A Practical Access to the Theory of Parallel Algorithms

Christoph Kessler

Department of Computer Science
Linkdping University
S-58183 Linkdping, Sweden

chrke @ ida.liu.se

ACM SIGCSE-2004 Norfolk VA, USA, March 6, 2004

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 3 C. Kessler, IDA, Linkbpings Universitet, 2004,

PRAM model of parallel computation

Parallel Random Access Machine [Fortune/Wyllie'78]

p processors
¢ MIMD
e« common clock signal

Shared Memory

e arithm./jump: 1 clock cycle

shared memory

e uniform memory accesstime LA\ M5)
e latency: 1 clock cycle (!)

e concurrent memory accesses

e sequential consistency

private memory (optional)

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 5 C. Kessler, IDA, Linkbpings Universitet, 2004,

More on the PRAM model: see PRAM literature

Wy S o Pl o et Gt
Mot o, S Bt

Practical PRAM

Cormen, Leiserson, Rivest: Introduction to Algorithms, Programmlng
Chapter 30. MIT press, 1989.

JaJa: An introduction to parallel algorithms.
Addison-Wesley, 1992.

Jirg Keller
> ! Kol

Jordan, Alaghband: Fundamentals of Parallel Processing
Prentice Hall, 2003.

Keller, Kessler, Traff: Practical PRAM Programming.—
Wiley Interscience, New York, 2000.

Cover image,
copyright (c) The J. Paul Getty Museum, Malibu, CA

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 7 C. Kessler, IDA, Linkbpings Universitet, 2004,

The PRAM programming language Fork

MIMD parallelism
each processor has its own control (PC)

SPMD style of parallel program execution bar i
arrrer — -

e start fixed set of p processors

e execute main as one large group

e no spawning of more processors

For all program variables and objects
declare sharity (shared, private):

sh int k, *iptr, a[10];
pr float mysum;
iptr = shalloc (sizeof(int));

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 2 C. Kessler, IDA, Linkdpings Universitet, 2004.

Outline

e PRAM model of parallel computation

e PRAM prototype realization in hardware and software

e The PRAM programming language Fork

e Example algorithm in Fork: Parallel Quicksort

e trv tool for visualization of time behavior of PRAM algorithms
e Use as lab environment for a course on parallel algorithms

e Evaluation

e Conclusions

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 4 C. Kessler, IDA, Linkdpings Universitet, 2004.

Example: Global sum computation on EREW PRAM

Given n numbers Xo, Xy, ..., X,—1 Stored in a shared array.

—1
The global sum Ijz X can be computed in [log,n] time steps
=0 on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

ParSum(n/2) | [ParSum(n/2)

e Divide phase: trivial, time O(1)
e Recursive calls: parallel time T(n/2)

with base case: memory access, time O(1)
e Combine phase: addition, time O(1)

— T(n)=T(n/2)+0(1)

Use induction or the master theorem [Cormen*’90 Ch.4] — T(n) € O(logn)

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 6 C. Kessler, IDA, Linkdpings Universitet, 2004.

PRAM prototype realization in hardware and softwari _

Saarbriicken PRAM &

e by Wolfgang Paul and his SB-PRAM project group at Saarbriicken
e cost-efficient PRAM emulation based on “Fluent Machine” [Ranade’88]
e shared memory, hashed address space

e deterministic concurrent write (Priority CRCW PRAM)

e network: pipelined butterfly network with combining switches

e processors: RISC-like, 32-threaded, cycle-by-cycle interleaving

e constant-time multiprefix-sum / max / and / or on-the-fly

e design fixed 1991, 1 GFlops sustained performance for p= 4096
e research prototype p = 2048built 1992-2001, ~ 3 M-Euro

o software simulator

e program development tools: assembler, linker, loader, OS

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 8 C. Kessler, IDA, Linkdpings Universitet, 2004,

The PRAM programming language Fork (2)

Synchronous execution at the expression level

— deterministic computation (similar to dataparallel languages a la HPF)
0 1 2 3 45 6 7 8

shared array a

S: a[$] = a[$] + a[$+1];
/I $in {0..p-1} is processor rank
asynchronous execution

synchronous execution

result is deterministic race conditions!

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 9 C. Kessler, IDA, Linkbpings Universitet, 2004,

The PRAM programming language Fork (3)

Processor group concept

if ()cond
Programmer can relax the scope then-part;
. . else
of sharing and synchronous execution:
else-part;

e implicit group splitting

if-then-else , while ...

\AAAARAR
R

(RPRRPRR

— adapt to control flow

e explicit group splitting

fork(K .) (RRARP] [(RRRPF]
— parallel divide-and-conquer ¢ ¢ ¢ ¢ ¢ ¢ ¢
then-part; else-part;

SIGCSE'04 Norfolk 6 March 2004 — A praciical access to the theory of parallel algorithms. Page 11 C. Kessler, IDA, Linkbpings Universitet, 2004,

trv tool for visualization of time behavior of PRAM algorithms

Processor-time diagram

Fork95 . " N 103 sh-loads, 128 sh-stores
trv buildTree traced time period: 9 msecs 20 mpadt, 0 mpmax, 0 mpand, 0 mpor
PO

L barirs. L msecs 194 spet g n iy 0lociups O msecs = 0% spet sprningan o 3.9 3 sres 5 mpaco 0 o, 0 . 0 por
P1 14 barriers. 1 msecs = 19.6% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd. 0 mpmax. 0 mpand. 0 mpor
P2

Libariesineec = 196 cpen o n iy Olocuss 0 nsecs= 00 pen somming o ks o oace o e moass D mpmax O cang 0o
P3 11 barriers, 3 msecs = 35.3% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spnning on locks. 6 sh loads, 8 sh stores. 1 mpadd, 0 mpmax. 0 mpand. 0 mpor.
P4

1 barirs. 3 msocs =35 4 spet g n s 0 ociups 0 nsecs =0 03 gt spming o ks § s cade s ses L mpad 0 . Ompanc 0 r
P5

L barirs. L socs 194 spet g n s O locups.—— 0 nsecs =0 03 et spmingon ks § h ais, s sees L mpad 0 . Ompanc 0 or
Pe 11 barriers, 3 msecs = 35.6% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax. 0 mpand. 0 mpor
P7

L s 3meec =35 6% oot o n iy Olocuss 0 nsecs= 00 pen somming o s 6 oace o ices L moads D mpmax Qganc 0o
P8 L1 barriers, 3 msecs = 35.1% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax. 0 mpand. 0 mpor.
P9

8bares.— nsecs =505 pen spminganarrs 0 ciups 0 nsecs = i st sping o ks §h cace s sies mpad 0 . Ompanc 0 or
P10

8bars. 4 nsecs 51130 sen somingon aters O locups 0 nsecs =0 03 it spming o ks § h ais s sees L mpad 0 . Ompand 0 or
P11

8barrs, 4 nsecs 51130 spen somingon aters 0lociups O msecs =0.0% spet sprningan ok 5 oas.§ 1 soes L o 0 mpma. 0 . 0o
P12

Stares 6 niecs = 6.4 gen omingcnarrs Olocuss 0 nsecs= 00 e soming o s 6 uace o e moasd D mpmax Qrzang 0o
P13

Slamrs L niecs =51 gen somngcnarrs 0locups 0 nsece= 0 0 spen somning o s 6 oace_ o sres L moass D mpmax O moarc 0o
P14 5 barmers. 6 msecs = §6.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spmnning on locks 6 sh loads, 8 sh stores. 1 mpadd, 0 mpmax. 0 mpand, 0 mpor
P15

Lbarirs, 7 msecs= 5645 spet sping o aiers Dlockups, 0 msecs =003 spet sping o ocks i loads, B nsioves, L maac, 0 mpma, 0 g, O

Reprinted from Practical PRAM Programmingith permission. Copyright (c) 2000 John Wiley & Sons, Inc.

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 13 C. Kessler, IDA, Linkbpings Universitet, 2004,

Use as lab environment for a course on parallel algorithms

FDA125 “Advanced Parallel Programming”
graduate-level course at Linkdpings Universitet, Sweden, spring 2003 (8 st.)

e PRAM theory (time, work, cost analysis; simulation results; ...)
e Basic PRAM algorithms (list ranking, prefix sums, ...)
e Fork tutorial

e Parallel algorithmic paradigms
data parallelism, parallel divide&conquer, pipelining, task farming, ...

e Parallel data structures
pipelined 2-3 trees, par. hash table, par. FIFO queue, par. priority queue

e Dynamic (loop) scheduling; irregular algorithms (Barnes-Hut,...)

e Other languages: OpenMP, MPI, HPF, Cilk
Other topics: PRAM emulation, parallel computer architecture, DSM ...

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 15 C. Kessler, IDA, Linkbpings Universitet, 2004,

Evaluation

Evaluation after the parallel programming exercise

Questionnaire: see course webpage www.ida.liu.se/~chrke/courses/APP

Question Yes No
Was the exercise too hard / too easy

/ just the right degree of difficulty? 6 0
Did you look at the demo examples in Fork? 6 0

Did you find the trace file visualizer useful

— to identify performance bottlenecks? 4 1
— to understand the structure of computation? 4 1
— to debug your program? 3 2

Did you learn something by doing the assignment
— about the theory of parallel algorithms? 3 1
— about parallel implementation problems? 6
the practical exercise was a useful complement

of the other parts of the course 6 0

plus free-text comments: suggestions for improvements, “Linux?”, “BSP?” ...

SIGCSE'04 Norfolk 6 March 2004 — A practical access 1o the theory of parallel algorithms. Page 10 C. Kessler, IDA, Linkdpings Universitet, 2004,

Example algorithm in Fork: Parallel Quicksort (see the paper)

sync void buildTree(void) // executed by N processors

print ¢, w = -1;

root = $; /I concurrent write, proc. (N-1) succeeds
myParent = root; /I on_priority CRCW PRAM
Ichild[$] = rchild[$] = N; /I $ denotesyprgdessor 1D
if ($!=root) {

while (wi=$) { 405519

farm // evaluate conditian
c = (key[$]<key]l
II' (key[$]==

key[12]
605659

key[9]
879684

myParent sy Wi

key[8]
Il else | am| the

983639

key[4]
736578

key[0] key[1] key[5]
701283 871425 1005344

else { // | must go to the right of myParei
rchildmyParent] = $;
IAmALeftChild = 0;
w = rchild[myParent];
if (W=$)
myParent = w;

574623

By

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 12 C. Kessler, IDA, Linkdpings Universitet, 2004.

trv tool for visualization of time behavior of PRAM algorithms (2)

Tailored for tracing execution of Fork programs:

e Fork compiler instruments the program to log events during execution
+ subgroup creation / termination
+ entry, exit to barriers, locks
+ user-defined events (e.g., access to a shared data structure)
accumulated in memory (— low overhead), dumped to file later

e trv tool creates a processor-time diagram from the trace file:
scalable format (FIG), customizable display (colors, ...), zooming possible

phases of “useful work™:
all processors of the same group have the same color

see idle times at barriers and locks, group splitting overheads ...

other tools: ParaGraph, upshot, VAMPIR...
(coarse-grained, message passing)

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 14 C. Kessler, IDA, Linkdpings Universitet, 2004

Use as lab environment for a course on parallel algorithms (2)

Programming exercise in Fork: Bitonic sort algorithm

Goals:

e understand the algorithm from textbook
[Cormen/Leiserson/Rivest Ch. 28]

formulate it as a Fork program

experimentally verify O(log?N) complexity

face problems in parallel programming
(coordination, sharing, synchronicity, ...)

apply structured parallel programming

e use trv visualization

The exercise was finished in time
by 6 out of 8 students.

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 16 C. Kessler, IDA, Linkdpings Universitet, 2004,

Conclusions

PRAM model: easy to program and analyze:
e focus on pure parallelism,

e no worry about data locality or consistency; C
Practical PRAM
Programming
Fork and the PRAM simulator can be used as lab equipment &2 .e
to complement traditional courses on parallel algorithms.

should be taught even before threads and MPI.

The processor-time diagram helps with understanding
and verifying the structure of the parallel computation.

Download Fork and the simulator
at www.ida.liu.se/~chrke/fork
(system requirements: Solaris / HP-UX)

Future work: Web service for remote execution of Fork programs

