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1 Introduction

It seems to be generally accepted that the most convenient machines to write
parallel programs for, are synchronous MIMD (Multiple nstruction Multiple
Data) computers with shared memory, well-known to theoreticians as PRAMs (i.e.,
Parallel Random Access Machines). A realization of such a machine in hardware,
the SB-PRAM, is undertaken by a project of W.J. Paul at Saarbriicken [AKP91].
The shared memory with random access allows for a fast and easy exchange of
data between the processors, while the common clock guarantees deterministic
program execution. Accordingly, a huge amount of algorithms has been invented
for this type of architecture.

Surprisingly enough, not much attempts have been made to develop languages
which allow both to conveniently express algorithms and generate efficient PRAM—
code for them.

One approach of introducing parallelism into languages consists in decorat-
ing sequential programs meant to be executed by ordinary processors with extra
primitives for communication resp. access to shared variables. Several subroutine
libraries for this purpose extending C or FORTRAN have been proposed and imple-
mented on a broad variety of parallel machines. While PVM is based on CSP
[LT93], and therefore better suited for distributed memory architectures, the P4
library and its relatives support various concepts of parallel programming. The
most basic primitives it provides for shared memory, are semaphores and locks.
Moreover, it provides shared storage allocation and a flexible monitor mechanism
including barrier synchronization [BL92], [BL94]. This approach is well suited if
the computations executed by the different threads of the program are “loosely
coupled”, i.e., if the interaction patterns between them are not too complicated.
Also, these libraries do not support a synchronous lockstep mode of program
execution even if the target architecture does so.

Attempts to design synchronous languages have been made for the data—
parallel programming paradigm. This type of computation frequently arises in
numerical computations. It mainly consists in the parallel execution of iterations
over large arrays. Data parallel imperative languages have been designed espe-
cially to program SIMD (Single Instruction Multiple Data) computers like, e.g.,
pipelined vector processors or the CM2. Examples of such languages are Vector
C [LS85] and C* [RS87] or its relatives Dataparallel C [HQ91] and DBC [SG92].

The limitations of these languages, however, are obvious. There is just one
global name space. Other programming paradigms like a parallel recursive divide—
and-conquer style as suggested in [BDH*], [Col89], [dITK92], [HR92a], [HRI2b]
are not supported.

The only attempt we are aware of which allows both parallely recursive and
synchronous programming is the imperative parallel language FORK [HSS92].

The design of FORK , though, was a rather theoretical one. By choosing a syn-
tax for its language constructs which is similar but different to other imperative
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languages the designers wanted to avoid the confusion caused by identically look-
ing expressions having strongly deviating semantics. At the same time, however,
they prohibited the reuse of existing program libraries. Also, in order to allow
for a rigorous definition of the semantics [Sch91], [Sch92], [RS92], [Sei93] of the
parallel constructs fork and start they insisted on a rigidly modular program or-
ganization (no jumps) and excluded any other data structure besides arrays and
records. Being overly restrictive in this respect, they on the other hand allowed
nested starting of processors; also, the number of started processors could exceed
the number of existing ones. The price to be paid was an overly complicated
runtime system.

The current redesign tries to eliminate these deficiencies. Therefore, the new
design restricts the applicability of the start-construct and the amount of syn-
chronous program execution guaranteed by the language. At least in our opinion,
the (small) loss in expressiveness is more than overly compensated by the gains
in efficiency through a tremendous reduction of runtime overhead. On the other
hand, in order to provide a full-fledged language for real use, all the language
features have been added which are well-known from sequential programming.
Thus, the new FORK dialect has become (more or less) a superset of C. To achieve
this goal we decided to extend the ANSI-C syntax — instead of clinging to the
original one. Which also meant that (for the sequential parts) we had to adopt
C’s philosophy. This has also impacts on the syntax (and semantics) of our basic
parallel constructs fork and start.

The rest of the paper is organized as follows. Section 2 explains the basic con-
cepts and mechanisms of FORK95 to control parallel execution. Section 3 explains
the new features, namely the heap management, together with the semantics of
pointers in a parallel environment; it explains the new concepts async and sync
which allow to use conventional C routines for local computations on every pro-
cessor; finally, the semantics of jumps and its limitations are discussed. Section 4
describes the compiler and the runtime environment; finally, Section 5 concludes.

2 Basic Features

Similar to the former design, there are two kinds of storage, namely private
(identified by the key word pr) and shared (identified by sh). The default is

private. A list of definitions of shared variables may, e.g., look like:
sh int i, a[20], *p

Then space for variables 1, a[0]...a[19] and p is allocated in the shared memory.
Note that the last definition does not define p as a pointer to a shared object
of type int but as a shared object of type pointer—to—int.
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2.1 The start—Statement

FORK95-Programs are executed by threads which we prefer to call processors since
they are to be mapped statically to the physical processors of the target archi-
tecture. Processors possess private data which cannot (directly) be accessed by
other processors. To allow for references of each other, every processor possesses
one distinct private variable $, its processor number. !

Initially, there is just one processor, the initial processor, equipped with pro-
cessor number (. In order to activate processors from a larger range one may use
the start—construct. Executing

start (e) <stat>

processor 0 first evaluates the expression e (necessarily of type int ) to some
value v; then v processors are activated with processor numbers from the range
[0..v — 1]. These processors synchronously execute statement <stat> When
they have finished, they are deactivated again, and only processor 0 proceeds. If
the value v exceeds the number of available processors, a runtime error occurs.
In this respect, we differ from the original definition of FORK. Also in contrast
to the original language, nested occurrences of start—statements are forbidden.
Furthermore, the parameter for start is made optional. Executing

start <stat>

all processors available by the hardware are started.
In order to exploit the synchronism provided by the hardware, the started
processors are meant to operate in lockstep mode.

2.2 The fork—Statement

Processors are organized in processes or groups. A group of processors corre-
sponds to a designated task on the solution of which the members of this group
work jointly and synchronously. Groups may again be subdivided into subgroups
thus corresponding to a possibly hierarchical subdivision of an initial task. It
follows that at some point of program execution, all presently existing groups are
organized in a group hierarchy. Only the leaf groups of the group hierarchy are
active.

Subgroups of a group can be distinguished by their group number. The group
number of the leaf group a processor p is member of can be accessed by p through

the shared variable @.

11 FORK, the processor umber was denoted l)y . InC owever, this Sy bol arks
’ P ’ ’
preprocessor directives.
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Only processors of leaf groups are guaranteed to run synchronously meaning
that they are always at the same program point and execute the next computation
step simultaneously in parallel. 2

Every group may have their own shared data which only can be accessed by
its members. If a leaf group G executes a definition of a private variable x then
every processor p of (G creates a distinct instance of x which is only accessible
by p. If in contrast, (G executes a definition of a shared variable x then just one
instance of this variable is created which can be accessed only by processors of
G.

Initially, the group hierarchy H consists of one group with @ = 0 consisting
of all processors which have been started. All processors run synchronously, i.e.,
execute the same program in lockstep mode.

To create new subgroups we can use the fork—statement. Its syntax is:

fork(e; ; €3 ; e3) <stat>

where ¢; are expressions of type int, and e; does not depend on private data.

Assume leaf group G executes this fork-statement. Then first every proces-
sor p of G computes values v,1,v,2, and v,3 of the expressions ey, ez, and e3
respectively. Since e; does not depend on private data, all values v,; are equal
to the same value vy. This value determines the range [0..v17 — 1] of the set of
group numbers of the new subgroups of G which are to be created. The value
v, 2 returns the group number of the leaf group that processor p is going to enter,
whereas the value v, 3 gives the new processor number of p within its new leaf
group. Having thus updated the current values of § and @, the processors start
to execute statement <stat>. ® Having finished the execution of <stat>, the
leaf groups are removed from the group hierarchy, and all processors continue
execution within group G. We do no longer guarantee that all processors within
all the newly created leaf groups together run synchronously. Therefore, since
(G must be guaranteed to execute synchronously, an explicit synchronization is
necessary at the end of <stat>.

There is the possibility also to make the parameters of fork optional. In case
of a statement

fork <stat>

single—processor groups are created with @ = § and $ = 0.

?Note that we use a weaker regime of of synchronous program execution here than in the
original FORK-language where also larger hierarchies could run synchronously.

3We do not assume that every new group is chosen by some processor. Hence, some of the
new leaf groups may be empty. In fact, the algorithm in [BDHT] relies on that possibility! An
empty group, however, immediately has finished its work.
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2.3 Conditionals

A special subtlety occurs with the treatment of conditional branching points.
Consider a leaf group GG executing

<stat> = if (e) s else sg

If ¢ only depends on shared data, all the processors compute identical values for e
and therefore select the same branch. The situation, however, is totally different
as soon as ¢ depends on private data as well. Then some of the processors of
G may evaluate e to 0 (i.e., “false”), others to something # 0 (i.e., “true”).
This would imply that the processors of G may reach different program points
at the same time, i.e., become asynchronous. This is avoided by splitting
into two subgroups Gy and (7 at runtime where GGy contains all processors of G
evaluating e to 0, and Gy contains all processors of (G evaluating e to some value
different from 0. The new subgroups G inherit the group number of G. They
are synchronous and start to execute s;. When the execution both of sy and s;
has terminated, the leaf groups G; are removed, and G synchronously continues
program execution.
switch—statements

switch (e) <stat>

are treated analogous to if’s in that (in case the value of e depends on private
data) as many subgroups are created as there are alternatives in the body <stat>.

2.4 Write Conflicts

So far, we did not fix what happens if several processors simultaneously access
the same instance of some variable x. There exist many possibilities to do so
(see, e.g., [Sch92] for an exhaustive discussion of the subject). For simplicity,
we choose the arbitrary convention, i.e., we both allow simultaneous read and
simultaneous write accesses to x. Let P be the set of processors that simultane-
ously execute a write operation on x. Then the resulting value of x can be any
value a processor from P wanted to write. Hence, there are two possible sources of
non—determinism in our language. First, different interleavings of asynchronously
executed parts of the program are possible. Secondly, simultaneous write accesses
may result in different values. A correct implementation of FORK realizes one of
the set of possible behaviors. Therefore, meaningful programs should be robust
against all these kinds of non—deterministic choices.
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3 Advanced Features

3.1 Farming

The implicit formation of subgroups at conditionals and switches depending on
private variables is rather expensive. It can be avoided by means of the new
construct

farm <stat>

Additionally, no synchronous program execution is guaranteed during the execu-
tion of <stat>. Synchronization of the leaf group is provided, though, at the end
of the execution of <stat>.

The farm—statement is useful for portions of the program where the processors
just perform local computations. Omission of implicit subgroup formation im-
plies, however, that allocation of shared variables within <stat> must be avoided.
Especially, functions that are called must have only private parameters and return
a private value (if any).

Type qualifiers sync and async are introduced to distinguish between or-
dinary functions and those that can be called within the farm-statement. A
function declared, e.g., as

sync int fun();

can be called outside farm—statements but must not be called inside. Accordingly,
a function

async int fun();

may only be used inside a farm-statement. Also, asynchronous functions must
not contain any of the new constructs of FORK95 or call functions qualified as
synchronous.

Since ordinary C programs should be executable within farm—statements with-
out any syntactical changes, the general default is async.

3.2 Pointers and Heaps

The most important innovation is that the new FORK supports pointers. Our
key observation about the SB-PRAM (but which also can be seen as a hint for an
implementation on any other synchronous shared-memory MIMD architecture)
is that in fact, no “true” private storage areas exist. This is due to the belief of
the hardware designers that a larger amount of easily accessible shared memory is
much more flexible to use than a smaller shared memory together with a private
memory for every processor which cannot be accessed much faster.

Thus, the language concept of private variables can be implemented by areas
within the single shared storage owned by processors for private use. Hence, we
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find it legal that a shared pointer variable may point to some private object and
vice versa — the question whether or not this is good style, though, is left to the
taste of the programmer. In any case, prevention turns out to be much more
complicated than admission.

As usual in C, there is an address operator ‘&’ (returning the L-value of
an expression) and dereferencing by means of ‘«’. In difference, however, to
sequential C, there are two kinds of heaps for dynamically created objects to
reside in, namely private heaps situated in the processors’ owned portions of
the shared memory, and shared heaps. Consequently, there are also two library
routines, namely malloc and shalloc. Both operate analogously to the C malloc
— with the only exception that malloc(n) executed by processor p, allocates n
cells in the private heap of p, whereas shalloc(n) executed synchronously by all
the processors of some leaf group &, allocates n cells in the portion of shared
memory given to . Both return a pointer to the first allocated memory cell.

There are just two points where special care must be taken. When the leaf
groups G; at group (G are removed from the current group hierarchy, then all the
G;’s segments of shared memory are united to form the free storage for group G.
This design decision has been made for reasons of space economy. However, it
implies that all objects allocated in one of the (G;’s shared heaps are automatically
removed.

The second problem arises from pointers to functions. First note that in
FORK95 unlike in the original language, all return values of functions are private.

Thus,
sh sync int (+f)(int)

does not denote a pointer to a synchronous function that returns a shared value
but a shared pointer to a synchronous function.

In case the pointer is shared, all processors within the leat group in question
will execute the same call, and everything is fine. A call to a function through
a private pointer, however, can be looked at as a huge switch. Consequently,
separate groups must be created for every function of appropriate type in the
system. Thus, the implementer either has to detemine those groups which are
non—empty or must provide a seperate piece of storage for every function possibly
pointed at. Since in general, most of the functions will not be called, the second
alternative would cause a tremendous waste of shared memory and program size.
The first alternative, on the contrary, is inacceptably time—consuming. This
is the reason why, in the present version of FORK95, calls of functions through
private pointers are executed asynchronously. Technically, this is achieved by
implicitly enclosing them into a farm—construct provided they are not already
situated within such a statement or a function qualified as async. Accordingly,
private pointers may only point to functions qualified as async.
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3.3 Tamed Jumps

In FORK95, jumps occur in five disguises:
1. goto [ jumps to the statement labeled [;
2. continue jumps to the end of the innermost including loop—body:;

3. break jumps to the end of the innermost including switch— resp. loop-
statement;

4. return jumps to the end of the current function body;
5. exit jumps to the end of the program.

Both start- and farm-statements are, at least in this context, viewed as special
loops (namely parallel ones) whereas fork-statements are not. The reason for this
decision was to extend the analogy between fork-statements and if-statements
where the condition depends on private variables: both constructs create new
subgroups and distribute processors. Therefore, in FORK95, both also behave
similar w.r.t. break and continue.

In a parallel setting, jumps may be even more harmful than in a sequential
environment.

1. By jumping outside a start-statement a processor might escape from being

killed at the end of the body.

2. By jumping outside a fork—statement or a conditional with private condition
a processor may “leave” its present group; accordingly, if it jumps into the
body of another fork, it may irregularly “enter” another group.

3. It is absolutely unclear what it should mean that a processor crosses the
boundaries of a farm-statement.

The problem which arises in any of these situations is that the numbers of
processors within a group and thus the number of processors involved, e.g., in
synchronization operations for this group may change unpredictably.

At the present status of the language definition and its implementation special
care is only taken for continue, break and return. In all these cases, the
direction of the jump is “from the inside to the outside”, namely to the end
of some surrounding statement. Especially, the number of surrounding group
building constructs (i.e., the length of the path in the group hierarchy from the
present leaf group to the group being leaf at the destination of the jump) can be
determined at compile-time.

Therefore, a corresponding number of updates can be generated to recompute
the number of remaining processors of all groups inbetween.
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Note however, that an extra synchronization cell and extra code for synchro-
nization has to be added to the translation of loops which contain continue or
break. In case of breaks, synchronization has to be inserted immediately after
the loop; in case of continue, immediately after the body of the loop. Analo-
gously, the execution of functions containing returns must be terminated by a
synchronization.

4 The Implementation

A first version of a compiler for FORK95 has been implemented. It is based
on the lcc, a one—pass ANSI C—compiler developed by Chris Fraser and David
Hanson at Princeton, NY [FH91a], [FHI91b], [FH94]. For synchronization our
compiler makes intensive use of the hardware—supplied multiprefix operations of
the SB-PRAM. These are also available to the user as FORK95 operators. Since the
compiler maps at most one thread to every physical processor, the facilities for
rapid context switches are not exploited.

Here is a list of the overheads introduced by the different constructs of the
language:

Constructs: Number of SB-PRAM—Cycles:
synchronization: Lsyne = 10

startup: 150 + 4 x |datal

start: 50

loop: 10 + 5 x #iterations + t gy,
if: 32 + toyne

fork: 44 + tgivision + Lsyne

farm: Lsyne

call, synchronous: | 41 + #(used regs) + 2 x #(shared args)

+ #(private args) + tsyne
call, asynchronous: | 10 + #(used regs) + #(private args) + t sy
malloc/shalloc: | 4
division: tdivision = 12...300 (data dependent)

Division has to be implemented in software: therefore the huge (and varying)
number in the last line. Also, in a synchronous context, extra synchronization
has to occur afterwards. Synchronization, however, is suppressed whenever the
divisor is shared or constant. The cost of calls clearly can be reduced by passing
aruments in registers (this is standard for most library functions). The cost of
ifs can be reduced drastically whenever at most one of the branches contains
function calls.

Since the realization of the SB-PRAM is not yet completed, a hardware simula-
tor for the SB-PRAM has been implemented [KPS94]. The object code produced
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by the compileris in COFF format. It can be executed and debugged on this sim-
ulator. The compiler together with the simulator can be obtained via anonymous
ftp from lunix.cs.uni-sb.de in directory fork9s.

5 Conclusion

We described how the parallel programming language FORK can be modified to
become a superset of the sequential language C. Depending on the application
the programmer has in mind, embedding of C functions into FORK95—programs
can be done in three ways. The programmer may include C routines into a farm—
construct to execute local computations on every processor. He/She may also
use plain C routines to implement the sequential parts of the program between
start-statements. As a third alternative, the programmer might choose to keep
all data within the shared memory and use synchronous functions for their ma-
nipulation. In this case, however, he/she has to add qualifiers sh and sync to
data and function definitions, respectively. Furthermore, care must be taken to
move private return values of functions back into shared variables.

The present redesign and its compiler is an effort to simplify the implemen-
tation of parallel algorithms. Using existing code for the sequential parts of the
algorithm, the programmer really may concentrate on the implementation of the
parallel aspects.

It must be emphasized that the language is an experimental one. Future
research has to investigate language extensions that support also other kinds of
algorithmic skeletons like, e.g.. pipelining.
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