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Abstract

The SB�PRAM is a lock�step�synchronous� mas�
sively parallel multiprocessor currently being built at
Saarbr�ucken University� with up to ���� RISC�style
processing elements and with a �from the program�
mer�s view	 physically shared memory of up to 
GByte
with uniform memory access time�

Fork�� is a redesign of the Pram language FORK�
based on ANSI C� with additional constructs to cre�
ate parallel processes� hierarchically dividing processor
groups into subgroups� managing shared and private
address subspaces� Fork�� makes the assembly�level
synchronicity of the underlying hardware available to
the programmer at the language level� Nevertheless� it
provides comfortable facilities for locally asynchronous
computation where desired by the programmer�

We show that Fork�� o
ers full expressibility for
the implementation of practically relevant parallel al�
gorithms� We do this by examining all known parallel
programming paradigms used for the parallel solution
of real�world problems� such as strictly synchronous
execution� asynchronous processes� pipelining and sys�
tolic algorithms� parallel divide and conquer� parallel
pre�x computation� data parallelism� etc�� and show
how these parallel programming paradigms are sup�
ported by the Fork�� language and run time system�

� Introduction
It seems to be generally accepted that the most

convenient machines to write parallel programs for�
are synchronousMIMD �Multiple InstructionMultiple
Data� computers with shared memory� well�known to
theoreticians as Prams �i�e�� Parallel Random Access
Machines�� Although widely believed to be impos�
sible� a realization of such a machine in hardware�
the SB�PRAM� is undertaken by a project of W�J�
Paul at Saarbr�ucken ��� 	�
� The shared memory with
random access to any location in one CPU cycle by
any processor �Priority�Crcw�Pram� allows for a
fast and easy exchange of data between the proces�
sors� while the common clock guarantees deterministic
and� if desired� lock�step�synchronous program execu�
tion� Accordingly� a huge number of algorithms has
been invented for this type of architecture in the last
two decades� Surprisingly enough� not many attempts
have been made to develop languages which allow both
the convenient expression of algorithms and genera�

tion of e�cient PRAM�code for them�

One approach of introducing parallelism into lan�
guages consists in decorating sequential programs
meant to be executed by ordinary processors with
extra primitives for communication resp� access to
shared variables� Several subroutine libraries for this
purpose extending C or FORTRAN have been proposed
and implemented on a broad variety of parallel ma�
chines� While PVM is based on CSP �	�
� and there�
fore better suited for distributed memory architec�
tures� the P
 library and its relatives support var�
ious concepts of parallel programming� The most
basic primitives it provides for shared memory� are
semaphores and locks� Moreover� it provides shared
storage allocation and a �exible monitor mechanism
including barrier synchronization ��� �
� This approach
is well suited if the computations executed by the dif�
ferent threads of the program are �loosely coupled��
i�e�� if the interaction patterns between them are not
too complicated� Also� these libraries do not sup�
port a synchronous lockstep mode of program execu�
tion even if the target architecture does so� Attempts
to design synchronous languages have been made for
the data�parallel programming paradigm� This type
of computation frequently arises in numerical compu�
tations� It mainly consists in the parallel execution
of iterations over large arrays� Data parallel impera�
tive languages have been designed especially to pro�
gram SIMD �Single Instruction Multiple Data� com�
puters like� e�g�� pipelined vector processors or the CM��
Examples of such languages are C� �	�
 or its rela�
tives Dataparallel C ���
 and DBC ���
� The limita�
tions of these languages� however� are obvious� There
is just one global name space� Other programming
paradigms like parallel recursive divide�and�conquer
as suggested in ��� �� ��� ��� ��
 are not supported�

The only attempt we are aware of which allows both
parallely recursive and synchronous programming are
the imperative parallel languages FORK ��

 and ll
�	�
� Based on a subset of Pascal �no jumps�� ll con�
trols parallelism by means of a parallel do�loop which
allows a �virtual� processor to spawn new ones exe�
cuting the loop body in parallel� Opposed to that�
the philosophy of FORK is to take a certain set of pro�
cessors and distribute them over the available tasks�
Given �xed sized machines� the latter approach seems



better suited to exploit the processor resources�

The design of FORK ��

 was a rather theoretical
one� Pointers� dynamic arrays� nontrivial data types
and non�structured control �ow were sacri�ced to fa�
cilitate correctness proofs� In this way� however� the
language became completely unusable� � In order to
provide a full��edged language for real use� we have
added all the language features which are well�known
from sequential programming� Thus� the new FORK di�
alect Fork�� has become �more or less� a superset of C�
To achieve this goal we decided to extend the ANSI�
C syntax � instead of clinging to the original one�
Which also meant that �for the sequential parts� we
had to adopt C�s philosophy� We introduced the pos�
sibility of locally asynchronous computation to save
synchronization points and to enable more freedom of
choice for the programming model� Furthermore� we
have abandoned the tremendous run time overhead
of virtual processor emulation by limiting the number
of processes to the hardware resources� resulting in a
very lean code generation and run time system�

Fork�� o�ers two di�erent programming modes�
the synchronous mode �which was the only one in old
FORK� and the asynchronous mode� Each function is
classi�ed as either synchronous or asynchronous� In
synchronous mode� processors form groups that can
be recursively subdivided into subgroups� forming a
tree�like hierarchy of groups� Shared variables and
objects exist once for the group that created them�
private variables and objects exist once for each pro�
cessor� All processors within a group operate syn�
chronously� In the asynchronous mode� the Fork��
run�time library o�ers important routines for various
kinds of locks� semaphores� barriers� self�balancing
parallel loops� and parallel queues� which are required
for comfortable implementation of asynchronous algo�
rithms� Carefully chosen defaults allow for inclusion of
existing sequential ANSI C sources without any syn�
tactical change�

We will show that Fork�� o�ers full expressibility
for the implementation of practically relevant paral�
lel algorithms� We do this by examining all known
parallel programming paradigms used for the parallel
solution of real�world problems� and show how these
are supported by the Fork�� language and run time
system�

� The SB�PRAM from the program�
mer�s view

The SB�PRAM ��
 is a lock�step�synchronous� mas�
sively parallel MIMD multiprocessor currently under
construction at Saarbr�ucken University� with up to

��� RISC�style processing elements with a common
clock and with a physically shared memory of up to
	GByte� The memory access time is uniform for each
processor and each memory location� it takes one CPU
cycle �i�e�� the same time as one integer or �oating�
point operation� to store and two cycles to load a �	

bit word� This ideal behaviour of communication and
computation has been achieved by several architec�
tural clues like hashing� latency hiding� �intelligent�
combining network nodes etc� Furthermore� a special
node processor chip �	�
 had to be designed�

Each processor works on the same node program
�SPMD programming paradigm�� The SB�PRAM of�
fers a private address space for each node processor
which is embedded into the shared memory� Each pro�
cessor has �� general�purpose �	�bit registers� In the
present prototype� all standard data types �also char�
acters� are �	 bit wide� Double�precision �oatingpoint
numbers are not supported by hardware so far� The
instruction set is based on that of the Berkeley�RISC�
� but provides more arithmetic operations� including
integer multiplication and base�	�logarithm� Usually�
these are three�address�instructions �two operands
and one result�� Arithmetic operations can only be
carried out on registers� � The SB�PRAM o�ers
built�in parallel multipre�x operations for integer ad�
dition� maximization� logical and and or which also
take only two cycles�

Because of its architectural properties� the SB�
PRAM is particularly suitable for the implementation
of irregular numerical computations� non�numerical
algorithms� and database applications�

Since the SB�PRAM hardware is not yet available
�a �	�PE�prototype is currently being tested� the full
extension is expected for ������ we use a simulator
that allows to measure exact program execution times�

We would like to emphasize that the SB�PRAM
is indeed the physical realization of a Priority�

CRCW�Pram� the strongest Pram model known in
theory� What the SB�PRAM cannot o�er� of course�
is unlimited storage size� unlimited number of proces�
sors� and unlimited word length � which however� are
too ideal resource requirements for any physically ex�
isting computer�

� Fork�� language design

Fork�� is based on ANSI C �	
� Additionally� it of�
fers constructs to create parallel processes� to hierar�
chically divide groups of processors into subgroups� to
manage shared and private address subspaces� Fork��
makes the assembly�level synchronicity of the underly�
ing hardware available to the programmer� It further
enables direct access to the hardware�supplied multi�
pre�x operations�

��� Shared and private variables

The entire shared memory of the Pram is parti�
tioned � according to the programmer�s wishes �
into private address subspaces �one for each processor�
and a shared address subspace which may be again
dynamically subdivided among the di�erent proces�
sor groups� Accordingly� variables are classi�ed either

�Unfortunately� division for integer as well as for �oating�
point numbers has to be realized in software�



as private �pr� this is the default� or as shared �sh��
where �shared� always relates to the processor group
that de�ned that variable� Private objects exist once
in each processor�s private address subspace� whereas
shared objects exist only once in the shared memory
subspace of the processor group that declared them�

There is a special private variable � which is ini�
tially set to ��PROC�NR�� and a special shared variable
�� � is meant to hold the current processor group ID�
and � the current group�relative processor ID� during
program execution� These variables are automatically
saved and restored at group forming operations� How�
ever� the user is responsible to assign reasonable values
to them �e�g�� at the fork instruction��

An expression is private if it is not guaranteed to
evaluate to the same value on each processor� We
usually consider an expression to be private if a private
subexpression �e�g�� a variable� may occur in it�

If several processors write the same �shared� mem�
ory location in the same cycle� the processor with least
��PROC�NR��will win� and write its value �Priority�
CRCW�Pram�� However� as several other write con�
�ict resolution schemes �like Arbitrary� are also
used in theory� meaningful Fork�� programs should
not be dependent on such speci�c con�ict resolution
schemes� there are better language elements �multi�
pre�x instructions� see below� that cover practically
relevant applications for concurrent write�

��� Synchronous and asynchronous re�
gions in a Fork�� program

Functions are classi�ed to be either synchronous
�sync� or asynchronous �async�� main�� is asyn�
chronous by default�

Initially� all processors of the PRAM partition on
which the program has been started by the user ex�
ecute the startup code in parallel� After that� these
processors start execution of the program by calling
function main���

The statement start�e� stmt� whose shared ex�
pression e evaluates to some integer value k� means
that k processors synchronize and execute stmt simul�
taneously and synchronously� with unique processor
IDs � numbered successively from � to k � �� If the
expression e is omitted� then all available processors
executing this program are started�� If the value of e
exceeds the number of available processors� a run�time
error occurs� and the program aborts�

The start statement� only permitted in asyn�
chronous mode� switches to synchronous mode for its
body stmt� In synchronous mode� in turn� it is always

�The Fork�� programmer has the possibility to change
PROC NR during program execution and thus to in�uence the

write con�ict resolution method within some limits�
�The present implementation allows a start statement to

occur only at the top level of the program� i�e� it should not
occur inside a loop� and there should not more than one start
be active at the same time�

possible to switch to asynchronous mode for the body
of a farm statement�

farm �statement�

Within the farm body� any synchronization is sus�
pended� at the end of a farm environment� the proces�
sors synchronize explicitly within their current group�

To maintain this static classi�cation of code into
synchronous and asynchronous regions� within an
asynchronous region� can be called� In the other way�
calling an async function from a synchronous region
results in an implicit entering of the asynchronous
mode� the programmer receives a warning� Using farm
within an asynchronous region is super�uous and may
even introduce a deadlock �a warning is emitted��

Currently we allow only one level of start� i�e� the
synchronous regions of a program are contiguous� A
generalization of start that allows dynamic nesting
of start ��� farm ��� start ��� is planned�

��� The group concept

At each point of program execution in synchronous
mode� Fork�� maintains the invariant that all proces�
sors belonging to the same active processor group are
operating strictly synchronously� i�e�� they follow the
same path of control �ow and execute the same in�
struction at the same time� Also� all processors within
the same group have access to a common shared ad�
dress subspace� Thus� newly allocated �shared� ob�
jects exist once for each group allocating them�

At the beginning� the started processors form one
single processor group� However� it may be possible
that control �ow diverges at branches whose condi�
tional depends on private values� To guarantee the
above invariant� the current group must then be split
into subgroups and maintaining the invariant only
within each of the subgroups�

Shared if or loop conditions do not a�ect the syn�
chronicity� as the branch taken is the same for all pro�
cessors executing it�

At an if statement� a �potentially� private condi�
tion causes the current processor group to be split into
two subgroups� the processors for which the condition
evaluates to true form the �rst child group and ex�
ecute the then part while the remaining processors
execute the else part� The available shared address
space of the parent group is subdivided among the new
child groups before the splitting� When all processors
�nished the execution of the if statement� the two
subgroups are merged again by explicit synchroniza�
tion of all processors of the parent group� A similar
subgroup construction is required also at loops with
private exit condition� All processors that will execute
the �rst iteration of the loop enter the child group and
stay therein as long as they iterate� However� at loops
it is not necessary to split the parent group�s shared
memory subspace� since processors that leave the loop
body are just waiting at the end of the loop for the



last processors of their �parent� group to complete loop
execution�

Subgroup construction can� in contrast to the im�
plicit construction at the private if� also be done ex�
plicitly� by the fork statement� Executing

fork �e�
 e�
 e�� �statement�

means the following� First� the shared expression e�
are evaluated to the number of subgroups to be cre�
ated� Then the current leaf group is split into that
many subgroups� Evaluating e�� every processor de�
termines the number of the newly created leaf group
it will be member of� Finally� by evaluating e�� the
processor can readjust its current processor number
within the new leaf group� Note that empty sub�
groups �with no processors� are possible� an empty
subgroup�s work is immediately �nished� though� It is
on the user�s responsibility that such subgroups make
sense� Continuing� we partition the parent group�s
shared memory subspace into that many equally�
sized slices and assign each of them to one subgroup�
such that each subgroup has its own shared mem�
ory space� Now� each subgroup continues on exe�
cuting �statement	� the processors within each sub�
group work synchronously� but di�erent subgroups can
choose di�erent control �ow paths� After the body
�statement	 has been completed� the processors of all
subgroups are synchronized� the shared memory sub�
spaces are re�merged� the parent group is reactivated
as the current leaf group� and the statement following
the fork statement is executed synchronously by all
processors of the group�

Thus at each point of program execution� the pro�
cessor groups form a tree�like hierarchy� the start�
ing group is the root� whereas the currently active
groups are the leaves� Only the processors within
a leaf group are guaranteed to operate strictly syn�
chronously� Clearly� if all leaf groups consist of only
one processor� the e�ect is the same as using the asyn�
chronous context� However� the latter avoids the ex�
pensive time penalty of continued subgroup formation
and throttling of computation by continued shared
memory space fragmentation�

��� Pointers and heaps

Fork�� o�ers pointers� as opposed to its predecessor
FORK� The usage of pointers in Fork�� is as �exible as
in C� since all private address subspaces have been
embedded into the global shared memory of the SB�
PRAM� Thus� shared pointer variables may point to
private objects� and vice versa� The programmer is
responsible for such assignments making sense�

Fork�� supplies two kinds of heaps� a shared heap
and one private heap for each processor� While space
on the private heaps can be allocated by the private
�asynchronous� malloc function known from C� space
on the shared heap is allocated temporarily using
the shared �synchronous� shalloc function� The life
range of objects allocated by shalloc is limited to the

life range of the group in which that shalloc was ex�
ecuted� Thus� such objects are automatically removed
if the group allocating them is released� Supplying a
third variant� a �permanent� version of shalloc� is an
issue of future Fork�� library programming�

Pointers to functions are also supported� However�
special attention must be paid when using private
pointers to functions in a synchronous context� Since
each processor may then call a di�erent function �and
it is statically not known which one�� calling a func�
tion using a private pointer in synchronous context
would correspond to a huge switch� opening a sepa�
rate subgroup for each function possibly being called
� a tremendous waste in shared memory space� For
this reason� calls to functions via private pointers au�
tomatically switch to the asynchronous mode if they
are located in synchronous context� Private pointers
may thus only point to async functions�

��� Multipre�x instructions

The SB�PRAM supports powerful built�in multi�
pre�x instructions which allow the computation of
multipre�x integer addition� maximization� and and
or for up to 
��� processors within 	 CPU cycles�
We have made available these machine instructions
as Fork�� operators �atomic expression operators� not
functions�� Clearly� these should only be used in syn�
chronous context� The order of the processors within a
group is determined by their hardcoded absolute pro�
cessor ID ��PROC�NR��� For instance� the instruction

k � mpadd� �shmemloc	 expression �


�rst evaluates expression locally on each processor
participating in this instruction into a private integer
value ej and then assigns on the processor with i�th
largest ��PROC�NR�� the private integer variable k to
the value e� � e� � � � � � ei��� shmemloc must be a
shared integer variable� After the execution of the
mpadd instruction� shmemloc contains the global sumP

j ej of all participating expressions� Thus� mpadd
can as well be �misused� to compute a global sum by
ignoring the value of k�

Unfortunately� these powerful instructions are only
available for integer computations� because of hard�
ware cost considerations� Floatingpoint variants of
mpadd and mpmax clearly would have been of great use
in parallel linear algebra applications �		
�

��	 Useful macros

The following macro from the �fork
h	 header
may be used as well in synchronous as in asynchronous
context in order to enhance program understandabil�
ity�

�define forall�i	lb	ub	p� �
for�i�
��lb�
i��ub�
i��p�

Thus�
gs � groupsize��

forall�i	lb	ub	gs� �statement�



executes �statement	within a parallel loop with loop
variable i� ranging from lb to ub� using all processors
belonging to the current leaf group� if suitable index�
ing � successively ranging from � to groupsize����
has been provided by the programmer� In asyn�
chronous context� this is also possible as long as the
programmer guarantees for all required processors to
arrive at that statement�

� Compilation issues of Fork��
To compile Fork�� programs� we �rst install a

shared stack in each group�s shared memory subspace�
and a private stack in each processor�s private mem�
ory subspace� A shared stack pointer sps and a pri�
vate stack pointer spp are permanently kept in regis�
ters on each processor� When calling a synchronous
function� a shared procedure frame is allocated on the
group�s shared stack if the callee has shared arguments
or shared local variables� An asynchronous function
never has a shared procedure frame�

��� Group frames and synchronization
To keep everything consistent� the compiler builds

shared and private group frames at each group�
forming statement�

A shared group frame is allocated on each group�s
shared memory subspace� It contains the synchroniza�
tion cell� which normally contains the exact number of
processors belonging to this group� At a synchroniza�
tion point� each processor decrements this cell by a
mpadd�


��� instruction� and waits until it sees a
zero in the synchronization cell� Thereafter the pro�
cessors are desynchronized by at most 	 clock cycles�
After correcting this� the synchronization cell is re�
stored to its original value� The overhead of this syn�
chronization routine is only �� clock cycles�

The corresponding private group frame is allocated
on each processor�s private memory subspace� It
mainly contains the current values of the group ID �
and the group�relative processor ID �� Private loops
only build a shared group frame for the group of iter�
ating processors�

Intermixing procedure frames and group frames on
the same stack is not harmful� since subgroup�creating
language constructs like private if and fork are al�
ways properly nested within a function� Thus� sep�
arate stacks for group frames and procedure frames
are not required� preserving scarce memory resources
from additional fragmentation�

��� Pointers and heaps
The private heap is installed at the end of the pri�

vate memory subspace of each processor� For each
group� its shared heap is installed at the end of its
shared memory subspace� The pointer eps to its lower
boundary is saved at each subgroup�forming operation
which splits the shared memory subspace further� and
restored after returning to that group� Testing for
shared stack or heap over�ow thus just means to com�
pare sps and eps�

��� Implementation

A prototype compiler for Fork�� has been imple�
mented� It is partially based on lcc �
�� a one�pass
ANSI C�compiler developed by C� Fraser and D� Han�
son ���� �	
� �	�
� gives a more detailed description of
the compiler and shows that the overheads introduced
by the di�erent constructs of the language are quite
low�

The compiler generates assembler code which is
then processed into object code in COFF format� The
SB�PRAM�linker plink produces executable code
that runs on the SB�PRAM�simulator pramsim but
should also run on the SB�PRAM as well once it is
available� A window�based source level debugger for
Fork�� is currently in preparation� � Extending the
functionality of asynchronous context programming�
we are also working on a set of routines for self�
balancing parallel loops and parallel queues �	�
�

� Parallel programming paradigms
supported by Fork��

For synchronous shared memory parallel environ�
ments� several models for parallel programming mod�
els are widely accepted and could be incorporated into
imperative parallel programming languages�

� strictly synchronous execution� This is the stan�
dard PRAM programming style� The program�
mer can rely on a �xed execution time for each
operation which is the same for all processors at
any time of program execution� Thus� no special
care has to be taken to avoid race conditions be�
cause these should not occur �unless explicitly de�
sired� as in the Arbitrary Crcw Pram model��

� farming� Several slave processes are spawned and
work independently on their local tasks� They do
not communicate nor synchronize with each other
during their tasks�

� pipelining and systolic algorithms� Several slave
processes are arranged in a logical network of
stages which solve subproblems and propagate
their partial solutions to subsequent stages� The
network stepwise computes the overall solution
by feeding the input data into it one by another�
The topological structure of the network is usu�
ally a line� grid� or a tree� but may be any directed
graph �usually acyclic�� The time to execute one
step of the pipeline is determined by the maxi�
mum execution time of a stage�

� divide and conquer� The problem and the proces�
sor set working on it is recursively divided into
subsets� until either the subproblem is trivial or
the processor subset consists of only one proces�
sor� The partial solutions are computed and com�
bined when returning through the recursion tree�



� data parallelism� The same arithmetical opera�
tion is executed simultaneously on di�erent data�
usually disjoint sections of an array� Execution
need not be synchronous� unless data dependen�
cies may be a�ected� Typically� data parallelism
is exploited by using a parallel loop� Array syn�
tax� as in Fortran ��� can be used to abbreviate
dataparallel operations on arrays� Sometimes� re�
duction operations like global sum of array ele�
ments� are also considered as dataparallel opera�
tions and supported by many dataparallel pro�
gramming languages like APL ���
� Fortran ��
and its successors� and dataparallel C dialects�

� geometric parallelism� Each slave process works
on a subproblem of equal size and computational
complexity� Boundary values are to be exchanged
between the processors in regular time intervals�
This scenario� which often occurs in scienti�c
applications� e�g�� at spatial PDE discretization�
could easily pro�t from synchronous execution in
order to save overhead due to explicit synchro�
nization before boundary exchange� This is a spe�
cial case of data parallelism�

� asynchronous sequential processes with partial
synchronization� Most of the time� each slave
process works asynchronously and independently
from the other ones� now and again� however�
some data dependences between processes must
be taken into account� Such computations usu�
ally are arranged using locks for mutual exclu�
sion from shared resources� and by semaphores or
barriers to guarantee data dependencies� A well�
known parallel programming language following
this paradigm is Occam �	�
 based on CSP ���
�

� tuple space� This is a programmer�friendly imple�
mentation of the previous item� It is realized in
the Linda language ��� �
�

� parallel pre�x� Parallel Pre�x computes for a
given array A�� � n � �
 and a given binary as�
sociative operator � the array B�� � n � �
 with
B�i
 �

L
j�i A�j
 using an O�log n� algorithm �	�


on n processors� This is rather a low�level pro�
gramming paradigm and should be provided as
a basic operator ��scan primitive�� in a parallel
programming environment� Global sum� or� and�
max and similar reductions are a special case of
parallel pre�x computation� Parallel pre�x o�ers
fast solution of recurrence equations �	

� Nev�
ertheless� many parallel algorithms� also nonnu�
merical ones like sorting� can be formulated using
parallel pre�x operators as basic building blocks
�

� Furthermore� atomic built�in multipre�x op�
erators support atomic fetch�op primitives ���
�

� message passing is not required in a shared mem�
ory environment� Nevertheless� any message�

passing program could be transformed into an
asynchronous shared�memory program�

We show that Fork�� supports all these parallel
programming paradigms at the same time� We will
also see that it is not necessary to extend the current
language de�nition by additional constructs to enable
usage of these paradigms�

Strictly synchronous execution is the usual mode we
are applying within the synchronous part of a Fork��
program� As indicated in the last section� this maps
quite directly to the underlying hardware�

Farming can be achieved in asynchronous mode
within the farm body with no additional overhead�
Farming is� clearly� also possible in synchronous mode�
at the expense of subgroup creation at each private
conditional� but there is no reason why farming should
be done in synchronous mode because the single tasks
are independent of each other� If farming is the only
variant of parallelism occurring in the program� the
processes can be spawned using the start statement�

Pipelining through an arbitrary graph can be im�
plemented in a rather straightforward manner�

��Pipeline graph consisting of n nodes���
struct Node � Data �data


int �pre

int stage
 �

sh struct Node graph�n�

sync void init�graph��
 ��initializes nodes��
sync void work��
 ��specif� work to be done��

��Execution of the pipeline with n proc�s���
sh int t

init�graph��

for�t � �
 t � end
 t���

if �t �� graph�
��stage�
work��


The data for every node of the graph through which
the data are piped are grouped in structure Node�
This structure contains a pointer to the local data�
a pointer to the vector of predecessors in the graph
together with the integer component stage contain�
ing the number of the round in which the node is go�
ing to be activated� All nodes together are grouped
within the vector graph� For simplicity� let us assume
that the n node pipeline is executed by exactly n pro�
cessors� Then� besides the data structures Data� the
programmermust provide the functions init graph��
and work���

Processor j executing init graph�� initializes the
entries of node graph�j�� For this� it especially needs
to compute the predecessors of node j in the graph�
Finally� the value of stagemust be computed� In case
the graph is acyclic� one possibility for this might be�

graph�
��stage � ��
 ��initialize stage��
for�t � �
 t � depth
 t���

if �graph�
��stage � �
�� non�neg�graph�
��pre��

��value of all predecessors computed��
graph�
��stage � t




Initially� all stage entries are initialized with ��� The
stage is determined as the number t of the �rst iter�
ation where all predecessors already obtained values
� � while the current stage still equals ���

work�� speci�es the operation to by executed by
processor j at node j� Input data should be read from
the data entries of the nodes graph�i� where i is a
predecessor of j��

It may happen� though� that the numbers of pro�
cessors and nodes do not match� A reason might be
that we would like to dedicate more than one proces�
sor to each node� or too few processors are available
for the graph� To handle these cases we modify our
generic algorithm as follows�

sh int t

init�graph��

for�t � �
 t � end
 t���

fork�n
 select�t�
 rename���
if �t �� graph����stage�

work��


Now a new group is created for every node in the
graph� At the beginning of iteration t� each proces�
sor selects the node in whose group it wants to be
member of� Thus� the number of this node can be
accessed through the group number �� At the end of
work��� the groups are removed again to allow for a
synchronization of all processors in the pipeline and a
redistribution at the beginning of the next iteration�

Divide�and�conquer is a natural component of the
synchronous mode of Fork��� A generic divide�and�
conquer algorithm DC may look as follows�

void DC�sh int n
 ����
� if �trivial�n��

conquer�n	 ����

else �

sh int d � sqrt�n�

fork�d
 ��
�d
 
�
�d� �

DC�d	 ����

combine�n	 ����


� � �

If the size n of the given problem is small enough� a
special routine conquer�� is called� Otherwise� the
present group is subdivided into a suitable number of
subgroups of processors �in this case� sqrt�n� many�
each one responsible for the parallel and synchronous
solution of one of the subproblems� After their so�
lution� the leaf groups are removed again� and all
prosessors of the original group join together to syn�
chronously combine the partial results�

The last section has shown that the compile�time
overhead to manage this type of programs is quite low�
As an example� a parallel implementation of Strassen�s
algorithm for matrix multiplication has been included
into directory examples of the Fork�� distribution� It

�Note that this generic implementation both covers pipelin�
ing through multidimensional arrays as used by systolic al�
gorithms and all sorts of trees for certain combinatorial
algorithms�

contains two instances of DC� using a fork subdividing
into seven subgroups as well as of a fork subdividing
into two subgroups�

Data parallelism is exploitable both in synchronous
and in asynchronous mode� As shown in the previous
section� we supply macros for parallel loops� A set
of routines that provide a self�balancing parallel loop
for the asynchronous mode is currently in preparation�
mpadd�� provides a fast reduction operator for integer
arrays�

Geometric parallelism� see data parallelism�

Asynchronous sequential processes are available by
the farm statement and asynchronous functions� The
Fork�� library contains all required functions for locks�
mutual exclusion� barrier synchronization� semaphores
and parallel queues� It should be no problem to sup�
port equivalents of the basic tuple space operators of
Linda by corresponding Fork�� routines and macros�
In contrast to distributed�memory implementations of
Linda� this would result in more predictable execution
times for the tuple space operators�

Parallel pre�x is directly supported for integer
operands and the operators add� max� and� and or�
since Fork�� makes the corresponding SB�PRAM�
operators accessible as atomic operators at the lan�
guage level� Generalization to arrays of arbitrary size
with linear speedup is straightforward �see the ap�
pendix�� Unfortunately� the SB�PRAM designers re�
nounced to support such powerful operators also for
�oatingpoint operands� Thus� Fork�� must implement
these in the usual way �time� O��n�p� logn���

� Availability of the compiler

The Fork�� compiler including all sources is avail�
able from ftp
informatik
uni�trier
de in direc�
tory �pub�users�Kessler by anonymous ftp� This
distribution also contains documentation� example
programs and a preliminary distribution of the SB�
PRAM system software tools including assembler�
linker� loader and simulator� The Fork�� documen�
tation is also available by www via the URL http���
www�wjp
cs
uni�sb
de� fork���index
html�
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A Appendix

A�� Example
 Multipre�x sum

The following routine performs a general integer
multipre�x�ADD implementation in Fork��� It takes
time O�n�p� on a p�processor SB�PRAM with built�in
mpadd operator running in O��� time� This is optimal�
Only one additional shared memory cell is required �as
proposed by J� Roehrig�� The only precondition is that
group�relative processor ID�s � must be consecutively
numbered from � to groupsize�� � � �if not� this can
be provided in O��� time by a mpadd operation��

sync void parallel�prefix�add�
sh int �in	 ��operand array��
sh int n	 ��problem size��
sh int �out	 ��result array��
sh int initsum
 ��global offset��

�
sh int p � groupsize�


sh int sum � initsum
 ��temp� accum� cell��
pr int i

��step over n�p slices of array���
for �i��
 i�n
 i��p


out�i� � mpadd� �sum	 in�i� 


�

Run time results �in SB�PRAM clock cycles��

� processors cc� n � 
���� cc� n � 
�����
� ������ �������
� �
���� �
�����

� ����� ������
�� 
���� 
�����
��� ���� �����

��� 
��� ����
���� 

�� ����

A�� Example
 Divide�and�conquer
�� parallel QUICKSORT from �BDH���� ��

pr int value	 pos � �

extern sh int a��
 ��the array to be sorted��

sync void quicksort� sh int �weight 
 �
sh int mid � value

sh int leftweight � �	 rightweight � �

pr int left � �value�mid
	 right � �value�mid


if �value �� mid


if �left
 quicksort� �leftweight 


else quicksort� �rightweight 



if �value �� mid
 pos � leftweight � �

if �right
 pos �� � � leftweight

�weight � leftweight � rightweight � �


�

main�
�
start � �� we need as many processors

as there are array elements to sort ��
sh int weight

value � a���

quicksort� �weight 


a�pos��� � value


� �


