,
Mar. 1996.

[MPI97] MPI Forum. MPI-2: Extensions to the Message Passing Interface. Technical Report, University of
Tennessee, Knoxville, 1997. http://www.erc.msstate.edu/labs/hpcl/projects/mpi/mpi2.html.

[MPSR95] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen. Combining Register Allocation and Instruction
Scheduling (Technical Summary). Technical Report TR 698, Courant Institute of Mathematical
Sciences, New York, July 1995.

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.Comm.
ACM, 22(2):96–103, 1979.

[MR90] M. Metcalf and R. Reid.Fortran90 Explained. Oxford University Press, 1990.

[MS94] T. MacDonald and Z. Sekera. The Cray Research MPP Fortran Programming Model. In [DR94],
pp. 1–12, Apr. 1994.

[MSS+88] R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, and K. Crowley. Principles of run-time
support for parallel processors. InProc. 2nd ACM Int. Conf. Supercomputing, pp. 140–152. ACM
Press, July 1988.

BIBLIOGRAPHY 309

[Muc97] S. S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[NET] NETLIB. Collection of free scientific software. Accessible by anonymous
ftp to netlib2.cs.utk.edu or netlib.no or e-mail "send index" to
netlib@netlib.no .

[NG93] Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelining. InProc.
ACM SIGPLAN Symp. Principles of Programming Languages, 1993.

[Nic84] A. Nicolau. Percolation scheduling: A parallel compilation technique. Technical Report 85-678,
Cornell University, 1984.

[NP90] A. Nicolau and R. Potasman. Incremental Tree Height Reduction for Code Compaction. Technical
Report 90-12, Dept. of Information and Computer Science, University of California Irvine, Irvine,
CA 92717, 1990.

[NP94] C. Norris and L. L. Pollock. Register Allocation over the Program Dependence Graph. InProc.
ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 266–277. ACM
Press, June 1994.

[NP98] C. Norris and L. L. Pollock. The Design and Implementation of RAP: A PDG-based Register
Allocator. Software Pract. Exp., 28(4):401–424, 1998.

[NS95] B. Natarajan and M. Schlansker. Spill-Free Parallel Scheduling of Basic Blocks. InProc. 28th
Annual IEEE/ACM Int. Symp. Microarchitecture. IEEE Computer Society Press, 1995.

[OP99] S. Orlando and R. Perego.COLT HPF, a Run-Time Support for the High-Level Co-ordination of
HPF Tasks.Concurrency – Pract. Exp., 11(8):407–434, 1999.

[Ope97] OpenMP Architecture Review Board. OpenMP: a Proposed Industry Standard API for Shared
Memory Programming. White Paper,http://www.openmp.org/ , Oct. 1997.

[Pal96] Pallas GmbH. VAMPIR User’s Manual. Pallas GmbH, Br̈uhl, Germany, 1996.
http://www.pallas.de/pages/vampir.htm.

[PDB93] S. Prakash, M. Dhagat, and R. Bagrodia. Synchronization issues in data-parallel languages. InProc.
6th Annual Workshop on Languages and Compilers for Parallel Computing, pp. 76–95. Springer
LNCS 768, Aug. 1993.

[PE95] B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris Parallelizing Compiler. InProc.
9th ACM Int. Conf. Supercomputing, pp. 444–448, July 1995.

[Pel98] S. Pelagatti.Structured Development of Parallel Programs. Taylor&Francis, 1998.

[PF91] T. A. Proebsting and C. N. Fischer. Linear–time, optimal code scheduling for delayed–load archi-
tectures. InProc. ACM SIGPLAN Conf. Programming Language Design and Implementation, pp.
256–267, June 1991.

[PF92] T. A. Proebsting and C. N. Fischer. Probabilistic Register Allocation. InProc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, pp. 300–310, June 1992.

[PF94] T. A. Proebsting and C. W. Fraser. Detecting Pipeline Structural Hazards Quickly. InProc. 21st
ACM SIGPLAN Symp. Principles of Programming Languages, 1994.

[PG88] E. Pelegri-Llopart and S. L. Graham. Optimal Code Generation for Expression Trees: An Applica-
tion of BURS Theory. InProc. ACM SIGPLAN Symp. Principles of Programming Languages, pp.
294–308, 1988.

[PH95] M. Philippsen and E. Heinz. Automatic Synchronization Elimination in Synchronous FORALLs.
In Proc. 5th Symp. Frontiers of Massively Parallel Computation, 1995.

[Pin93] S. Pinter. Register allocation with instruction scheduling: a new approach. InProc. ACM SIGPLAN
Conf. Programming Language Design and Implementation. ACM Press, 1993.

[PM94] M. Philippsen and M. U. Mock. Data and Process Alignment in Modula-2*. InProc. AP’93
[Keß94], pp. 177–191, 1994.

310 BIBLIOGRAPHY

[PP91] S. S. Pinter and R. Y. Pinter. Program Optimization and Parallelization Using Idioms. InProc.
ACM SIGPLAN Symp. Principles of Programming Languages, pp. 79–92, 1991.

[PP94] S. Paul and A. Prakash. A Framework for Source Code Search using Program Patterns.IEEE
Trans. on Software Engineering, 20(6):463–475, 1994.

[Pro98] T. Proebsting. Least-cost Instruction Selection for DAGs is NP-Complete. unpublished,
http://www.research.microsoft.com/ toddpro/papers/proof.htm, 1998.

[PS85] F. P. Preparata and M. I. Shamos.Computational Geometry — an Introduction. Springer–Verlag,
New York, 1985.

[PS90] K. V. Palem and B. B. Simons. Scheduling time–critical instructions on RISC machines. InProc.
17th ACM SIGPLAN Symp. Principles of Programming Languages, pp. 270–280, 1990.

[PS93] K. V. Palem and B. B. Simons. Scheduling time–critical instructions on RISC machines.ACM
Trans. Program. Lang. Syst., 15(4), Sept. 1993.

[PT78] W. J. Paul and R. E. Tarjan. Time–space trade–offs in a pebble game.Acta Informatica, 10:111–
115, 1978.

[PT92] M. Philippsen and W. F. Tichy. Compiling for Massively Parallel Machines. InCode Generation:
Concepts, Tools, Techniques[GG91], pp. 92–111, 1992.

[PTC77] W. J. Paul, R. E. Tarjan, and J. Celoni. Space bounds for a game on graphs.Math. Systems Theory,
10:239–251, 1977.

[PTM96] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory: Concepts and Systems.
IEEE Parallel & Distributed Technology, 4(2):63–79, 1996.

[PTVF92] W. H. Press, S. A. Teukolski, W. T. Vetterling, and B. P. Flannery.Numerical Recipes in C — The
Art of Scientific Computing, second edition. Cambridge University Press, 1992.

[PW96] T. A. Proebsting and B. R. Whaley. One-pass, optimal tree parsing — with or without trees. In
T. Gyimothy, ed.,Compiler Construction (CC’96), pp. 294–308. Springer LNCS 1060, 1996.

[QH90] M. J. Quinn and P. Hatcher. Data-Parallel Programming on Multicomputers.IEEE Software, pp.
124–131, Sept. 1990.

[QHS91] M. J. Quinn, P. J. Hatcher, and B. Seevers. Implementing a Data-Parallel Language on Tightly
Coupled Multiprocessors. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, eds.,Advances
in Languages and Compilers for Parallel Processing, pp. 385–401. Pitman / MIT Press, London,
1991.

[RAA+93] B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards, and W. Smith. The Paragon
performance monitoring environment. InProc. Supercomputing ’93, pp. 850–859. IEEE Computer
Society Press, 1993.

[Ran87] A. G. Ranade. How to emulate shared memory. InProc. 28th Annual IEEE Symp. Foundations of
Computer Science, pp. 185–194, 1987.

[RAN+93] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F. Tavera.
Scalable Performance Analysis: The Pablo Performance Analysis Environment. InProc. Scalable
Parallel Libraries Conf., pp. 104–113. IEEE Computer Society Press, 1993.

[RBJ88] A. G. Ranade, S. N. Bhatt, and S. L. Johnson. The Fluent Abstract Machine. InProc. 5th MIT
Conference on Advanced Research in VLSI, pp. 71–93, Cambridge, MA, 1988. MIT Press.

[RF93] X. Redon and P. Feautrier. Detection of Recurrences in Sequential Programs with Loops. InProc.
Conf. Parallel Architectures and Languages Europe, pp. 132–145. Springer LNCS 694, 1993.

[Röh96] J. R̈ohrig. Implementierung der P4-Laufzeitbibliothek auf der SB-PRAM. Diploma thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany, 1996.

[RP89] A. Rogers and K. Pingali. Process Decomposition Through Locality of Reference. InProc. ACM
SIGPLAN Conf. Programming Language Design and Implementation, pp. 69–89. ACM Press,
1989.

BIBLIOGRAPHY 311

[RP94] L. Rauchwerger and D. Padua. The Privatizing DOALL Test: A Run-Time Technique for DOALL
Loop Identification and Array Privatization. InProc. 8th ACM Int. Conf. Supercomputing, pp.
33–43. ACM Press, July 1994.

[RR98] T. Rauber and G. R̈unger. Compiler Support for Task Scheduling in Hierarchical Execution Models.
J. Systems Architecture, 45:483–503, 1998.

[RR99] T. Rauber and G. R̈unger. A coordination language for mixed task and data parallel programs. In
Proc. 13th Annual ACM Symp. Applied Computing, pp. 146–155, San Antonio, Texas, 1999.

[RR00] T. Rauber and G. R̈unger. A Transformation Approach to Derive Efficient Parallel Implementations.
IEEE Trans. on Software Engineering, 26(4):315–339, 2000.

[RS87] J. Rose and G. Steele. C*: an Extended C Language for Data Parallel Programming. Technical
Report PL87-5, Thinking Machines Inc., Cambridge, MA, 1987.

[RS92] G. R̈unger and K. Sieber. A Trace-Based Denotational Semantics for the PRAM-Language
FORK. Technical Report C1-1/92, Sonderforschungsbereich 124 VLSI-Entwurfsmethoden und
Paralleliẗat, Universiẗat des Saarlandes, Saarbrücken, Germany, 1992.

[RW90] C. Rich and L. M. Wills. Recognizing a Program’s Design: A Graph-Parsing Approach.IEEE
Software, pp. 82–89, Jan. 1990.

[Saa94] Y. Saad. SPARSKIT: a basic tool kit for sparse matrix computations, Version 2. Research report,
University of Minnesota, Minneapolis, MN 55455, June 1994.

[Sch73] J. T. Schwartz. On Programming: An Interim Report on the SETL Project. Technical report,
Courant Institute of Math. Sciences, New York University, 1973.

[Sch91] A. Schmitt. A Formal Semantics ofFORK. Technical Report C1-11/91, Sonderforschungsbereich
124 VLSI-Entwurfsmethoden und Parallelität, Universiẗat des Saarlandes, Saarbrücken, Germany,
1991.

[Sch92] A. Schmitt.Semantische Grundlagen der PRAM-SpracheFORK. PhD thesis, Universität des Saar-
landes, Saarbrücken, Germany, 1992.

[Sch97] R. Schreiber. High Performance Fortran, Version 2.Parallel Processing Letters, 7(4):437–449,
1997.

[SDB93] A. Skjellum, N. Dorr, and P. Bangalore. Writing Libraries in MPI. InScalable Parallel Libraries
Conf.IEEE Computer Society Press, 1993.

[Sei93] H. Seidl. Equality of Instances of Variables inFORK. Technical Report C1-6/93, Sonderforschungs-
bereich 124 VLSI-Entwurfsmethoden und Parallelität, Universiẗat des Saarlandes, Saarbrücken,
Germany, 1993.

[Sei00] H. Seidl. Personal communication, 2000.

[Set75] R. Sethi. Complete register allocation problems.SIAM J. Comput., 4:226–248, 1975.

[Set76] R. Sethi. Scheduling graphs on two processors.SIAM J. Comput., 5(1):73–82, 1976.

[SG89] M. K. Seager and A. Greenbaum. Slap: Sparse Linear Algebra Package, Version 2. Source code
available via netlib [NET], 1989.

[SMS96] T. Sterling, P. Merkey, and D. Savarese. Improving Application Performance on the HP/Convex
Exemplar.IEEE Comput., 29(12):50–55, 1996.

[Sny82] L. Snyder. Recognition and Selection of Idioms for Code Optimization.Acta Informatica, 17:327–
348, 1982.

[SO97] E. A. Sẗohr and M. F. P. O’Boyle. Barrier Synchronisation Optimisation. InProc. HPCN Europe
1997. Springer LNCS 1225, Apr. 1997.

[SOH+96] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI: The Complete Reference.
MIT Press, 1996.

312 BIBLIOGRAPHY

[SR00] M. S. Schlansker and B. R. Rau. EPIC: Explicitly Parallel Instruction Computing.IEEE Comput.,
33(2):37–45, Feb. 2000.

[SS96] V. Sarkar and B. Simons. Anticipatory Instruction Scheduling. InProc. 8th Annual ACM Symp.
Parallel Algorithms and Architectures, pp. 119–130. ACM Press, June 24–26 1996.

[SSK95] L. Scḧafers, C. Scheidler, and O. Krämer-Fuhrmann. Trapper: A graphical programming environ-
ment for parallel systems.Future Generation Computer Systems, 11(4-5):351–361, Aug. 1995.

[ST95] D. B. Skillicorn and D. Talia, eds.Programming Languages for Parallel Processing. IEEE Com-
puter Society Press, 1995.

[ST98] D. B. Skillicorn and D. Talia. Models and Languages for Parallel Computation.ACM Computing
Surveys, June 1998.

[SU70] R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions.J. ACM,
17:715–728, 1970.

[Sun90] V. Sunderam. PVM: A framework for parallel distributed computing.Concurrency – Pract. Exp.,
2(4):315–339, 1990.

[SW93] G. Sabot and S. Wholey. Cmax: a Fortran Translator for the Connection Machine System. InProc.
7th ACM Int. Conf. Supercomputing, pp. 147–156, 1993.

[SWGG97] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. A Register Pressure Sensitive Instruction
Scheduler for Dynamic Issue Processors. InProc. PACT’97 Int. Conf. Parallel Architectures and
Compilation Techniques(PACT). IEEE Computer Society Press, Nov. 1997.

[SY97] J. Subhlok and B. Yang. A New Model for Integrated Nested Task and Data Parallel Programming.
In Proc. 6th ACM SIGPLAN Symp. Principles and Practice of Parallel Programming. ACM Press,
June 1997.

[Thi92] Thinking Machines Corp. Connection Machine Model CM-5. Technical Summary. TMC, Cam-
bridge, MA, Nov. 1992.

[THS98] O. Traub, G. Holloway, and M. D. Smith. Quality and Speed in Linear-scan Register Allocation.
In Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 142–151,
1998.

[Tie89] M. D. Tiemann. The GNU instruction scheduler. CS343 course report, Stanford University,
http://www.cygnus.com/ tiemann/timeline.html, 1989.

[TPH92] W. F. Tichy, M. Philippsen, and P. Hatcher. A Critique of the Programming Language C*.Comm.
ACM, 35(6):21–24, June 1992.

[Tse95] C.-W. Tseng. Compiler Optimizations for Eliminating Barrier Synchronization. InProc. ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming, pp. 144–155. ACM Press, 1995.

[UH95] G. Utard and G. Hains. Deadlock-free absorption of barrier synchronisations.Inform. Process.
Lett., 56:221–227, 1995.

[Ung95] T. Ungerer.Mikroprozessortechnik. Thomson, 1995.

[UZSS96] M. Ujaldon, E. L. Zapata, S. Sharma, and J. Saltz. Parallelization Techniques for Sparse Matrix
Applications.J. Parallel and Distrib. Comput., 38(2), Nov. 1996.

[Val90] L. G. Valiant. A Bridging Model for Parallel Computation.Comm. ACM, 33(8), Aug. 1990.

[Veg92] S. R. Vegdahl. A Dynamic-Programming Technique for Compacting Loops. InProc. 25th Annual
IEEE/ACM Int. Symp. Microarchitecture, pp. 180–188. IEEE Computer Society Press, 1992.

[VS95] R. Venugopal and Y. Srikant. Scheduling expression trees with reusable registers on delayed-load
architectures.Computer Languages, 21(1):49–65, 1995.

[Wan93] K.-Y. Wang. A Framework for Static, Precise Performance Prediction for Superscalar-Based Par-
allel Computers. In H. Sips, ed.,Proc. 4th Workshop on Compilers for Parallel Computers, Dec.
1993.

BIBLIOGRAPHY 313

[War90] H. Warren. Instruction scheduling for the IBM RISC System/6000 processor.IBM J. Res. Develop.,
34(1):85–92, Jan. 1990.

[Wel92] M. Welter. Analysen zur̈Ubersetzung von FORK, Teil 2. Diploma thesis, Universität des Saarlan-
des, Saarbrücken, Germany, 1992.

[Wil79] R. Wilhelm. Computation and Use of Data Flow Information in Optimizing Compilers.Acta
Informatica, 12:209–225, 1979.

[Wil88] J. M. Wilson. Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-
and-Add. PhD thesis, Dept. of Computer Science, New York University, June 1988.

[Wil90] L. M. Wills. Automated program recognition: a feasibility demonstration.Artificial Intelligence,
45, 1990.

[WKE95] J. Wang, A. Krall, and M. A. Ertl. Software Pipelining with Reduced Register Requirements. In
Proc. Int. Conf. Parallel Architectures and Compilation Techniques(PACT), 1995.

[WLH00] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer programming.
In Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, pp. 121–133,
2000.

[Wol94] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1994.

[WW88] B. Weisgerber and R. Wilhelm. Two Tree Pattern Matchers for Code Generation. InSpringer LNCS
vol. 371, pp. 215–229, 1988.

[YHL93] J. Yan, P. Hontalas, and S. Listgarten et al. The Automated Instrumentation and Monitoring System
(AIMS) reference manual. Technical Report Memorandum 108795, NASA Ames Research Center,
Moffett Field, CA, 1993.

[YWL89] C.-I. Yang, J.-S. Wang, and R. C. T. Lee. A branch-and-bound algorithm to solve the equal-
execution time job scheduling problem with precedence constraints and profile.Computers Op-
erations Research, 16(3):257–269, 1989.

[ZBG88] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD parallelization.
Parallel Computing, 6:1–18, 1988.

[ZC90] H. Zima and B. Chapman.Supercompilers for Parallel and Vector Computers. ACM Press Frontier
Series. Addison-Wesley, 1990.

[Zha96] L. Zhang.SILP. Scheduling and Allocating with Integer Linear Programming. PhD thesis, Tech-
nische Fakulẗat der Universiẗat des Saarlandes, Saarbrücken (Germany), 1996.

[Zla91] Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer Academic Publisher,
1991.

[ZWS81] Z. Zlatev, J. Wasniewsky, and K. Schaumburg.Y12M - Solution of Large and Sparse Systems of
Linear Algebraic Equations. Springer LNCS vol. 121, 1981.

[ZYC96] X. Zhang, Y. Yan, and R. Castaneda. Evaluating and Designing Software Mutual Exclusion Algo-
rithms on Shared-Memory Multiprocessors.IEEE Parallel & Distributed Technology, 4(1):25–42,
1996.

314 BIBLIOGRAPHY

Appendix D

List of Publications

This is a list of my publications, classified as textbooks, refereed journal papers, refereed
conference papers, invited conference and workshop papers, theses, and miscellaneous publi-
cations like technical reports. Within each of these categories, the publications are sorted in
chronological order.

Textbook

[B1] Jörg Keller, Christoph W. Keßler, and Jesper L. Träff. Practical PRAM Program-
ming.Textbook, 596 pages. Wiley, New York, 2000.

Refereed Journal Papers

[J1] Christoph W. Keßler and Thomas Rauber.Generating Optimal Contiguous Evalua-
tions for Expression DAGs.Computer Languages21(2), 1995.

[J2] Christoph W. Keßler.Pattern-Driven Automatic Parallelization.Scientific Program-
ming5, pp. 251-274, 1996.

[J3] Christoph W. Keßler and H. Seidl.The Fork95 Parallel Programming Language:
Design, Implementation, Application.International Journal on Parallel Program-
ming25(1), pp. 17-50, Plenum Press, Feb. 1997.

[J4] Christoph W. Keßler. Scheduling Expression DAGs for Minimal Register Need.
Computer Languages24(1), pp. 33-53, Elsevier, 1998.

[J5] Christoph W. Keßler and Jesper L. Träff. Language and Library Support for Practi-
cal PRAM Programming.Parallel Computing25: 105–135, Elsevier, 1999.

[J6] Beniamino di Martino and Christoph W. Keßler.Two Program Comprehension Tools
for Automatic Parallelization.IEEE Concurrency8(1), 37–47, 2000.

[J7] Christoph W. Keßler.NestStep: Nested Parallelism and Virtual Shared Memory for
the BSP model.The Journal of Supercomputing, to appear (2000).

315

316 Appendix D. List of Publications

Refereed International Conference Papers

[C1] Christoph W. Keßler, Wolfgang J. Paul, and Thomas Rauber.A randomized heuris-
tic approach to register allocation.Proc. of 3rd Int. Symposium on Progr. Lang.
Implementation and Logic Programming (PLILP’91), Passau, Germany, Aug. 1991,
Springer LNCS.

[C2] Christoph W. Keßler, Wolfgang J. Paul, and Thomas Rauber.Scheduling Vector
Straight Line Code on Vector Processors.in: R. Giegerich and S. Graham [Eds.]:
Code Generation - Concepts, Techniques, Tools. Springer Workshops in Computer
Science, Springer, 1992.

[C3] Christoph W. Keßler and Thomas Rauber.Efficient Register Allocation for Large
Basic Blocks. Proc. of 5th Int. Symposium on Progr. Lang. Implementation and
Logic Programming (PLILP’93), Springer LNCS 714, 1993.

[C4] Christoph W. Keßler and Wolfgang J. Paul.Automatic Parallelization by Pattern
Matching. Proc. of 2nd Int. ACPC Conference, Gmunden, Austria, Oct. 1993,
Springer LNCS Vol. 734.

[C5] Christoph W. Keßler.Exact Array Data Flow Analysis and Pattern Recognition in
Dense Matrix Computations.In: K.M. Decker and R. Rehmann [Eds.]: Proc. of IFIP
WG10.3 Working Conference on Programming Environments for Massively Parallel
Systems, Verlag Birkḧauser, April 1994.

[C6] Christoph W. Keßler.Pattern-Driven Automatic Program Transformation and Paral-
lelization.Proc. of 3rd Euromicro Workshop on Parallel and Distributed Processing,
San Remo, Italy, Jan. 1995. IEEE CS Press.

[C7] Christoph W. Keßler and Thomas Rauber.Optimal Contiguous Expression DAG
Evaluations.Proc. Int. Conf. on Fundamentals of Computation Theory (FCT’95),
Dresden, Germany, Aug. 1995, Springer LNCS.

[C8] Christoph W. Keßler and Helmut Seidl.Integrating Synchronous and Asynchronous
Paradigms: the Fork95 Parallel Programming Language.Proc. of MPPM-95 Con-
ference on Massively Parallel Programming Models, Berlin, Oct. 9-12, 1995, IEEE
CS press. See also: Technical Report Nr. 95-05 of University of Trier, Department
for Mathematics and Computer Science, May 1995.

[C9] Beniamino di Martino and Christoph W. Keßler.Program Comprehension Engines
for Automatic Parallelization: A Comparative Study.Proc. of 1st Int. Workshop on
Software Engineering for Parallel and Distributed Systems, Chapman&Hall, March
25-26, 1996, Berlin, Germany.

[C10] Christoph W. Keßler and Jesper L. Träff. A Library of Basic PRAM Algorithms
in FORK (Research Summary).Proc. of SPAA’96 ACM Symposium on Parallel
Algorithms and Architectures, Padua, Italy, June 24-26, 1996. ACM Press.

[C11] Christoph W. Keßler.Parallel Fourier-Motzkin Elimination.Proc. of Euro-Par’96,
Lyon, France, Aug. 1996. Springer LNCS 1124, pp. 66-71.

317

[C12] Christoph W. Keßler. Scheduling Expression DAGs for Minimal Register Need.
Technical Report 96-12, Univ. Trier, FB IV Mathematik/Informatik. Proc. of 8th Int.
Symposium on Programming Languages: Implementations, Logics, and Programs
(PLILP’96), Springer LNCS 1140, pp. 228-242, Aachen, Sept. 27-29, 1996.

[C13] Christoph W. Keßler and Jesper L. Träff. Language and Library Support for Prac-
tical PRAM Programming.Proc. of PDP’97 Fifth Euromicro Workshop on Parallel
and Distributed Processing, London, UK, Jan. 22-24, 1997, pp. 216-221. IEEE CS
Press.

[C14] Christoph W. Keßler and Helmut Seidl.Language Support for Synchronous Parallel
Critical Sections.Proc. APDC’97 Int. Conf. on Advances in Parallel and Distributed
Computing, Shanghai, China, March 19–21, 1997. IEEE CS Press.

[C15] Christoph W. Keßler.Applicability of Program Comprehension to Sparse Matrix
Computations.Proc. of Euro-Par’97, Passau, Aug. 26-28, 1997, Springer LNCS
vol. 1300.

[C16] Christoph W. Keßler and Helmut Seidl.ForkLight: A Control–Synchronous Par-
allel Programming Language.Proc. HPCN’99 High-Performance Computing and
Networking, Amsterdam, Apr. 12–14, 1999, pages 525–534. Springer LNCS vol.
1593.

[C17] Christoph W. Keßler and Craig H. Smith.The SPARAMAT Approach to Automatic
Comprehension of Sparse Matrix Computations.Proc. IWPC’99 Int. Workshop on
Program Comprehension, Pittsburgh, May 5-7, 1999. 8 pages. IEEE CS Press. Long
version: see [M11]

[C18] Christoph W. Keßler.NestStep: Nested Parallelism and Virtual Shared Memory for
the BSP model.Proc. PDPTA’99 Int. Conf. on Parallel and Distributed Processing
Techniques and Applications Vol. II, pages 613–619. CSREA Press, June 28–July 1
1999.

Invited Conference / Workshop Papers

[I1] Christoph W. Keßler.Pattern Recognition Enables Automatic Parallelization of Nu-
merical Codes.in: H.J. Sips [Ed.]: Proc. of CPC’93 4th Int. Workshop on Compilers
for Parallel Computers, Delft University of Technology, the Netherlands, Dec. 13-
16, 1994. pp. 385-397

[I2] Christoph W. Keßler.The PARAMAT Project: Current Status and Plans for the
Future. Proc. of AP’95 2nd Workshop on Automatic Data Layout and Performance
Prediction, CRPC-TR95548, Rice University, Houston, Apr. 1995.

[I3] Christoph W. Keßler and Helmut Seidl.Fork95 Language and Compiler for the SB-
PRAM.Proc. of CPC’95 5th Int. Workshop on Compilers for Parallel Computers,
Malaga, June 28-30, 1995.

318 Appendix D. List of Publications

[I4] Christoph W. Keßler and Helmut Seidl.Language and Compiler Support for Syn-
chronous Parallel Critical Sections.Proc. of CPC’96 6th Int. Workshop on Com-
pilers for Parallel Computers, Aachen, Dec. 1996. See also: Technical Report Nr.
95-23 of University of Trier, Departement for Mathematics and Computer Science,
Nov. 1995.

[I5] Christoph W. Keßler.On the Applicability of Program Comprehension Techniques
to the Automatic Parallelization of Sparse Matrix Computations.Proc. of AP’97
3rd Workshop on Automatic Data Layout and Performance Prediction, Research
report of Departament d’Arquitectura de Computadors, Universitat Polytechnica de
Catalunya, Barcelona, Spain, Jan. 1997.

[I6] Arno Formella and Thomas Grün and Christoph W. Keßler.The SB-PRAM: Con-
cept, Design and Construction.Proceedings of MPPM-97 3rd Int. Conference on
Massively Parallel Programming Models, London, Nov. 1997. IEEE Computer So-
ciety Press, 1998.

[I7] Christoph W. Keßler.Applicability of Automatic Program Comprehension to Sparse
Matrix Computations.Proc. of CPC’98 7th Int. Workshop on Compilers for Parallel
Computers, Link̈oping (Sweden), pp. 218-230, July 1998.

[I8] Christoph W. Keßler.NestStep: Nested Parallelism and Virtual Shared Memory for
the BSP Model.(see also: [C18]) Proc. of CPC’00 8th Int. Workshop on Compilers
for Parallel Computers, Aussois (France), pp. 13-19, Jan. 2000.

Diploma and PhD Thesis

[D1] Christoph W. Keßler.Code–Optimierung quasi–skalarer vektorieller Grundblöcke
für Vektorrechner. Diploma thesis, 65 pages, Universität des Saarlandes,
Saarbr̈ucken, Germany, 1990.

[D2] Christoph W. Keßler. Automatische Parallelisierung Numerischer Programme
durch Mustererkennung.Ph.D. dissertation, 200 pages, Universität des Saarlandes,
Saarbr̈ucken, Germany, 1994.

Miscellaneen

[M1] Christoph W. Keßler. Knowledge-Based Automatic Parallelization by Pattern
Recognition.in: C.W. Keßler [Ed.]: Automatic Parallelization - New Approaches
to Code Generation, Data Distribution, and Performance Prediction, Verlag Vieweg,
Wiesbaden, 1994.

319

[M2] Christoph W. Keßler [Editor].Automatic Parallelization - New Approaches to Code
Generation, Data Distribution, and Performance Prediction.Book (221 pages, soft-
cover), Vieweg Advanced Studies in Computer Science, Verlag Vieweg, Wiesbaden
1994, ISBN 3-528-05401-8.
Based on the Proc. of AP’93 First Int. Workshop on Automatic Parallelization, Au-
tomatic Data Distribution and Automatic Parallel Performance Prediction, held in
March 1-3,1993, at Saarbrücken, Germany.

[M3] Christoph W. Keßler.Pattern-Driven Automatic Parallelization, Data Distribution,
and Performance Prediction.in: Poster contributions at CONPAR’94, Technical
report No. 94-48 of RISC Linz, Austria, Sept. 1994. pp. 17-20

[M4] Christoph W. Keßler and Helmut Seidl.Making FORKPractical. Technical Re-
port 01/95, Sonderforschungsbereich 124 VLSI–Entwurfsmethoden und Parallelität,
Universiẗat Saarbr̈ucken, 1995.

[M5] Christoph W. Keßler. Automatische Parallelisierung.Vorlesungsskript (Course
script), University of Trier, Department for Mathematics and Computer Science, SS
1995.

[M6] Christoph W. Keßler. Scheduling Expression DAGs for Minimal Register Need.
Technical Report 96-12, Univ. Trier, FB IV Mathematik/Informatik.

[M7] Christoph W. Keßler.Parallel Fourier-Motzkin Elimination.Manuscript, University
of Trier, Department for Mathematics and Computer Science, Feb. 1997.

[M8] Christoph W. Keßler.Practical PRAM Programming in Fork95 - A Tutorial.Tech-
nical Report No. 97-12, University of Trier, Department for Mathematics and Com-
puter Science, 62 pages, May 1997.

[M9] Beniamino di Martino and Christoph W. Keßler.Two Program Comprehension Tools
for Automatic Parallelization: A Comparative Study.Technical Report No. 97-23,
University of Trier, Department for Mathematics and Computer Science, 23 pages,
Nov. 1997.

[M10] Christoph W. Keßler and Helmut Seidl.ForkLight: A Control-Synchronous Parallel
Programming Language.Technical Report No. 98-13, University of Trier, Depart-
ment for Mathematics and Computer Science, 19 pages, Sep. 1998.

[M11] Christoph W. Keßler and Helmut Seidl and Craig H. Smith.The SPARAMAT Ap-
proach to Automatic Comprehension of Sparse Matrix Computations.Technical
Report No. 99-10, University of Trier, Department for Mathematics and Computer
Science, 21 pages, March 1999. Short version: see [C17]

320 Appendix D. List of Publications

Index

abstract syntax tree, 76
AC, 222
access descriptor, 104
activity block of a group, 122
activity region of a group, 122, 137
ADD concept, 87
alive nodes, 42
alloc function, 145
ANSI C, 124
ASSIGN concept, 88
async type qualifier, 133
asynchronous access, 257
asynchronous execution mode, 132, 133
asynchronous function, 126, 133, 136
Asynchronous PRAM, 259
asynchronous program region, 132, 133, 136
atomic operation, 147
atomic_add , 260
automatic data layout, 77
automatic parallelization, 77
automatic performance prediction, 77
available processors, 253

backward substitution, 89
barrier statement, 146
basic block, 22, 192
basic concepts, 84
bisector, 61
BSPlib, 263
bucket sort, 100
bulk array access, 103

Cilk, 222
clause, 109, 111
CM-Fortran, 223
code motion, 99
combine phase, 210

combine strategy, 210
completesearchalgorithm, 30
CON concept, 87
concept, 76
concept comprehension, 76
concept idiom, 76
concept instance, 76
concept instance list, 107
concept instance parameters, 76
concept instance slot, 76
concept occurrence, 76
cone, 23
constant constructor concepts, 84, 87
context switch, 253
contiguous schedule, 26
control-synchronicity, 192
control-synchronous, 192
COO, 79
coordinate storage format, 79
critical section, 147
cross edge, 93, 103
cross-processor data dependence, 252
cross-processor data dependence graph, 262
CSL, 115
CSP, 221
CSR, 80
CUR, 80

DAG (directed acyclic graph), 22
data dependence

cross-processor, 252
data parallelism, 180, 223, 226
data structure replacement, 78, 83
dataparallel code, 261
deadlock, 149
debugging support, 78
debugging support in CSL, 114

321

322 INDEX

decision node, 27
delayed format resolution, 103
dense matrix, 75, 79, 83
dense storage format, 79
descendalgorithm, 31
descend2algorithm, 34, 36
direct remote memory access, 263
dispatcher, 253
DNS, 79
dot product, 76, 85, 187
DRMA, 263

EMPTY concept, 88, 103
EPEX/FORTRAN, 222
EPIC (explicitly parallel instruction com-

puting), 259
event, 167
export node, 33
expression

private, 131
shared, 131

extended selection node, 55

fair lock, 150
implementation, 242

FairLock data type, 150, 243
fair_lock data type, 243
fair_lock_init function, 150, 243
fair_lockup function, 151, 243
fair_unlock function, 151, 243
farm statement, 134
fcc Fork compiler, 231
fetch_add , 260
fig2dev program, 169
fill node, 104
FORK, 175
Fork, 122
fork-join style, 125
Fork95, 176
ForkLight, 120, 177, 189
Fortran90, 223
forward substitution, 89
free function, 145

Gantt chart, 169

generator, 101
GETELM concept, 89
Givens rotation, 89
group frame

private, 234
shared, 234

group heap, 145
group-splitting construct, 121
group-splitting constructs, 137
groupsize function, 137

harmful return statement, 237
Harwell MA28 package, 82
Harwell MA30 package, 83
horizontal matching, 103, 104
Hu’s algorithm, 67, 69

IBURG, 116
ICON concept, 87
idiom, 76
idiom occurrence, 76
ilog2() operator, 131
import node, 33
INCR concept, 87
indexed vector, 78
initTracing function, 168, 247
injectivity, 94, 100
inspector–executor method, 76
instance, 76
instruction scheduling, 16
instruction selection, 15
integer linear programming, 68
intermediate program representation (IR),

76, 91, 101
intersection of array accesses, 103
IR (intermediate representation), 13
IV concept, 78, 87
IVAR concept, 87
IVCON concept, 87
IVEXP concept, 87
IVX concept, 87

join statement, 155

labelfsalgorithm, 28
labelfs2algorithm, 37

INDEX 323

lcc C compiler, 231
leading dimension, 79
level of a node, 67
lightweight process, 253
Linda, 222
list schedule, 23
list scheduling algorithm, 23
live region of a group, 122, 137
LNK, 83
lock, 147

fair, 150, 242
reader–writer, 151, 244
reader–writer–deletor, 152, 246
simple, 147, 242

logical processors, 253
lower cone, 23
LU decomposition, 83, 89, 90
LU factorization, 76

malloc function, 145
mapskeleton function, 181
MAPmacro, 182
Map2 nestable skeleton function, 183
map2 skeleton function, 181
MASSIGN concept, 88
matrix–matrix multiplication, 76, 83, 89
matrix–vector multiplication, 76, 79–83, 89,

188
maximal synchronous ancestor group, 258
may-intersect, 104
MCNVTM concept, 89
MCOLLM concept, 89
memory access concepts, 84, 86
MEXPV concept, 89
MGETL concept, 89
MGETSUBM concept, 89
MGETU concept, 89
MMAPM concept, 88
MMAPMM concept, 88
MMAPMS concept, 88
MMAPMV concept, 88
MMAPVV concept, 88
MMATMULMM concept, 89
MMLUD concept, 89

modified row-compressed storage format,
81

modulo bit, 130, 244, 245
monotonicity, 94, 100
mpadd operator, 129, 148
mpand operator, 130
MPI, 221
MPI-2, 221, 263
mpmaxoperator, 130, 148
mpor operator, 130
MPRMCOL concept, 89
MPRMROW concept, 89
MRIS problem, 16
MSETCOL concept, 89
MSETDIA concept, 89
MSETELM concept, 89
MSETROW concept, 89
MSETSUBM concept, 89
MSR, 81
MTAB concept, 89
MTIS problem, 17
MTRANSPM concept, 89
MUL concept, 87
multiprefix operators, 129
must-intersect, 104
mutex variable, 147
mutual exclusion, 147

nccalgorithm, 45
ncealgorithm, 41
ncnalgorithm, 52
ncvalgorithm, 47
NESL, 223
NestStep, 120, 178, 201
new_FairLock constructor, 150, 243
new_RWLockconstructor, 151, 245
new_RWDLockconstructor, 152
nonpreemptive scheduling, 253, 256
__NUM_PR__, 157

Occam, 221
occurrence, 76
one-sided communication, 263
OpenMP, 223, 227
OPTRAN, 116

324 INDEX

organizational variables, 75
out-of-order completion, 54
out-of-order issue, 54

PAP Recognizer, 116
PARAMAT, 116
ParC, 222
partial redundancy elimination, 99
pattern unit, 111
PCP, 222, 223
percolation scheduling, 18
phase, 170
phase ordering problem, 20
pointers

to functions, 146
Polaris compiler, 101
postcondition, 96
pramsim , 253
preemptive scheduling, 253, 256
prefetching, 264
private group frame, 234
procedure frame

private, 233
shared, 233

processor–time diagram, 169
program comprehension, 76
program dependence graph, 76
program maintenance support, 78
program understanding, 78
pthreads, 221
PUMA, 116
PVM, 221

race condition, 147
random schedule, 57
RANGE concept, 87
range object, 105
__RANK__, 157
RCMTIS problem, 17
reader–writer lock, 151

implementation, 244
reader–writer–deletor lock, 152

implementation, 246
recomputation, 66
Reduce nestable skeleton function, 189

reduce skeleton function, 186
reduction, 184
region scheduling, 18
register allocation, 19, 23
register need, 24
regular sections descriptor, 105
result type, 106
row-compressed sorted storage format, 80
row-compressed unsorted storage format, 80
RW_DELETE, 152, 246
RW_READ, 151, 152, 245
RW_WRITE, 151, 152, 245
RWDLockdata type, 152
RWDLockdata type, 246
rwd_lockup function, 152
rwd_unlock function, 152
RWLockdata type, 151, 244
rw_lock data type, 244
rw_lockup function, 151, 245
rw_unlock function, 152, 246

SCAL concept, 88
schedule, 23
scheduling

nonpreemptive, 253, 256
preemptive, 253, 256

SDOTVV concept, 85
SDOTVVX concept, 92
selection DAG, 42
selection edge, 42
selectionfunction, 41
selection node, 42
selection tree, 40
selector expression, 107
semaphore, 147
seq statement, 134
shallfree function, 146
shalloc function, 145
shape, 84
shared group frame, 234
sharity, 127
shfree function, 145
shmalloc function, 145
SIMD code, 253, 254, 261

INDEX 325

simple lock, 147
implementation, 242

simple_lock_init macro, 149, 242
simple_lockup function, 149, 242
simple_unlock macro, 149, 242
skeleton function, 178, 179

nestable, 182
skeleton-oriented programming style, 178
skeletons, 85, 178, 227

composition of, 178, 182
versus library routines, 179

SLAP package, 79, 80
slot, 76
slot type, 106
SMRTIS problem, 17
software pipelining, 18
space-inferior, 56
space-optimal, 24
SPARAMAT, 76, 101
SPARAMAT driver, 101, 102
sparse matrix, 75, 79
sparse matrix data structures, 79
SPARSE package, 83
sparsity pattern, 75, 83
SPARSKIT package, 79
spill code, 63
spilling, 63
Split-C, 222
SPMD, 119
SPMD style, 125
SRCH concept, 88
SREDLOCV concept, 88
SREDV concept, 88
start statement, 135
startTracing function, 168
stopTracing function, 168, 248
storage formats, 79
straight function, 126, 133, 136
straight program region, 132, 133, 136
straight region, 132
straight type qualifier, 133
strict synchronicity

invariant, 131
STRIP concept, 87

subgroup creation, 137
sync type qualifier, 133
syncadd function, 130
syncadd_m0 function, 130
syncadd_m1 function, 130
syncand function, 130
syncand_m0 function, 130
syncand_m1 function, 130
synchronicity, 132

of a function, 133
synchronization

bilateral, 262
synchronous execution mode, 131–133
synchronous function, 126, 133, 136
synchronous program region, 132, 133, 136
syncmax function, 130
syncmax_m0 function, 130
syncmax_m1 function, 130
syncor function, 130
syncor_m0 function, 130
syncor_m1 function, 130

task parallelism, 226
task scheduling, 253
template, 84, 85, 91, 101, 103, 109, 111
Tera-C, 222
thread, 253
time profile, 55
time–space profile, 55
time-inferior, 56
time-optimal, 50
topological sorting, 23, 40
trace buffer, 167
trace event, 167, 247
trace file, 168, 248
trace scheduling, 17
TraFoLa, 116
tree node, 27
trigger concept, 91, 103
trigger graph, 91, 101, 103
trv program, 169
trvc program, 169
tuple space, 222
Twig, 116

326 INDEX

TXL, 116

upper cone, 23
usage mode, 106

V concept, 78, 87
value-based data flow dependence, 93
VAR concept, 86
VASSIGN concept, 88
VCOLL concept, 88
VCON concept, 87
vector, 78
Vector-C, 223
vertical matching, 102, 103
VEXP concept, 87
VGETCOL concept, 89
VGETDIA concept, 89
VGETROW concept, 89
VINCR concept, 88
virtualization, 253
VLSOLVEMV concept, 89
VMAPV concept, 88
VMAPVS concept, 88
VMAPVV concept, 88
VMATVECMV concept, 85, 89, 108
VPREFV concept, 88
VROT concept, 89
VSORT concept, 88
VSUFFV concept, 88
VSWAP concept, 88
VTAB concept, 87
VUPDROW concept, 90
VUSOLVEMV concept, 89
VVECMATMV concept, 89
VX concept, 78, 87

writeTraceFile function, 168, 248

xfig program, 169
XSR, 81
XUR, 81

zeroindegree set, 40

