
A Library of basic PRAM Algorithms and its Implementation in FORK

Christoph W� Ke�ler

FB � Informatik� Universit�at Trier

D�����	 Trier� Germany

kessler�psi�uni�trier�de

Jesper Larsson Tr�a
�

Max�Planck�Institut f�ur Informatik

D�		�� Saarbr�ucken� Germany

traff�mpi�sb�mpg�de

Abstract

A library� called PAD� of basic parallel algorithms and data
structures for the PRAM is currently being implemented
using the PRAM programming language Fork��� Main mo�
tivations of the PAD project is to study the PRAM as a
practical programming model� and to provide an organized
collection of basic PRAM algorithms for the SB�PRAM un�
der completion at the University of Saarbr�ucken� We give a
brief survey of Fork��� and describe the main components
of PAD� Finally we report on the status of the language and
library and discuss further developments�

� Introduction

For the past �� years the PRAM has been the primary theo�
retical model for the design of parallel algorithms� By now�
a very considerable collection of concrete algorithms for a
variety of problems is available� complemented by broadly
applicable design paradigms and techniques ���� In princi�
ple a signi	cant part of this knowledge can be made useful
in practice by concrete implementations of basic algorithms
and language support for relevant design paradigms� In or�
der to establish the PRAM 
or closely related model� as a
practical parallel programming model� such an undertaking
is inevitable� Although it is not dependent on a particular
physical realization of the PRAM model� the e�ort reported
here is immediately applicable to the SB�PRAM ���� an em�
ulation in hardware of a Priority CRCW PRAM being built
by W� J� Pauls group at the University of Saarbr�ucken�

We discuss a project investigating the PRAM as a prac�
tical programming model� The components of the project
are a general�purpose PRAM programming language� called
Fork��� and a library� called PAD� of basic PRAM Algo�
rithms and Data structures� Both e�orts focus on e�ciency�
The programming language must be adequate for the imple�
mentation of parallel algorithms as found in the literature
and e�ciently compilable� the library should support easy
implementation of more involved algorithms� and include
the most e�cient algorithms in terms of parallel work� as
well as constants� For a more comprehensive treatment of
Fork��� see ���� ��� ���� for PAD� see ���� ��� ���� For cur�
rent status� see http���www�wjp�cs�uni�sb�de�fork�� and
http���www�mpi�sb�mpg�de�guide�activities�alcom�it�PAD�

�This author was supported by DFG� SFB ����D�� VLSI Entwurf�
smethoden und Parallelit�at� This work was partially supported by
the EU ESPRIT LTR Project No� ����� 	ALCOM�IT
�

� Fork��� A general purpose programming

language for PRAMs

Fork�� is an explicit PRAM programming language� and
hence concepts like processors� processor IDs� shared mem�
ory� and synchronicity are explicit to the programmer� Fork��
grew out of a proposal ��� for a strictly synchronous language
for PRAM programming� but has instead been based on C�
from which it inherits features like pointers� dynamic arrays�
and structured data types� The choice of C together with
carefully chosen defaults makes it possible to reuse exist�
ing sequential code� We introduced an asynchronous mode
of computation 
as the default mode�� which allows to save
synchronization points and enables more freedom of choice
for the programming model� For e�ciency reasons we have
abandoned virtual processor emulation by limiting the num�
ber of processors to the hardware resources� resulting in e��
cient code generation and small run time overhead� Fork��
is intended for medium�level PRAM programming� and can
immediately be used with the SB�PRAM ���� However� the
language should not be thought of as limited to this ma�
chine� In the following we give an overview of the essential
features of Fork���

Shared and private variables The shared memory of
the PRAM is statically partitioned into a shared address
subspace� and private address subspaces for each processor�
Accordingly� variables are classi	ed as either private 
pr� the
default� or as shared 
sh�� where �shared� is relative to the
group of processors that declared that variable� For each
physical processor there is a special private variable � which
is initially set to its processor ID� and a special variable �
shared by all processors belonging to the same group� �
holds the current group ID� and � the current group�relative
processor ID� These variables are automatically saved and
restored at group forming operations� however� the user is
responsible for assigning reasonable values to them� For han�
dling concurrent read�write operations� Fork�� inherits the
con�ict resolution mechanism of the target machine� The
use of pointers in Fork�� is as �exible as in C� since the pri�
vate address subspaces are embedded into the global shared
memory of the PRAM� In particular� one does not have to
distinguish between pointers to shared and pointers to pri�
vate objects� in contrast to e�g� C� ����

Synchronous and asynchronous regions Fork�� pro�
vides synchronous and asynchronous programming modes�
statically associated with program regions and functions�
The farm statement farm �stmt	 designates asynchronous
mode and reinstalls synchronous mode at the end by bar�



rier synchronization� The join statement ���� designates
synchronous mode� initiated by barrier synchronization� A
common special case of the join construct is the start state�
ment� start �stmt	 which collects all available processors
to enter the synchronous region �stmt	� Synchronous func�
tions can only be called from synchronous regions� Calling
asynchronous functions is possible from both asynchronous
and synchronous regions� in a synchronous region the call is
implicitly embedded in a farm statement�

The group concept In synchronous mode� the proces�
sors are partitioned into independent groups� Shared vari�
ables and objects exist once for the group that created them�
global shared variables are accessible to all processors� The
processors within an 
active� group operate strictly syn�
chronously 
at the statement level�� As long as control �ow
depends only on �shared� conditions evaluating to the same
value on each processor� synchronicity within the group is
preserved� If control �ow diverges due to e�g� an if condi�
tion depending on private variables the group is deactivated
and split into new subgroups in order to preserve synchro�
nizity within the subgroups� The subgroups are active un�
til control �ow reuni	es again� After barrier synchroniza�
tion synchronicity is reestablished in the reactivated parent
group� Thus� at any point of program execution the proces�
sor groups form a tree structure with the root group con�
sisting of all started processors� and the leaf groups being
the currently active groups�

An active group can also be split explicitly by the fork
statement fork
�exp�	� ��exp�	� ��exp�	� �stmt	
which evaluates the shared expression �exp�	 and splits the
current leaf group into that many subgroups� Each processor
evaluates �exp�	 to determine which of the new subgroups
to join� The assignment to the group relative processor ID �
allows to locally renumber � inside each new subgroup� Syn�
chronous execution in the parent group is restored by barrier
synchronization when all subgroups have 	nished their exe�
cution of �stmt	�

In asynchronous mode the group hierarchy is still visible�
but no splitting of groups at conditional statements is done
because statement level synchronicity is not enforced� The
join statement ���� allows a processor to store and leave its
old group hierarchy and join a new root group�

Multipre�x operations Fork�� has powerful atomic mul�
tipre	x operators� inherited from the SB�PRAM� For in�
stance� the expression mpadd
�shvar��exp	�atomically adds
the 
private� integer value of �exp	 to the shared integer
variable shvar and returns the old value of shvar� In syn�
chronous mode the processor with the ith�largest physical
processor ID participating in the execution of mpadd
�shvar�
�exp	� receives the 
private� value s� � e� � e� � � � �� ei���
where s� is the value of shvar prior to the execution� and
ei the value of �exp	 for the processor with � � i� After
execution shvar contains the global sum s� �

P
j
ej �

Related work NESL ��� is a functional dataparallel lan�
guage partly based on ML� Its main data structure is the

multidimensional� list� Elementwise operations on lists are
converted to vector instructions for execution on SIMD ma�
chines� In contrast� the MIMD�oriented Fork�� also allows
for asynchronous and task parallelism� low�level PRAM pro�
gramming and direct shared memory access� Dataparallel
variants of Modula� e�g� ����� support a subset of Fork��s
functionality� The main parallel constructs are synchronous
and asynchronous parallel loops� there is no group concept�

Other PRAM oriented dataparallel languages are Dataparal�
lel C and C� ����

� PAD� A library of basic PRAM algo�

rithms

PAD is an attempt to provide support for the implemen�
tation of parallel algorithms as found in the current theo�
retical literature by providing access to some of the ubiqui�
tous basic PRAM algorithms and computational paradigms
like pre	x sums� list ranking� tree contraction� sorting etc�
PAD provides a set of abstract parallel data types like ar�
rays� lists� trees� graphs� dictionaries� and is organized as a
set of procedures which operate on objects of these types�
However� the user of the library is responsible for ensur�
ing correct use of operations on data objects� since the C
based Fork�� does not support abstract data types directly�
Computational paradigms� e�g� pre	x sums over an array of
arbitrary base type using a given associative function are
provided for by procedures with type information and pro�
cedure parameters� The standard operations in many cases
have certain �canonical� instances� e�g� pre	x sums for in�
teger arrays� For e�ciency reasons both general and spe�
cialized versions are supplied in such cases� Fork�� does not
support virtual processing� PAD compensates for this by
having its procedures implicitly parametrized by the num�
ber of executing processors� The PAD implementation of
an algorithm running in time t performing work w runs in
O
t�w�p� time when called within a synchronous group of p
processors� Furthermore a �poor mans virtual processing�
is provided for by parallel iterators for the supported data
types� In the following we brie�y discuss the abstract data
types contained in the 	rst version of PAD�

The pre�x library The pre	x library contains basic oper�
ations for the array data type� mainly of the �pre	x�sums�
kind� Operations like computation of all pre	x sums� to�
tal sum� pre	x sums by groups etc� for arrays over arbi�
trary base types with a user speci	ed associative function
are provided� Using the built�in multipre	x instructions of
the SB�PRAM� pre	x sums for integer arrays of length n can
be computed in O
n�p� time� For arrays over an arbitrary
base type with some given associative function the running
time is O
log n � n�p� with a somewhat larger constant�

The merge library The merge library provides the impor�
tant array operations of parallel searching and merging on
ordered arrays� and sorting of arrays� The PAD merge pro�
cedure is an implementation of the CREW algorithm given
in ���� which runs cost�optimally in O

log n � n�p� time�
where n is the total length of the input arrays� Experi�
ments show that the implementation is very e�cient when
compared to a �reasonable� sequential merge procedure� i�e�
the running time of the parallel algorithm with one proces�
sor roughly equals the running time of the sequential imple�
mentation� and the speed�up is close to perfect ����� A clever
trick in ��� makes it easy to implement a work�optimal par�
allel merge sort algorithm� running in O
log� n� n log n�p�
time� by using the general PAD merge procedure and the
possibility to de	ne a new� special 
��component lexico�
graphic� ordering� The merge library also provides a Quick�
sort implementation� and a very e�cient sorting procedure
for small integers ����

Parallel lists The parallel list data type gives direct access
to the elements of an ordinary linked list� and is represented
as an array of pointers to the elements of the list� The



primary operation on parallel lists is ranking� that is� deter�
mining for each list element its distance from the end of the
list� The parallel list type contains the necessary 	elds for
the list ranking operations� Currently only a simple� non�
optimal list ranking operation based on pointer jumping is
implemented ���� Other operations on lists include catena�
tion� permutation into rank order and others�

Trees Trees in PAD are represented by an array of edges
and an array of nodes� with edges directed from the same
node forming a segment of the edge array� An edge is rep�
resented by pointers to its tail and head nodes� a pointer
to its reverse edge� and has a �next edge� pointer used for
representing Euler tours� Nodes have parent and sibling
pointers for representing rooted trees� The library provides
operations which allow a single processor to access and ma�
nipulate nodes and edges� as well as collective� parallel op�
erations on trees� Parallel operations on trees include com�
puting an Euler tour� rooting a tree� computing pre� and
post�order traversal number� level numbers etc� PAD also
supports least common ancestor preprocessing and query�
ing� The currently implemented procedures are based on the
reduction to the range query problem� see ���� In the cur�
rent implementation preprocessing takes O
log n�n log n�p�
time 
non�optimal�� and processors can then answer least
common ancestor queries in constant time� Other parallel
operations on trees include procedures for generic tree con�
traction� see also ����

Graphs A data type for directed graphs similar to the
tree data type is de	ned� Parallel operations 
not yet im�
plemented� will include 	nding the connected components�
and extracting a 
minimum� spanning tree ��� �� ����

Parallel dictionaries Currently PAD includes one non�
trivial parallel data structure� namely a parallel dictionary
based on ��� trees ����� Dictionaries can be de	ned over
base types ordered by an integer key� A parallel dictionary
constructor makes it possible to build a dictionary from an
ordered array of dictionary items� Dictionary operations
include parallel searching and parallel 
pipelined� insertion
and deletion� Dictionaries can also maintain the value of
some associative function� and provide a generic search func�
tion� which makes it possible to de	ne the extra dictionary
operations used in the parallel ��� partial sums tree data
structure ����� ���� presents a full implementation with ini�
tial measurements� The experiments indicate that parallel
incremental operations on ��� trees are expensive in com�
parison to building�destroying a dictionary as a whole�

Related work Most of the basic algorithms considered for
PAD has previously been implemented in the much more
mature NESL project ���� A main di�erence is NESLs use
of lists� where PAD o�ers a broader selection of more tra�
ditional data structures� NESL is targeted towards existing
platforms� where PAD presupposes a 
virtual� PRAM� and
can probably in this context be more e�cient� Concrete
implementations of many PRAM graph algorithms on the
MasPar� were discussed in ����

� Status and future work

A compiler for Fork�� together with system software and
a simulator for the SB�PRAM is already available� while a
	rst version of PAD will be released in the summer of �����
The next phase of PAD will extend the basic library in or�
der to implement more advanced graph and combinatorial
algorithms� like graph decompositions and maximum �ow

algorithms� An important test for both language and li�
brary design will be the ease with which such more involved
algorithms can be implemented�

Further developments of Fork�� are foreseen� possibly
by including new language constructs 
e�g� explicit pipelin�
ing�� possibly in the direction of making 
parts of� the lan�
guage useful for other machine models or PRAM variants�
A Fork���� based on C�� would make a safer and more
elegant library interface possible� and is highly desirable�

References

��� F� Abolhassan� R� Drefenstedt� J� Keller� W� J� Paul� and
D� Scheerer� On the physical design of PRAMs� The Com�
puter Journal� ����	
������� �����

��� G� E� Blelloch� Programming parallel algorithms� Commu�
nications of the ACM� ����	
����� �����

��� K� W� Chong and T� W� Lam� Finding connected compo�
nents in O�logn log logn	 time on the EREW PRAM� Jour�
nal of Algorithms� ��
������� �����

��� R� Cole and U� Vishkin� Deterministic coin tossing with
applications to optimal parallel list ranking� Information
and Control� ��
����� �����

��� T� Hagerup and C� R�ub� Optimal merging and sorting on the
EREW PRAM� Information Processing Letters� ��
�������
�����

��� T� Hagerup� A� Schmitt� and H� Seidl� FORK
 A high�level
language for PRAMs� Future Generation Computer Systems�
�
������� �����

��� P� J� Hatcher and M� J� Quinn� Data�Parallel Programming�
MIT Press� �����

��� T��S� Hsu� V� Ramachandran� and N� Dean� Implementation
of parallel graph algorithms on a massively parallel SIMD
computer with virtual processing� In �th International Par�
allel Processing Symposium �IPPS�� pages ������� �����

��� J� J�aJ�a� An Introduction to Parallel Algorithms� Addison�
Wesley� �����

���� D� B� Johnson and P� Metaxas� A parallel algorithm for
computingminimum spanning trees� Journal of Algorithms�
��
������� �����

���� C� W� Ke�ler and H� Seidl� Fork�� Language and Compiler
for the SB�PRAM� �th Int� Workshop on Compilers for Par�
allel Computers� �����

���� C� W� Ke�ler and H� Seidl� Integrating Synchronous and
Asynchronous Paradigms
 The Fork�� Parallel Program�
ming Language� Proc� MPPM��� Int� Conf� on Massively
Parallel Programming Models� �����

���� C� W� Ke�ler and H� Seidl� Language Support for Syn�
chronous Parallel Critical Sections� Technical Report ������
FB IV Informatik der Universit�at Trier� �����

���� W� Paul� U� Vishkin� and H� Wagener� Parallel dictionaries
on ��� trees� In Proceedings of the ��th ICALP� volume ���
of Lecture Notes in Computer Science� pages ������� �����

���� M� Philippsen and W� F� Tichy� Compiling for Massively
Parallel Machines� In Code Generation � Concepts� Tools�
Techniques� pages ������ Springer� �����

���� J� L� Tr�a�� Explicit implementation of a parallel dictionary�
Technical Report SFB ����D� ������ Universit�at des Saar�
landes� Sonderforschungsbereich ���� �����

���� J� L� Tr�a�� PAD
 A library of basic PRAM algorithms� Sub�
mitted� �����

���� J� L� Tr�a�� Parallel searching� merging and sorting� Tech�
nical Report SFB ����D� ����� Universit�at des Saarlandes�
Sonderforschungsbereich ���� �����

���� U� Vishkin� A parallel blocking �ow algorithm for acyclic
networks� Journal of Algorithms� ��
������� �����


