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� INTRODUCTION �

� Introduction

It seems to be generally accepted that the most convenient machines to write
parallel programs for� are synchronous MIMD �Multiple Instruction Multiple
Data
 computers with shared memory� well�known to theoreticians as PRAMs �i�e��
Parallel Random Access Machines
� A realization of such a machine in hardware�
the SB�PRAM� is undertaken by a project of W�J� Paul at Saarbr�ucken �AKP����
The shared memory with random access allows for a fast and easy exchange of
data between the processors� while the common clock guarantees deterministic
program execution� Accordingly� a huge amount of algorithms has been invented
for this type of architecture�

Surprisingly enough� not much attempts have been made to develop languages
which allow both to conveniently express algorithms and generate e�cient PRAM�
code for them�

One approach of introducing parallelism into languages consists in decorat�
ing sequential programs meant to be executed by ordinary processors with extra
primitives for communication resp� access to shared variables� Several subroutine
libraries for this purpose extending C or FORTRAN have been proposed and imple�
mented on a broad variety of parallel machines� While PVM is based on CSP
�LT���� and therefore better suited for distributed memory architectures� the P�
library and its relatives support various concepts of parallel programming� The
most basic primitives it provides for shared memory� are semaphores and locks�
Moreover� it provides shared storage allocation and a �exible monitor mechanism
including barrier synchronization �BL���� �BL���� This approach is well suited if
the computations executed by the di�erent threads of the program are �loosely
coupled�� i�e�� if the interaction patterns between them are not too complicated�
Also� these libraries do not support a synchronous lockstep mode of program
execution even if the target architecture does so�

Attempts to design synchronous languages have been made for the data�
parallel programming paradigm� This type of computation frequently arises in
numerical computations� It mainly consists in the parallel execution of iterations
over large arrays� Data parallel imperative languages have been designed espe�
cially to program SIMD �Single Instruction Multiple Data
 computers like� e�g��
pipelined vector processors or the CM�� Examples of such languages are Vector

C �LS	�� and C� �RS	�� or its relatives Dataparallel C �HQ��� and DBC �SG����
The limitations of these languages� however� are obvious� There is just one

global name space� Other programming paradigms like a parallel recursive divide�
and�conquer style as suggested in �BDH��� �Col	��� �dlTK���� �HR��a�� �HR��b�
are not supported�

The only attempt we are aware of which allows both parallely recursive and
synchronous programming is the imperative parallel language FORK �HSS����

The design of FORK � though� was a rather theoretical one� By choosing a syn�
tax for its language constructs which is similar but di�erent to other imperative
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languages the designers wanted to avoid the confusion caused by identically look�
ing expressions having strongly deviating semantics� At the same time� however�
they prohibited the reuse of existing program libraries� Also� in order to allow
for a rigorous de�nition of the semantics �Sch���� �Sch���� �RS���� �Sei��� of the
parallel constructs fork and start they insisted on a rigidly modular program or�
ganization �no jumps
 and excluded any other data structure besides arrays and
records� Being overly restrictive in this respect� they on the other hand allowed
nested starting of processors� also� the number of started processors could exceed
the number of existing ones� The price to be paid was an overly complicated
runtime system�

The current redesign tries to eliminate these de�ciencies� Therefore� the new
design restricts the applicability of the start�construct and the amount of syn�
chronous program execution guaranteed by the language� At least in our opinion�
the �small
 loss in expressiveness is more than overly compensated by the gains
in e�ciency through a tremendous reduction of runtime overhead� On the other
hand� in order to provide a full��edged language for real use� all the language
features have been added which are well�known from sequential programming�
Thus� the new FORK dialect has become �more or less
 a superset of C� To achieve
this goal we decided to extend the ANSI�C syntax � instead of clinging to the
original one� Which also meant that �for the sequential parts
 we had to adopt
C�s philosophy� This has also impacts on the syntax �and semantics
 of our basic
parallel constructs fork and start�

The rest of the paper is organized as follows� Section � explains the basic con�
cepts and mechanisms of FORK�� to control parallel execution� Section � explains
the new features� namely the heap management� together with the semantics of
pointers in a parallel environment� it explains the new concepts async and sync
which allow to use conventional C routines for local computations on every pro�
cessor� �nally� the semantics of jumps and its limitations are discussed� Section �
describes the compiler and the runtime environment� �nally� Section � concludes�

� Basic Features

Similar to the former design� there are two kinds of storage� namely private

�identi�ed by the key word pr
 and shared �identi�ed by sh
� The default is
private� A list of de�nitions of shared variables may� e�g�� look like


sh int i� a����� �p

Then space for variables i� a������a���� and p is allocated in the shared memory�
Note that the last de�nition does not de�ne p as a pointer to a shared object

of type int but as a shared object of type pointer�to�int�
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��� The start�Statement

FORK���Programs are executed by threads which we prefer to call processors since
they are to be mapped statically to the physical processors of the target archi�
tecture� Processors possess private data which cannot �directly
 be accessed by
other processors� To allow for references of each other� every processor possesses
one distinct private variable �� its processor number� �

Initially� there is just one processor� the initial processor� equipped with pro�
cessor number �� In order to activate processors from a larger range one may use
the start�construct� Executing

start �e
 �stat�

processor � �rst evaluates the expression e �necessarily of type int 
 to some
value v� then v processors are activated with processor numbers from the range
����v � ��� These processors synchronously execute statement �stat�� When
they have �nished� they are deactivated again� and only processor � proceeds� If
the value v exceeds the number of available processors� a runtime error occurs�
In this respect� we di�er from the original de�nition of FORK� Also in contrast
to the original language� nested occurrences of start�statements are forbidden�
Furthermore� the parameter for start is made optional� Executing

start �stat�

all processors available by the hardware are started�
In order to exploit the synchronism provided by the hardware� the started

processors are meant to operate in lockstep mode�

��� The fork�Statement

Processors are organized in processes or groups� A group of processors corre�
sponds to a designated task on the solution of which the members of this group
work jointly and synchronously� Groups may again be subdivided into subgroups
thus corresponding to a possibly hierarchical subdivision of an initial task� It
follows that at some point of program execution� all presently existing groups are
organized in a group hierarchy� Only the leaf groups of the group hierarchy are
active�

Subgroups of a group can be distinguished by their group number � The group
number of the leaf group a processor p is member of can be accessed by p through
the shared variable ��

�In FORK� the processor number was denoted by �� In C� however� this symbol marks
preprocessor directives�
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Only processors of leaf groups are guaranteed to run synchronously meaning
that they are always at the same program point and execute the next computation
step simultaneously in parallel� �

Every group may have their own shared data which only can be accessed by
its members� If a leaf group G executes a de�nition of a private variable x then
every processor p of G creates a distinct instance of x which is only accessible
by p� If in contrast� G executes a de�nition of a shared variable x then just one
instance of this variable is created which can be accessed only by processors of
G�

Initially� the group hierarchy H consists of one group with � � � consisting
of all processors which have been started� All processors run synchronously� i�e��
execute the same program in lockstep mode�

To create new subgroups we can use the fork�statement� Its syntax is


fork�e� � e� � e�
 �stat�

where ei are expressions of type int� and e� does not depend on private data�
Assume leaf group G executes this fork�statement� Then �rst every proces�

sor p of G computes values vp��� vp��� and vp�� of the expressions e�� e�� and e�
respectively� Since e� does not depend on private data� all values vp�� are equal
to the same value v�� This value determines the range ����v� � �� of the set of
group numbers of the new subgroups of G which are to be created� The value
vp�� returns the group number of the leaf group that processor p is going to enter�
whereas the value vp�� gives the new processor number of p within its new leaf
group� Having thus updated the current values of � and �� the processors start
to execute statement �stat�� � Having �nished the execution of �stat�� the
leaf groups are removed from the group hierarchy� and all processors continue
execution within group G� We do no longer guarantee that all processors within
all the newly created leaf groups together run synchronously� Therefore� since
G must be guaranteed to execute synchronously� an explicit synchronization is
necessary at the end of �stat��

There is the possibility also to make the parameters of fork optional� In case
of a statement

fork �stat�

single�processor groups are created with � � � and � � ��

�Note that we use a weaker regime of of synchronous program execution here than in the
original FORK�language where also larger hierarchies could run synchronously�

�We do not assume that every new group is chosen by some processor� Hence� some of the
new leaf groups may be empty� In fact� the algorithm in �BDH�� relies on that possibility� An
empty group� however� immediately has �nished its work�
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��� Conditionals

A special subtlety occurs with the treatment of conditional branching points�
Consider a leaf group G executing

�stat� � if �e
 s� else s�

If e only depends on shared data� all the processors compute identical values for e
and therefore select the same branch� The situation� however� is totally di�erent
as soon as e depends on private data as well� Then some of the processors of
G may evaluate e to � �i�e�� �false�
� others to something �� � �i�e�� �true�
�
This would imply that the processors of G may reach di�erent program points
at the same time� i�e�� become asynchronous� This is avoided by splitting G

into two subgroups G� and G� at runtime where G� contains all processors of G
evaluating e to �� and G� contains all processors of G evaluating e to some value
di�erent from �� The new subgroups Gi inherit the group number of G� They
are synchronous and start to execute si� When the execution both of s� and s�
has terminated� the leaf groups Gi are removed� and G synchronously continues
program execution�

switch�statements

switch �e
 �stat�

are treated analogous to if�s in that �in case the value of e depends on private
data
 as many subgroups are created as there are alternatives in the body �stat��

��� Write Con�icts

So far� we did not �x what happens if several processors simultaneously access
the same instance of some variable x� There exist many possibilities to do so
�see� e�g�� �Sch��� for an exhaustive discussion of the subject
� For simplicity�
we choose the arbitrary convention� i�e�� we both allow simultaneous read and
simultaneous write accesses to x� Let P be the set of processors that simultane�
ously execute a write operation on x� Then the resulting value of x can be any

value a processor from P wanted to write� Hence� there are two possible sources of
non�determinism in our language� First� di�erent interleavings of asynchronously
executed parts of the program are possible� Secondly� simultaneous write accesses
may result in di�erent values� A correct implementation of FORK realizes one of
the set of possible behaviors� Therefore� meaningful programs should be robust
against all these kinds of non�deterministic choices�
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� Advanced Features

��� Farming

The implicit formation of subgroups at conditionals and switches depending on
private variables is rather expensive� It can be avoided by means of the new
construct

farm �stat�

Additionally� no synchronous program execution is guaranteed during the execu�
tion of �stat�� Synchronization of the leaf group is provided� though� at the end
of the execution of �stat��

The farm�statement is useful for portions of the program where the processors
just perform local computations� Omission of implicit subgroup formation im�
plies� however� that allocation of shared variables within �stat� must be avoided�
Especially� functions that are called must have only private parameters and return
a private value �if any
�

Type quali�ers sync and async are introduced to distinguish between or�
dinary functions and those that can be called within the farm�statement� A
function declared� e�g�� as

sync int fun�
�

can be called outside farm�statements but must not be called inside� Accordingly�
a function

async int fun�
�

may only be used inside a farm�statement� Also� asynchronous functions must
not contain any of the new constructs of FORK�� or call functions quali�ed as
synchronous�

Since ordinary C programs should be executable within farm�statements with�
out any syntactical changes� the general default is async�

��� Pointers and Heaps

The most important innovation is that the new FORK supports pointers� Our
key observation about the SB�PRAM �but which also can be seen as a hint for an
implementation on any other synchronous shared�memory MIMD architecture

is that in fact� no �true� private storage areas exist� This is due to the belief of
the hardware designers that a larger amount of easily accessible shared memory is
much more �exible to use than a smaller shared memory together with a private
memory for every processor which cannot be accessed much faster�

Thus� the language concept of private variables can be implemented by areas
within the single shared storage owned by processors for private use� Hence� we
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�nd it legal that a shared pointer variable may point to some private object and
vice versa � the question whether or not this is good style� though� is left to the
taste of the programmer� In any case� prevention turns out to be much more
complicated than admission�

As usual in C� there is an address operator  !� �returning the L�value of
an expression
 and dereferencing by means of  ��� In di�erence� however� to
sequential C� there are two kinds of heaps for dynamically created objects to
reside in� namely private heaps situated in the processors� owned portions of
the shared memory� and shared heaps� Consequently� there are also two library
routines� namelymalloc and shalloc� Both operate analogously to the Cmalloc
� with the only exception that malloc�n� executed by processor p� allocates n

cells in the private heap of p� whereas shalloc�n� executed synchronously by all
the processors of some leaf group G� allocates n cells in the portion of shared
memory given to G� Both return a pointer to the �rst allocated memory cell�

There are just two points where special care must be taken� When the leaf
groups Gi at group G are removed from the current group hierarchy� then all the
Gi�s segments of shared memory are united to form the free storage for group G�
This design decision has been made for reasons of space economy� However� it
implies that all objects allocated in one of the Gi�s shared heaps are automatically
removed�

The second problem arises from pointers to functions� First note that in
FORK�� unlike in the original language� all return values of functions are private�
Thus�

sh sync int ��f
�int


does not denote a pointer to a synchronous function that returns a shared value
but a shared pointer to a synchronous function�

In case the pointer is shared� all processors within the leaf group in question
will execute the same call� and everything is �ne� A call to a function through
a private pointer� however� can be looked at as a huge switch� Consequently�
separate groups must be created for every function of appropriate type in the
system� Thus� the implementer either has to detemine those groups which are
non�empty or must provide a seperate piece of storage for every function possibly
pointed at� Since in general� most of the functions will not be called� the second
alternative would cause a tremendous waste of shared memory and program size�
The �rst alternative� on the contrary� is inacceptably time�consuming� This
is the reason why� in the present version of FORK��� calls of functions through
private pointers are executed asynchronously� Technically� this is achieved by
implicitly enclosing them into a farm�construct provided they are not already
situated within such a statement or a function quali�ed as async� Accordingly�
private pointers may only point to functions quali�ed as async�
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��� Tamed Jumps

In FORK��� jumps occur in �ve disguises


�� goto l jumps to the statement labeled l�

�� continue jumps to the end of the innermost including loop�body�

�� break jumps to the end of the innermost including switch� resp� loop�
statement�

�� return jumps to the end of the current function body�

�� exit jumps to the end of the program�

Both start� and farm�statements are� at least in this context� viewed as special
loops �namely parallel ones
 whereas fork�statements are not� The reason for this
decision was to extend the analogy between fork�statements and if�statements
where the condition depends on private variables
 both constructs create new
subgroups and distribute processors� Therefore� in FORK��� both also behave
similar w�r�t� break and continue�

In a parallel setting� jumps may be even more harmful than in a sequential
environment�

�� By jumping outside a start�statement a processor might escape from being
killed at the end of the body�

�� By jumping outside a fork�statement or a conditional with private condition
a processor may �leave� its present group� accordingly� if it jumps into the
body of another fork� it may irregularly �enter� another group�

�� It is absolutely unclear what it should mean that a processor crosses the
boundaries of a farm�statement�

The problem which arises in any of these situations is that the numbers of
processors within a group and thus the number of processors involved� e�g�� in
synchronization operations for this group may change unpredictably�

At the present status of the language de�nition and its implementation special
care is only taken for continue� break and return� In all these cases� the
direction of the jump is �from the inside to the outside�� namely to the end
of some surrounding statement� Especially� the number of surrounding group
building constructs �i�e�� the length of the path in the group hierarchy from the
present leaf group to the group being leaf at the destination of the jump
 can be
determined at compile�time�

Therefore� a corresponding number of updates can be generated to recompute
the number of remaining processors of all groups inbetween�
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Note however� that an extra synchronization cell and extra code for synchro�
nization has to be added to the translation of loops which contain continue or
break� In case of breaks� synchronization has to be inserted immediately after
the loop� in case of continue� immediately after the body of the loop� Analo�
gously� the execution of functions containing returns must be terminated by a
synchronization�

� The Implementation

A �rst version of a compiler for FORK�� has been implemented� It is based
on the lcc� a one�pass ANSI C�compiler developed by Chris Fraser and David
Hanson at Princeton� NY �FH��a�� �FH��b�� �FH���� For synchronization our
compiler makes intensive use of the hardware�supplied multipre�x operations of
the SB�PRAM� These are also available to the user as FORK�� operators� Since the
compiler maps at most one thread to every physical processor� the facilities for
rapid context switches are not exploited�

Here is a list of the overheads introduced by the di�erent constructs of the
language


Constructs
 Number of SB�PRAM�Cycles

synchronization
 tsync � ��
startup
 ��� " �� jdataj
start
 ��
loop
 �� " � �#iterations " tsync
if
 �� " tsync
fork
 �� " tdivision " tsync
farm
 tsync
call� synchronous
 �� " #�used regs
 " ��#�shared args


" #�private args
 " tsync
call� asynchronous
 �� " #�used regs
 " #�private args
 " tsync
malloc$shalloc
 �
division
 tdivision � �� � � � ��� �data dependent


Division has to be implemented in software
 therefore the huge �and varying

number in the last line� Also� in a synchronous context� extra synchronization
has to occur afterwards� Synchronization� however� is suppressed whenever the
divisor is shared or constant� The cost of calls clearly can be reduced by passing
aruments in registers �this is standard for most library functions
� The cost of
ifs can be reduced drastically whenever at most one of the branches contains
function calls�

Since the realization of the SB�PRAM is not yet completed� a hardware simula�
tor for the SB�PRAM has been implemented �KPS���� The object code produced
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by the compiler is in COFF format� It can be executed and debugged on this sim�
ulator� The compiler together with the simulator can be obtained via anonymous
ftp from lunix�cs�uni�sb�de in directory fork���

� Conclusion

We described how the parallel programming language FORK can be modi�ed to
become a superset of the sequential language C� Depending on the application
the programmer has in mind� embedding of C functions into FORK���programs
can be done in three ways� The programmer may include C routines into a farm�
construct to execute local computations on every processor� He$She may also
use plain C routines to implement the sequential parts of the program between
start�statements� As a third alternative� the programmer might choose to keep
all data within the shared memory and use synchronous functions for their ma�
nipulation� In this case� however� he$she has to add quali�ers sh and sync to
data and function de�nitions� respectively� Furthermore� care must be taken to
move private return values of functions back into shared variables�

The present redesign and its compiler is an e�ort to simplify the implemen�
tation of parallel algorithms� Using existing code for the sequential parts of the
algorithm� the programmer really may concentrate on the implementation of the
parallel aspects�

It must be emphasized that the language is an experimental one� Future
research has to investigate language extensions that support also other kinds of
algorithmic skeletons like� e�g�� pipelining�
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