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PRAM model of parallel computation

Parallel Random Access Machine [Fortune/Wyllie'78]

p processors
¢ MIMD
e« common clock signal

Shared Memory

e arithm./jump: 1 clock cycle

shared memory

e uniform memory accesstime LA\ M5 )
e latency: 1 clock cycle (!)

e concurrent memory accesses

e sequential consistency

private memory (optional)

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 5 C. Kessler, IDA, Linkbpings Universitet, 2004,

More on the PRAM model: see PRAM literature
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Cormen, Leiserson, Rivest: Introduction to Algorithms, Programmlng
Chapter 30. MIT press, 1989.

JaJa: An introduction to parallel algorithms.
Addison-Wesley, 1992.
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Jordan, Alaghband: Fundamentals of Parallel Processing
Prentice Hall, 2003.

Keller, Kessler, Traff: Practical PRAM Programming.—
Wiley Interscience, New York, 2000.
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The PRAM programming language Fork

MIMD parallelism
each processor has its own control (PC)

SPMD style of parallel program execution bar i
arrrer — -

e start fixed set of p processors

e execute main as one large group

e no spawning of more processors

For all program variables and objects
declare sharity (shared, private):

sh int k, *iptr, a[10];
pr float mysum;
iptr = shalloc (sizeof(int));
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Example: Global sum computation on EREW PRAM

Given n numbers Xo, Xy, ..., X,—1 Stored in a shared array.

—1
The global sum Ijz X can be computed in [log,n] time steps
=0 on an EREW PRAM with n processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

ParSum(n/2) | [ ParSum(n/2)

e Divide phase: trivial, time O(1)
e Recursive calls: parallel time T(n/2)

with base case: memory access, time O(1)
e Combine phase: addition, time O(1)

— T(n)=T(n/2)+0(1)

Use induction or the master theorem [Cormen*’90 Ch.4] — T(n) € O(logn)
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PRAM prototype realization in hardware and softwari _

Saarbriicken PRAM &

e by Wolfgang Paul and his SB-PRAM project group at Saarbriicken
e cost-efficient PRAM emulation based on “Fluent Machine” [Ranade’88]
e shared memory, hashed address space

e deterministic concurrent write (Priority CRCW PRAM)

e network: pipelined butterfly network with combining switches

e processors: RISC-like, 32-threaded, cycle-by-cycle interleaving

e constant-time multiprefix-sum / max / and / or on-the-fly

e design fixed 1991, 1 GFlops sustained performance for p= 4096
e research prototype p = 2048built 1992-2001, ~ 3 M-Euro

o software simulator

e program development tools: assembler, linker, loader, OS
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The PRAM programming language Fork (2)

Synchronous execution at the expression level

— deterministic computation (similar to dataparallel languages a la HPF)
0 1 2 3 45 6 7 8

shared array a

S: a[$] = a[$] + a[$+1];
/I $in {0..p-1} is processor rank
asynchronous execution

synchronous execution

result is deterministic race conditions!
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The PRAM programming language Fork (3)

Processor group concept

if ( )cond
Programmer can relax the scope then-part;
. . else
of sharing and synchronous execution:
else-part;

e implicit group splitting

if-then-else , while ...

\AAAARAR
R

(RPRRPRR

— adapt to control flow

e explicit group splitting

fork( K .) (RRARP ] [(RRRPF]
— parallel divide-and-conquer ¢ ¢ ¢ ¢ ¢ ¢ ¢
then-part; else-part;
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trv tool for visualization of time behavior of PRAM algorithms

Processor-time diagram

Fork95 . " N 103 sh-loads, 128 sh-stores
trv buildTree traced time period: 9 msecs 20 mpadt, 0 mpmax, 0 mpand, 0 mpor
PO

L barirs. L msecs 194 spet g n iy 0lociups O msecs = 0% spet sprningan o 3.9 3 sres 5 mpaco 0 o, 0 . 0 por
P1 14 barriers. 1 msecs = 19.6% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd. 0 mpmax. 0 mpand. 0 mpor
P2

Libariesineec = 196 cpen o n iy Olocuss 0 nsecs= 00 pen somming o ks o oace o e moass D mpmax O cang 0o
P3 11 barriers, 3 msecs = 35.3% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spnning on locks. 6 sh loads, 8 sh stores. 1 mpadd, 0 mpmax. 0 mpand. 0 mpor.
P4

1 barirs. 3 msocs =35 4 spet g n s 0 ociups 0 nsecs =0 03 gt spming o ks § s cade s ses L mpad 0 . Ompanc 0 r
P5

L barirs. L socs 194 spet g n s O locups.—— 0 nsecs =0 03 et spmingon ks § h ais, s sees L mpad 0 . Ompanc 0 or
Pe 11 barriers, 3 msecs = 35.6% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax. 0 mpand. 0 mpor
P7

L s 3meec =35 6% oot o n iy Olocuss 0 nsecs= 00 pen somming o s 6 oace o ices L moads D mpmax Qganc 0o
P8 L1 barriers, 3 msecs = 35.1% spent spinning on barriers. 0 lockups, 0 msecs = 0.0% spent spinning on locks 6 sh loads, 8 sh stores, 1 mpadd, 0 mpmax. 0 mpand. 0 mpor.
P9

8bares.— nsecs =505 pen spminganarrs 0 ciups 0 nsecs = i st sping o ks §h cace s sies mpad 0 . Ompanc 0 or
P10

8bars. 4 nsecs 51130 sen somingon aters O locups 0 nsecs =0 03 it spming o ks § h ais s sees L mpad 0 . Ompand 0 or
P11

8barrs, 4 nsecs 51130 spen somingon aters 0lociups O msecs =0.0% spet sprningan ok 5 oas.§ 1 soes L o 0 mpma. 0 . 0o
P12

Stares 6 niecs = 6.4 gen omingcnarrs Olocuss 0 nsecs= 00 e soming o s 6 uace o e moasd D mpmax Qrzang 0o
P13

Slamrs L niecs =51 gen somngcnarrs 0locups 0 nsece= 0 0 spen somning o s 6 oace_ o sres L moass D mpmax O moarc 0o
P14 5 barmers. 6 msecs = §6.9% spent spinning on barriers 0 lockups, 0 msecs = 0.0% spent spmnning on locks 6 sh loads, 8 sh stores. 1 mpadd, 0 mpmax. 0 mpand, 0 mpor
P15

Lbarirs, 7 msecs= 5645 spet sping o aiers Dlockups, 0 msecs =003 spet sping o ocks i loads, B nsioves, L maac, 0 mpma, 0 g, O

Reprinted from Practical PRAM Programmingith permission. Copyright (c) 2000 John Wiley & Sons, Inc.
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Use as lab environment for a course on parallel algorithms

FDA125 “Advanced Parallel Programming”
graduate-level course at Linkdpings Universitet, Sweden, spring 2003 (8 st.)

e PRAM theory (time, work, cost analysis; simulation results; ...)
e Basic PRAM algorithms (list ranking, prefix sums, ...)
e Fork tutorial

e Parallel algorithmic paradigms
data parallelism, parallel divide&conquer, pipelining, task farming, ...

e Parallel data structures
pipelined 2-3 trees, par. hash table, par. FIFO queue, par. priority queue

e Dynamic (loop) scheduling; irregular algorithms (Barnes-Hut,...)

e Other languages: OpenMP, MPI, HPF, Cilk
Other topics: PRAM emulation, parallel computer architecture, DSM ...
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Evaluation

Evaluation after the parallel programming exercise

Questionnaire: see course webpage www.ida.liu.se/~chrke/courses/APP

Question Yes No
Was the exercise too hard / too easy

/ just the right degree of difficulty? 6 0
Did you look at the demo examples in Fork? 6 0

Did you find the trace file visualizer useful

— to identify performance bottlenecks? 4 1
— to understand the structure of computation? 4 1
— to debug your program? 3 2

Did you learn something by doing the assignment
— about the theory of parallel algorithms? 3 1
— about parallel implementation problems? 6
the practical exercise was a useful complement

of the other parts of the course 6 0

plus free-text comments: suggestions for improvements, “Linux?”, “BSP?” ...
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Example algorithm in Fork: Parallel Quicksort (see the paper)

sync void buildTree( void ) // executed by N processors

print ¢, w = -1;

root = $; /I concurrent write, proc. (N-1) succeeds
myParent = root; /I on_priority CRCW PRAM
Ichild[$] = rchild[$] = N; /I $ denotesyprgdessor 1D
if ($!=root) {

while (wi=$) { 405519

farm // evaluate conditian
c = (key[$]<key]l
II' (key[$]==

key[12]
605659

key[ 9]
879684

myParent sy Wi

key[ 8]
Il else | am| the

983639

key[ 4]
736578

key[ 0] key[ 1] key[ 5]
701283 871425 1005344

else { // | must go to the right of myParei
rchildmyParent] = $;
IAmALeftChild = 0;
w = rchild[myParent];
if (W=$)
myParent = w;

574623

By
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trv tool for visualization of time behavior of PRAM algorithms (2)

Tailored for tracing execution of Fork programs:

e Fork compiler instruments the program to log events during execution
+ subgroup creation / termination
+ entry, exit to barriers, locks
+ user-defined events (e.g., access to a shared data structure)
accumulated in memory (— low overhead), dumped to file later

e trv tool creates a processor-time diagram from the trace file:
scalable format (FIG), customizable display (colors, ...), zooming possible

phases of “useful work™:
all processors of the same group have the same color

see idle times at barriers and locks, group splitting overheads ...

other tools: ParaGraph, upshot, VAMPIR...
(coarse-grained, message passing)

SIGCSE'04 Norfolk 6 March 2004 — A practical access to the theory of parallel algorithms. Page 14 C. Kessler, IDA, Linkdpings Universitet, 2004

Use as lab environment for a course on parallel algorithms (2)

Programming exercise in Fork: Bitonic sort algorithm

Goals:

e understand the algorithm from textbook
[Cormen/Leiserson/Rivest Ch. 28]

formulate it as a Fork program

experimentally verify O(log?N) complexity

face problems in parallel programming
(coordination, sharing, synchronicity, ...)

apply structured parallel programming

e use trv visualization

The exercise was finished in time
by 6 out of 8 students.
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Conclusions

PRAM model: easy to program and analyze:
e focus on pure parallelism,

e no worry about data locality or consistency; C
Practical PRAM
Programming
Fork and the PRAM simulator can be used as lab equipment &2 .e
to complement traditional courses on parallel algorithms.

should be taught even before threads and MPI.

The processor-time diagram helps with understanding
and verifying the structure of the parallel computation.

Download Fork and the simulator
at www.ida.liu.se/~chrke/fork
(system requirements: Solaris / HP-UX)

Future work: Web service for remote execution of Fork programs



