A Library of basic PRAM Algorithms and its Implementation in FORK

Christoph W. Kefiler
FB 4 Informatik, Universitdt Trier
D-54286 Trier, Germany
kessler@psi.uni-trier.de

Abstract

A library, called PAD, of basic parallel algorithms and data
structures for the PRAM is currently being implemented
using the PRAM programming language Fork95. Main mo-
tivations of the PAD project is to study the PRAM as a
practical programming model, and to provide an organized
collection of basic PRAM algorithms for the SB-PRAM un-
der completion at the University of Saarbriicken. We give a
brief survey of Fork95, and describe the main components
of PAD. Finally we report on the status of the language and
library and discuss further developments.

1 Introduction

For the past 15 years the PRAM has been the primary theo-
retical model for the design of parallel algorithms. By now,
a very considerable collection of concrete algorithms for a
variety of problems is available, complemented by broadly
applicable design paradigms and techniques [9]. In princi-
ple a significant part of this knowledge can be made useful
in practice by concrete implementations of basic algorithms
and language support for relevant design paradigms. In or-
der to establish the PRAM (or closely related model) as a
practical parallel programming model, such an undertaking
is inevitable. Although it is not dependent on a particular
physical realization of the PRAM model, the effort reported
here is immediately applicable to the SB-PRAM [1], an em-
ulation in hardware of a Priority CRCW PRAM being built
by W. J. Paul’s group at the University of Saarbriicken.
We discuss a project investigating the PRAM as a prac-
tical programming model. The components of the project
are a general-purpose PRAM programming language, called
Fork95, and a library, called PAD, of basic PRAM Algo-
rithms and Data structures. Both efforts focus on efficiency:
The programming language must be adequate for the imple-
mentation of parallel algorithms as found in the literature
and efficiently compilable; the library should support easy
implementation of more involved algorithms, and include
the most efficient algorithms in terms of parallel work, as
well as constants. For a more comprehensive treatment of
Fork95, see [11, 12, 13]; for PAD, see [16, 17, 18]. For cur-
rent status, see http://www-wjp.cs.uni-sb.de/fork95 and
http://www.mpi-sb.mpg.de/guide/activities/alcom-it/PAD.

*This author was supported by DFG, SFB 124-D6, VLSI Entwurf-
smethoden und Parallelitat. This work was partially supported by
the EU ESPRIT LTR Project No. 20244 (ALCOM-IT).

Jesper Larsson Traff*
Max—Planck-Institut fiir Informatik
D-66123 Saarbriicken, Germany

traff@mpi-sb.mpg.de

2 Fork95: A general purpose programming
language for PRAMs

Fork95 is an explicit PRAM programming language, and
hence concepts like processors, processor ID’s, shared mem-
ory, and synchronicity are explicit to the programmer. Fork95
grew out of a proposal [6] for a strictly synchronous language
for PRAM programming, but has instead been based on C,
from which it inherits features like pointers, dynamic arrays,
and structured data types. The choice of C together with
carefully chosen defaults makes it possible to reuse exist-
ing sequential code. We introduced an asynchronous mode
of computation (as the default mode), which allows to save
synchronization points and enables more freedom of choice
for the programming model. For efficiency reasons we have
abandoned virtual processor emulation by limiting the num-
ber of processors to the hardware resources, resulting in effi-
cient code generation and small run time overhead. Fork95
is intended for medium-level PRAM programming, and can
immediately be used with the SB-PRAM [1]. However, the
language should not be thought of as limited to this ma-
chine. In the following we give an overview of the essential

features of Fork95.

Shared and private variables The shared memory of
the PRAM is statically partitioned into a shared address
subspace, and private address subspaces for each processor.
Accordingly, variables are classified as either private (pr, the
default) or as shared (sh), where “shared” is relative to the
group of processors that declared that variable. For each
physical processor there is a special private variable $ which
is initially set to its processor ID, and a special variable @
shared by all processors belonging to the same group. @
holds the current group ID, and $ the current group-relative
processor ID. These variables are automatically saved and
restored at group forming operations; however, the user is
responsible for assigning reasonable values to them. For han-
dling concurrent read/write operations, Fork95 inherits the
conflict resolution mechanism of the target machine. The
use of pointers in Fork95 is as flexible as in C, since the pri-
vate address subspaces are embedded into the global shared
memory of the PRAM. In particular, one does not have to
distinguish between pointers to shared and pointers to pri-
vate objects, in contrast to e.g. C* [7].

Synchronous and asynchronous regions Fork95 pro-
vides synchronous and asynchronous programming modes,
statically associated with program regions and functions.
The farm statement farm <stmt> designates asynchronous
mode and reinstalls synchronous mode at the end by bar-



rier synchronization. The join statement [13] designates
synchronous mode, initiated by barrier synchronization. A
common special case of the join construct is the start state-
ment, start <stmt> which collects all available processors
to enter the synchronous region <stmt>. Synchronous func-
tions can only be called from synchronous regions. Calling
asynchronous functions is possible from both asynchronous
and synchronous regions; in a synchronous region the call is
implicitly embedded in a farm statement.

The group concept In synchronous mode, the proces-
sors are partitioned into independent groups. Shared vari-
ables and objects exist once for the group that created them;
global shared variables are accessible to all processors. The
processors within an (active) group operate strictly syn-
chronously (at the statement level). Aslong as control flow
depends only on “shared” conditions evaluating to the same
value on each processor, synchronicity within the group is
preserved. If control flow diverges due to e.g. an if condi-
tion depending on private variables the group is deactivated
and split into new subgroups in order to preserve synchro-
nizity within the subgroups. The subgroups are active un-
til control flow reunifies again. After barrier synchroniza-
tion synchronicity is reestablished in the reactivated parent
group. Thus, at any point of program execution the proces-
sor groups form a tree structure with the root group con-
sisting of all started processors, and the leaf groups being
the currently active groups.

An active group can also be split explicitly by the fork
statement fork(<expl>; @=<exp2>; $=<exp3>) <stmt>
which evaluates the shared expression <exp1> and splits the
current leaf group into that many subgroups. Each processor
evaluates <exp2> to determine which of the new subgroups
to join. The assignment to the group relative processor ID $
allows to locally renumber $ inside each new subgroup. Syn-
chronous execution in the parent group is restored by barrier
synchronization when all subgroups have finished their exe-
cution of <stmt>.

In asynchronous mode the group hierarchy is still visible,
but no splitting of groups at conditional statements is done
because statement level synchronicity is not enforced. The
join statement [13] allows a processor to store and leave its
old group hierarchy and join a new root group.

Multiprefix operations Fork95 has powerful atomic mul-
tiprefix operators, inherited from the SB-PRAM. For in-
stance, the expression mpadd (&shvar, <exp>) atomically adds
the (private) integer value of <exp> to the shared integer
variable shvar and returns the old value of shvar. In syn-
chronous mode the processor with the ith—largest physical
processor 1D participating in the execution of mpadd(&shvar,
<exp>) receives the (private) value sp +eo+e1 +...+€i_1,
where s¢ is the value of shvar prior to the execution, and
e; the value of <exp> for the processor with § = i. After
execution shvar contains the global sum so + Zj €.

Related work NESL [2] is a functional dataparallel lan-
guage partly based on ML. Its main data structure is the
(multidimensional) list. Elementwise operations on lists are
converted to vector instructions for execution on SIMD ma-
chines. In contrast, the MIMD-oriented Fork95 also allows
for asynchronous and task parallelism, low-level PRAM pro-
gramming and direct shared memory access. Dataparallel
variants of Modula, e.g. [15], support a subset of Fork95’s
functionality. The main parallel constructs are synchronous
and asynchronous parallel loops; there is no group concept.

Other PRAM oriented dataparallel languages are Dataparal-
lel C'and C™* [7].

3 PAD: A library of basic PRAM algo-
rithms

PAD is an attempt to provide support for the implemen-
tation of parallel algorithms as found in the current theo-
retical literature by providing access to some of the ubiqui-
tous basic PRAM algorithms and computational paradigms
like prefix sums, list ranking, tree contraction, sorting etc.
PAD provides a set of abstract parallel data types like ar-
rays, lists, trees, graphs, dictionaries, and is organized as a
set of procedures which operate on objects of these types.
However, the user of the library is responsible for ensur-
ing correct use of operations on data objects, since the C
based Fork95 does not support abstract data types directly.
Computational paradigms, e.g. prefix sums over an array of
arbitrary base type using a given associative function are
provided for by procedures with type information and pro-
cedure parameters. The standard operations in many cases
have certain “canonical” instances, e.g. prefix sums for in-
teger arrays. For efficiency reasons both general and spe-
cialized versions are supplied in such cases. Fork95 does not
support virtual processing. PAD compensates for this by
having its procedures implicitly parametrized by the num-
ber of executing processors. The PAD implementation of
an algorithm running in time ¢ performing work w runs in
O(t+w/p) time when called within a synchronous group of p
processors. Furthermore a “poor man’s virtual processing”
is provided for by parallel iterators for the supported data
types. In the following we briefly discuss the abstract data
types contained in the first version of PAD.

The prefix library The prefix library contains basic oper-
ations for the array data type, mainly of the “prefix-sums”
kind. Operations like computation of all prefix sums, to-
tal sum, prefix sums by groups etc. for arrays over arbi-
trary base types with a user specified associative function
are provided. Using the built-in multiprefix instructions of
the SB-PRAM, prefix sums for integer arrays of length n can
be computed in O(n/p) time. For arrays over an arbitrary
base type with some given associative function the running
time is O(logn + n/p) with a somewhat larger constant.

The merge library The merge library provides the impor-
tant array operations of parallel searching and merging on
ordered arrays, and sorting of arrays. The PAD merge pro-
cedure is an implementation of the CREW algorithm given
in [5], which runs cost-optimally in O((logn + n/p) time,
where n is the total length of the input arrays. Experi-
ments show that the implementation is very efficient when
compared to a “reasonable” sequential merge procedure, i.e.
the running time of the parallel algorithm with one proces-
sor roughly equals the running time of the sequential imple-
mentation, and the speed-up is close to perfect [18]. A clever
trick in [5] makes it easy to implement a work-optimal par-
allel merge sort algorithm, running in O(log® r + nlog n/p)
time, by using the general PAD merge procedure and the
possibility to define a new, special (2-component lexico-
graphic) ordering. The merge library also provides a Quick-
sort implementation, and a very efficient sorting procedure
for small integers [4].

Parallel lists The parallel list data type gives direct access
to the elements of an ordinary linked list, and is represented
as an array of pointers to the elements of the list. The



primary operation on parallel lists is ranking, that is, deter-
mining for each list element its distance from the end of the
list. The parallel list type contains the necessary fields for
the list ranking operations. Currently only a simple, non-
optimal list ranking operation based on pointer jumping is
implemented [9]. Other operations on lists include catena-
tion, permutation into rank order and others.

Trees Trees in PAD are represented by an array of edges
and an array of nodes, with edges directed from the same
node forming a segment of the edge array. An edge is rep-
resented by pointers to its tail and head nodes, a pointer
to its reverse edge, and has a “next edge” pointer used for
representing Fuler tours. Nodes have parent and sibling
pointers for representing rooted trees. The library provides
operations which allow a single processor to access and ma-
nipulate nodes and edges, as well as collective, parallel op-
erations on trees. Parallel operations on trees include com-
puting an Euler tour, rooting a tree, computing pre- and
post-order traversal number, level numbers etc. PAD also
supports least common ancestor preprocessing and query-
ing. The currently implemented procedures are based on the
reduction to the range query problem, see [9]. In the cur-
rent implementation preprocessing takes O(log n+nlogn/p)
time (non-optimal), and processors can then answer least
common ancestor queries in constant time. Other parallel
operations on trees include procedures for generic tree con-
traction, see also [9].

Graphs A data type for directed graphs similar to the
tree data type is defined. Parallel operations (not yet im-
plemented) will include finding the connected components,
and extracting a (minimum) spanning tree [3, 9, 10].
Parallel dictionaries Currently PAD includes one non-
trivial parallel data structure, namely a parallel dictionary
based on 2-3 trees [14]. Dictionaries can be defined over
base types ordered by an integer key. A parallel dictionary
constructor makes it possible to build a dictionary from an
ordered array of dictionary items. Dictionary operations
include parallel searching and parallel (pipelined) insertion
and deletion. Dictionaries can also maintain the value of
some associative function, and provide a generic search func-
tion, which makes it possible to define the extra dictionary
operations used in the parallel 2-3 partial sums tree data
structure [19]. [16] presents a full implementation with ini-
tial measurements. The experiments indicate that parallel
incremental operations on 2-3 trees are expensive in com-
parison to building/destroying a dictionary as a whole.

Related work Most of the basic algorithms considered for
PAD has previously been implemented in the much more
mature NESL project [2]. A main difference is NESLs use
of lists, where PAD offers a broader selection of more tra-
ditional data structures. NESL is targeted towards existing
platforms, where PAD presupposes a (virtual) PRAM, and
can probably in this context be more efficient. Concrete
implementations of many PRAM graph algorithms on the
MasPar, were discussed in [8].

4 Status and future work

A compiler for Fork95 together with system software and
a simulator for the SB-PRAM is already available, while a
first version of PAD will be released in the summer of 1996.
The next phase of PAD will extend the basic library in or-
der to implement more advanced graph and combinatorial
algorithms, like graph decompositions and maximum flow

algorithms. An important test for both language and li-
brary design will be the ease with which such more involved
algorithms can be implemented.

Further developments of Fork95 are foreseen, possibly
by including new language constructs (e.g. explicit pipelin-
ing), possibly in the direction of making (parts of) the lan-
guage useful for other machine models or PRAM variants.
A Fork954+ based on C++ would make a safer and more
elegant library interface possible, and is highly desirable.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and
D. Scheerer. On the physical design of PRAMs. The Com-
puter Journal, 36(8):756-762, 1993.

[2] G. E. Blelloch. Programming parallel algorithms. Commu-
nications of the ACM, 39(3):85-97, 1996.

[3] K. W. Chong and T. W. Lam. Finding connected compo-
nents in O(lognloglogn) time on the EREW PRAM. Jour-
nal of Algorithms, 18:378-402, 1995.

[4] R. Cole and U. Vishkin. Deterministic coin tossing with
applications to optimal parallel list ranking. Information
and Control, 70:32—-53, 1986.

[5] T.Hagerup and C. Riib. Optimal merging and sorting on the
EREW PRAM. Information Processing Letters, 33:181-185,
1989.

[6] T. Hagerup, A. Schmitt, and H. Seidl. FORK: A high-level
language for PRAMSs. Future Generation Computer Systems,
8:379-393, 1992.

[7] P.J. Hatcher and M. J. Quinn. Data-Parallel Programming.
MIT Press, 1991.

[8] T.-S. Hsu, V. Ramachandran, and N. Dean. Implementation
of parallel graph algorithms on a massively parallel SIMD
computer with virtual processing. In 9th International Par-
allel Processing Symposium (IPPS), pages 106-112, 1995.

[9] J. J&JA. An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

[10] D. B. Johnson and P. Metaxas. A parallel algorithm for
computing minimum spanning trees. Journal of Algorithms,
19:383—-401, 1995.

[11] C. W. KeBler and H. Seidl. Fork95 Language and Compiler
for the SB-PRAM. 5th Int. Workshop on Compilers for Par-
allel Computers, 1995.

[12] C. W. Kefler and H. Seidl. Integrating Synchronous and
Asynchronous Paradigms: The Fork95 Parallel Program-
ming Language. Proc. MPPM-95 Int. Conf. on Massively
Parallel Programming Models, 1995.

[13] C. W. KeBler and H. Seidl. Language Support for Syn-
chronous Parallel Critical Sections. Technical Report 95-23,
FB IV Informatik der Universitat Trier, 1995.

[14] W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries
on 2-3 trees. In Proceedings of the 10th ICALP, volume 154
of Lecture Notes in Computer Science, pages 597-609, 1983.

[15] M. Philippsen and W. F. Tichy. Compiling for Massively
Parallel Machines. In Code Generation — Concepts, Tools,
Techniques, pages 92—111. Springer, 1991.

[16] J. L. Traff. Explicit implementation of a parallel dictionary.
Technical Report SFB 124-D6 10/95, Universitat des Saar-
landes, Sonderforschungsbereich 124, 1995.

[17] J. L. Traff. PAD: A library of basic PRAM algorithms. Sub-
mitted, 1995.

[18] J. L. Traff. Parallel searching, merging and sorting. Tech-
nical Report SFB 124-D6 1/96, Universitat des Saarlandes,
Sonderforschungsbereich 124, 1996.

[19] U. Vishkin. A parallel blocking flow algorithm for acyclic
networks. Journal of Algorithms, 13:489-501, 1992.



