
A Practical Access to the Theory of Parallel Algorithms

Christoph Kessler
Department of Computer Science

Linköping University
S-58183 Linköping, Sweden

chrke @ ida.liu.se

ACM SIGCSE-2004 Norfolk VA, USA, March 6, 2004

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 2 C. Kessler, IDA, Linköpings Universitet, 2004.

Outline

� PRAM model of parallel computation

� PRAM prototype realization in hardware and software

� The PRAM programming language Fork

� Example algorithm in Fork: Parallel Quicksort

� trv tool for visualization of time behavior of PRAM algorithms

� Use as lab environment for a course on parallel algorithms

� Evaluation

� Conclusions

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 3 C. Kessler, IDA, Linköpings Universitet, 2004.

PRAM model of parallel computation

Parallel Random Access Machine [Fortune/Wyllie’78]

p processors

� MIMD

� common clock signal

� arithm./jump: 1 clock cycle

shared memory

� uniform memory access time

� latency: 1 clock cycle (!)

� concurrent memory accesses

� sequential consistency

private memory (optional)

3MMMM0

P1 2 3 P

Shared Memory

P

Mp-1

p-10 PP

21

......

CLOCK

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 4 C. Kessler, IDA, Linköpings Universitet, 2004.

Example: Global sum computation on EREW PRAM

Given n numbers x0;x1; :::;xn�1 stored in a shared array.

The global sum
n�1
∑
i=0

xi can be computed in dlog2ne time steps
on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

t

ParSum(n/2) ParSum(n/2)

ParSum(n):

++

d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

+ + + +

++

� Divide phase: trivial, time O(1)
� Recursive calls: parallel time T(n=2)

with base case: memory access, time O(1)
� Combine phase: addition, time O(1)

! T(n) = T(n=2)+O(1)

Use induction or the master theorem [Cormen+’90 Ch.4] ! T(n) 2O(logn)

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 5 C. Kessler, IDA, Linköpings Universitet, 2004.

More on the PRAM model: see PRAM literature

JáJá: An introduction to parallel algorithms.
Addison-Wesley, 1992.

Cormen, Leiserson, Rivest: Introduction to Algorithms,
Chapter 30. MIT press, 1989.

Jordan, Alaghband: Fundamentals of Parallel Processing.
Prentice Hall, 2003.

Keller, Kessler, Träff: Practical PRAM Programming.!
Wiley Interscience, New York, 2000.

... Cover image,
copyright (c) The J. Paul Getty Museum, Malibu, CA

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 6 C. Kessler, IDA, Linköpings Universitet, 2004.

PRAM prototype realization in hardware and software

Saarbrücken PRAM

� by Wolfgang Paul and his SB-PRAM project group at Saarbrücken

� cost-efficient PRAM emulation based on “Fluent Machine” [Ranade’88]

� shared memory, hashed address space

� deterministic concurrent write (Priority CRCW PRAM)

� network: pipelined butterfly network with combining switches

� processors: RISC-like, 32-threaded, cycle-by-cycle interleaving

� constant-time multiprefix-sum / max / and / or on-the-fly

� design fixed 1991, 1 GFlops sustained performance for p= 4096

� research prototype p= 2048built 1992–2001, � 3 M-Euro

� software simulator

� program development tools: assembler, linker, loader, OS

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 7 C. Kessler, IDA, Linköpings Universitet, 2004.

The PRAM programming language Fork

MIMD parallelism
each processor has its own control (PC)

SPMD style of parallel program execution

� start fixed set of p processors

� execute main as one large group

� no spawning of more processors

For all program variables and objects
declare sharity (shared, private):

sh int k, *iptr, a[10];
pr float mysum;
iptr = shalloc (sizeof(int));
...

P0 P1 P2 3
P P4 5P

barrier

seq

parallel

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 8 C. Kessler, IDA, Linköpings Universitet, 2004.

The PRAM programming language Fork (2)

Synchronous execution at the expression level

! deterministic computation (similar to dataparallel languages à la HPF)

synchronous execution asynchronous execution

result is deterministic race conditions!

t

// $ in {0..p-1} is processor rank

S: a[$] = a[$] + a[$+1];

876543210
shared array a

+ + + +++++

S

S

S

S

S
S

S

S

S SS SS SS
S

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 9 C. Kessler, IDA, Linköpings Universitet, 2004.

The PRAM programming language Fork (3)

Processor group concept

Programmer can relax the scope

of sharing and synchronous execution:

� implicit group splitting

if-then-else , while , ...

! adapt to control flow

� explicit group splitting

fork(k, ...)

! parallel divide-and-conquer

6 74130 52

7

else-part;

65 PPPP3 4P P

P

PP

cond:

PP

then-part;

P PP P P

F

 else-part;

 then-part;

cond

else

if ()

0 1 2

FFTFTTT

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 10 C. Kessler, IDA, Linköpings Universitet, 2004.

Example algorithm in Fork: Parallel Quicksort (see the paper)

sync void buildTree(void) // executed by N processors
{

pr int c, w = -1;
root = $; // concurrent write, proc. (N-1) succeeds
myParent = root; // on priority CRCW PRAM
lchild[$] = rchild[$] = N; // $ denotes processor ID
if ($!=root) {

while (w!=$) {
farm // evaluate condition separately:

c = (key[$]<key[myParent]
|| (key[$]==key[myParent] && $<myParent));

if (c)
{ // I must go to the left of myParent:

lchild[myParent] = $; // (arbitrary) conc. write
IAmALeftChild = 1;
w = lchild[myParent]; // read what was written
if (w!=$) // someone else (w) succeeded:

myParent = w; // w becomes my new parent node
// else I am the new parent node: I am done

}
else { // I must go to the right of myParent:

rchild[myParent] = $;
IAmALeftChild = 0;
w = rchild[myParent];
if (w!=$)

myParent = w;
}} } }

key[14]

405579

key[15]

248455

736578

key[1]

871425

key[0]

701283

key[12]

605659

key[6]

427186

key[2]

574623

key[10]

597400

key[11]

261401

key[4]

key[13]

81098

key[7]

175294

key[3]

358953

key[9]

879684

key[5]

1005344

key[8]

983639

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 11 C. Kessler, IDA, Linköpings Universitet, 2004.

trv tool for visualization of time behavior of PRAM algorithms

Processor-time diagram

buildTree traced time period: 9 msecs
103 sh-loads, 128 sh-stores
20 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

14 barriers, 1 msecs = 19.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 13 sh loads, 8 sh stores, 5 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

14 barriers, 1 msecs = 19.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

11 barriers, 3 msecs = 35.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 50.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 6 msecs = 66.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

8 barriers, 4 msecs = 51.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

5 barriers, 6 msecs = 66.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

1 barriers, 7 msecs = 86.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

Reprinted from Practical PRAM Programmingwith permission. Copyright (c) 2000 John Wiley & Sons, Inc.

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 12 C. Kessler, IDA, Linköpings Universitet, 2004.

trv tool for visualization of time behavior of PRAM algorithms (2)

Tailored for tracing execution of Fork programs:

� Fork compiler instruments the program to log events during execution

+ subgroup creation / termination

+ entry, exit to barriers, locks

+ user-defined events (e.g., access to a shared data structure)

accumulated in memory (! low overhead), dumped to file later

� trv tool creates a processor-time diagram from the trace file:

scalable format (FIG), customizable display (colors, ...), zooming possible

� phases of “useful work”:

all processors of the same group have the same color

� see idle times at barriers and locks, group splitting overheads ...

� other tools: ParaGraph, upshot, VAMPIR...

(coarse-grained, message passing)

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 13 C. Kessler, IDA, Linköpings Universitet, 2004.

Use as lab environment for a course on parallel algorithms

FDA125 “Advanced Parallel Programming”

graduate-level course at Linköpings Universitet, Sweden, spring 2003 (8 st.)

� PRAM theory (time, work, cost analysis; simulation results; ...)

� Basic PRAM algorithms (list ranking, prefix sums, ...)

� Fork tutorial

� Parallel algorithmic paradigms

data parallelism, parallel divide&conquer, pipelining, task farming, ...

� Parallel data structures

pipelined 2-3 trees, par. hash table, par. FIFO queue, par. priority queue

� Dynamic (loop) scheduling; irregular algorithms (Barnes-Hut,...)

� Other languages: OpenMP, MPI, HPF, Cilk

Other topics: PRAM emulation, parallel computer architecture, DSM ...

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 14 C. Kessler, IDA, Linköpings Universitet, 2004.

Use as lab environment for a course on parallel algorithms (2)

Programming exercise in Fork: Bitonic sort algorithm

Goals:

� understand the algorithm from textbook
[Cormen/Leiserson/Rivest Ch. 28]

� formulate it as a Fork program

� experimentally verify O(log2N) complexity

� face problems in parallel programming
(coordination, sharing, synchronicity, ...)

� apply structured parallel programming

� use trv visualization

The exercise was finished in time
by 6 out of 8 students.

Bitonic sort, recursive, p=32 traced time period: 69 msecs
10930 sh-loads, 7298 sh-stores
2340 mpadd, 0 mpmax, 0 mpand, 0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

95 barriers, 13 msecs = 19.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 587 sh loads, 292 sh stores, 77 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 331 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 332 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.7% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.7% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 337 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.2% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 331 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 333 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 335 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 336 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 336 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.7% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 335 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.1% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 333 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 332 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.6% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 336 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.2% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 337 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 335 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.3% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 332 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.8% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 333 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 333 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 333 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 18.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 334 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 12 msecs = 18.4% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 336 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.2% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 332 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 19.5% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 331 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

95 barriers, 13 msecs = 20.0% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spinning on locks 328 sh loads, 226 sh stores, 73 mpadd, 0 mpmax, 0 mpand, 0 mpor

Fork95
trv

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 15 C. Kessler, IDA, Linköpings Universitet, 2004.

Evaluation

Evaluation after the parallel programming exercise

Questionnaire: see course webpage www.ida.liu.se/�chrke/courses/APP

Question Yes No
Was the exercise too hard / too easy
/ just the right degree of difficulty? 6 0
Did you look at the demo examples in Fork? 6 0
Did you find the trace file visualizer useful
– to identify performance bottlenecks? 4 1
– to understand the structure of computation? 4 1
– to debug your program? 3 2
Did you learn something by doing the assignment
– about the theory of parallel algorithms? 3 1
– about parallel implementation problems? 6 0
the practical exercise was a useful complement
of the other parts of the course 6 0

plus free-text comments: suggestions for improvements, “Linux?”, “BSP?” ...

SIGCSE’04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 16 C. Kessler, IDA, Linköpings Universitet, 2004.

Conclusions

PRAM model: easy to program and analyze:

� focus on pure parallelism,

� no worry about data locality or consistency;

should be taught even before threads and MPI.

Fork and the PRAM simulator can be used as lab equipment
to complement traditional courses on parallel algorithms.

The processor-time diagram helps with understanding
and verifying the structure of the parallel computation.

Download Fork and the simulator
at www.ida.liu.se/�chrke/fork
(system requirements: Solaris / HP-UX)

Future work: Web service for remote execution of Fork programs

