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PRAM model of parallel computation

Parallel Random Access Machine [Fortune/Wyllie’78]

p processors

� MIMD

� common clock signal

� arithm./jump: 1 clock cycle

shared memory

� uniform memory access time

� latency: 1 clock cycle (!)

� concurrent memory accesses

� sequential consistency

private memory (optional)
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Example: Global sum computation on EREW PRAM

Given n numbers x0;x1; :::;xn�1 stored in a shared array.

The global sum
n�1
∑
i=0

xi can be computed in dlog2ne time steps
on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

t

ParSum(n/2) ParSum(n/2)

ParSum(n):

++

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7] 

+ + + +

++

� Divide phase: trivial, time O(1)
� Recursive calls: parallel time T(n=2)

with base case: memory access, time O(1)
� Combine phase: addition, time O(1)

! T(n) = T(n=2)+O(1)

Use induction or the master theorem [Cormen+’90 Ch.4] ! T(n) 2O(logn)
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More on the PRAM model: see PRAM literature

JáJá: An introduction to parallel algorithms.
Addison-Wesley, 1992.

Cormen, Leiserson, Rivest: Introduction to Algorithms,
Chapter 30. MIT press, 1989.

Jordan, Alaghband: Fundamentals of Parallel Processing.
Prentice Hall, 2003.

Keller, Kessler, Träff: Practical PRAM Programming.!
Wiley Interscience, New York, 2000.

... Cover image,
copyright (c) The J. Paul Getty Museum, Malibu, CA
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PRAM prototype realization in hardware and software

Saarbrücken PRAM

            

� by Wolfgang Paul and his SB-PRAM project group at Saarbrücken

� cost-efficient PRAM emulation based on “Fluent Machine” [Ranade’88]

� shared memory, hashed address space

� deterministic concurrent write (Priority CRCW PRAM)

� network: pipelined butterfly network with combining switches

� processors: RISC-like, 32-threaded, cycle-by-cycle interleaving

� constant-time multiprefix-sum / max / and / or on-the-fly

� design fixed 1991, 1 GFlops sustained performance for p= 4096

� research prototype p= 2048built 1992–2001, � 3 M-Euro

� software simulator

� program development tools: assembler, linker, loader, OS

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 7 C. Kessler, IDA, Linköpings Universitet, 2004.

The PRAM programming language Fork

MIMD parallelism
each processor has its own control (PC)

SPMD style of parallel program execution

� start fixed set of p processors

� execute main as one large group

� no spawning of more processors

For all program variables and objects
declare sharity (shared, private):

sh int k, *iptr, a[10];
pr float mysum;
iptr = shalloc (sizeof(int));
...

P0 P1 P2 3
P P4 5P

barrier

seq

parallel
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The PRAM programming language Fork (2)

Synchronous execution at the expression level

! deterministic computation (similar to dataparallel languages à la HPF)

synchronous  execution asynchronous  execution

result  is  deterministic race  conditions!

t

//  $ in {0..p-1} is processor rank

S:   a[$] = a[$] + a[$+1];

876543210
shared array   a

+ + + +++++

S

S

S

S

S
S

S

S

S SS SS SS
S
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The PRAM programming language Fork (3)

Processor group concept

Programmer can relax the scope

of sharing and synchronous execution:

� implicit group splitting

if-then-else , while , ...

! adapt to control flow

� explicit group splitting

fork( k, ...)

! parallel divide-and-conquer

6 74130 52

7

else-part;

65 PPPP3 4P P

P

PP

cond:

PP

then-part;
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     else-part;

     then-part;

cond
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if (      )
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Example algorithm in Fork: Parallel Quicksort (see the paper)

sync void buildTree( void ) // executed by N processors
{

pr int c, w = -1;
root = $; // concurrent write, proc. (N-1) succeeds
myParent = root; // on priority CRCW PRAM
lchild[$] = rchild[$] = N; // $ denotes processor ID
if ($!=root) {

while (w!=$) {
farm // evaluate condition separately:

c = (key[$]<key[myParent]
|| (key[$]==key[myParent] && $<myParent) );

if ( c )
{ // I must go to the left of myParent:

lchild[myParent] = $; // (arbitrary) conc. write
IAmALeftChild = 1;
w = lchild[myParent]; // read what was written
if (w!=$) // someone else (w) succeeded:

myParent = w; // w becomes my new parent node
// else I am the new parent node: I am done

}
else { // I must go to the right of myParent:

rchild[myParent] = $;
IAmALeftChild = 0;
w = rchild[myParent];
if (w!=$)

myParent = w;
}} } }

key[14]

405579

key[15]

248455

736578

key[1]

871425

key[0]

701283

key[12]

605659

key[6]

427186

key[2]

574623

key[10]

597400

key[11]

261401

key[4]

key[13]

81098

key[7]

175294

key[3]

358953

key[9]

879684

key[5]

1005344

key[8]

983639
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trv tool for visualization of time behavior of PRAM algorithms

Processor-time diagram

buildTree traced time period: 9 msecs
103 sh-loads,    128 sh-stores
20 mpadd,    0 mpmax,    0 mpand,     0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

14 barriers,        1 msecs = 19.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 13 sh loads,  8 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

14 barriers,        1 msecs = 19.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

14 barriers,        1 msecs = 19.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

11 barriers,        3 msecs = 35.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

11 barriers,        3 msecs = 35.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

14 barriers,        1 msecs = 19.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

11 barriers,        3 msecs = 35.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

11 barriers,        3 msecs = 35.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

11 barriers,        3 msecs = 35.1% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        4 msecs = 50.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        4 msecs = 51.1% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        4 msecs = 51.1% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

5 barriers,        6 msecs = 66.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        4 msecs = 51.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

5 barriers,        6 msecs = 66.9% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

1 barriers,        7 msecs = 86.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 6 sh loads,  8 sh stores,   1 mpadd,  0 mpmax,  0 mpand,  0 mpor

Fork95
trv

Reprinted from Practical PRAM Programmingwith permission. Copyright (c) 2000 John Wiley & Sons, Inc.
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trv tool for visualization of time behavior of PRAM algorithms (2)

Tailored for tracing execution of Fork programs:

� Fork compiler instruments the program to log events during execution

+ subgroup creation / termination

+ entry, exit to barriers, locks

+ user-defined events (e.g., access to a shared data structure)

accumulated in memory (! low overhead), dumped to file later

� trv tool creates a processor-time diagram from the trace file:

scalable format (FIG), customizable display (colors, ...), zooming possible

� phases of “useful work”:

all processors of the same group have the same color

� see idle times at barriers and locks, group splitting overheads ...

� other tools: ParaGraph, upshot, VAMPIR...

(coarse-grained, message passing)
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Use as lab environment for a course on parallel algorithms

FDA125 “Advanced Parallel Programming”

graduate-level course at Linköpings Universitet, Sweden, spring 2003 (8 st.)

� PRAM theory (time, work, cost analysis; simulation results; ...)

� Basic PRAM algorithms (list ranking, prefix sums, ...)

� Fork tutorial

� Parallel algorithmic paradigms

data parallelism, parallel divide&conquer, pipelining, task farming, ...

� Parallel data structures

pipelined 2-3 trees, par. hash table, par. FIFO queue, par. priority queue

� Dynamic (loop) scheduling; irregular algorithms (Barnes-Hut,...)

� Other languages: OpenMP, MPI, HPF, Cilk

Other topics: PRAM emulation, parallel computer architecture, DSM ...
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Use as lab environment for a course on parallel algorithms (2)

Programming exercise in Fork: Bitonic sort algorithm

Goals:

� understand the algorithm from textbook
[Cormen/Leiserson/Rivest Ch. 28]

� formulate it as a Fork program

� experimentally verify O(log2N) complexity

� face problems in parallel programming
(coordination, sharing, synchronicity, ...)

� apply structured parallel programming

� use trv visualization

The exercise was finished in time
by 6 out of 8 students.

Bitonic sort, recursive, p=32 traced time period: 69 msecs
10930 sh-loads,    7298 sh-stores
2340 mpadd,    0 mpmax,    0 mpand,     0 mpor
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95 barriers,       13 msecs = 19.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 587 sh loads,  292 sh stores,   77 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.1% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 331 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 332 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.7% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.7% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 337 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.2% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 331 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 333 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 335 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 336 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 336 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.7% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 335 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.1% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 333 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 332 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 336 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.2% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 337 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 335 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 332 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.8% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 333 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.9% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 333 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 333 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 18.9% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 334 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       12 msecs = 18.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 336 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.2% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 332 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 19.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 331 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

95 barriers,       13 msecs = 20.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 328 sh loads,  226 sh stores,   73 mpadd,  0 mpmax,  0 mpand,  0 mpor

Fork95
trv
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Evaluation

Evaluation after the parallel programming exercise

Questionnaire: see course webpage www.ida.liu.se/�chrke/courses/APP

Question Yes No
Was the exercise too hard / too easy
/ just the right degree of difficulty? 6 0
Did you look at the demo examples in Fork? 6 0
Did you find the trace file visualizer useful
– to identify performance bottlenecks? 4 1
– to understand the structure of computation? 4 1
– to debug your program? 3 2
Did you learn something by doing the assignment
– about the theory of parallel algorithms? 3 1
– about parallel implementation problems? 6 0
the practical exercise was a useful complement
of the other parts of the course 6 0

plus free-text comments: suggestions for improvements, “Linux?”, “BSP?” ...
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Conclusions

PRAM model: easy to program and analyze:

� focus on pure parallelism,

� no worry about data locality or consistency;

should be taught even before threads and MPI.

Fork and the PRAM simulator can be used as lab equipment
to complement traditional courses on parallel algorithms.

The processor-time diagram helps with understanding
and verifying the structure of the parallel computation.

Download Fork and the simulator
at www.ida.liu.se/�chrke/fork
(system requirements: Solaris / HP-UX)

Future work: Web service for remote execution of Fork programs


