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Abstract

The SB-PRAM is a lock-step-synchronous, mas-
swely parallel multiprocessor currently being built at
Saarbriicken University, with up to 4096 RISC-style
processing elements and with a (from the program-
mer’s view) physically shared memory of up to 2GByte
with uniform memory access time.

Fork95 is a redesign of the PRAM language FORK,
based on ANSI C, with additional constructs to cre-
ate parallel processes, hierarchically dividing processor
groups into subgroups, managing shared and private
address subspaces. Fork95 makes the assembly-level
synchronicity of the underlying hardware available to
the programmer at the language level. Nevertheless, it
provides comfortable facilities for locally asynchronous
computation where desired by the programmer.

We show that Fork95 offers full expressibility for
the implementation of practically relevant parallel al-
gorithms. We do this by examining all known parallel
programming paradigms used for the parallel solution
of real-world problems, such as strictly synchronous
execution, asynchronous processes, pipelining and sys-
tolic algorithms, parallel divide and conquer, parallel
prefiz computation, data parallelism, etc., and show
how these parallel programming paradigms are sup-
ported by the Fork95 language and run time system.

1 Introduction

It seems to be generally accepted that the most
convenient machines to write parallel programs for,
are synchronous MIMD (Multiple Instruction Multiple
Data) computers with shared memory, well-known to
theoreticians as PRAMs (i.e., Parallel Random Access
Machines). Although widely believed to be impos-
sible, a realization of such a machine in hardware,
the SB-PRAM, is undertaken by a project of W.J.
Paul at Saarbriicken [1, 21]. The shared memory with
random access to any location in one CPU cycle by
any processor (PRIORITY-CRCW-PRAM) allows for a
fast and easy exchange of data between the proces-
sors, while the common clock guarantees deterministic
and, if desired, lock-step-synchronous program execu-
tion. Accordingly, a huge number of algorithms has
been invented for this type of architecture in the last
two decades. Surprisingly enough, not many attempts
have been made to develop languages which allow both
the convenient expression of algorithms and genera-

tion of efficient PRAM—code for them.

One approach of introducing parallelism into lan-
guages consists in decorating sequential programs
meant to be executed by ordinary processors with
extra primitives for communication resp. access to
shared variables. Several subroutine libraries for this
purpose extending C or FORTRAN have been proposed
and implemented on a broad variety of parallel ma-
chines. While PVM is based on CSP [25], and there-
fore better suited for distributed memory architec-
tures, the P4 library and its relatives support var-
ious concepts of parallel programming. The most
basic primitives it provides for shared memory, are
semaphores and locks. Moreover, it provides shared
storage allocation and a flexible monitor mechanism
including barrier synchronization [5, 6]. This approach
is well suited if the computations executed by the dif-
ferent threads of the program are “loosely coupled”,
i.e., if the interaction patterns between them are not
too complicated. Also, these libraries do not sup-
port a synchronous lockstep mode of program execu-
tion even if the target architecture does so. Attempts
to design synchronous languages have been made for
the data—parallel programming paradigm. This type
of computation frequently arises in numerical compu-
tations. It mainly consists in the parallel execution
of iterations over large arrays. Data parallel impera-
tive languages have been designed especially to pro-
gram SIMD (Single Instruction Multiple Data) com-
puters like, e.g., pipelined vector processors or the CM2.
Examples of such languages are Cx [29] or its rela-
tives Dataparallel C [15] and DBC [30]. The limita-
tions of these languages, however, are obvious. There
is just one global name space. Other programming
paradigms like parallel recursive divide-and—conquer
as suggested in [3, 9, 10, 16, 17] are not supported.

The only attempt we are aware of which allows both
parallely recursive and synchronous programming are
the imperative parallel languages FORK [14] and 11
[27]. Based on a subset of Pascal (no jumps), 11 con-
trols parallelism by means of a parallel do—loop which
allows a (virtual) processor to spawn new ones exe-
cuting the loop body in parallel. Opposed to that,
the philosophy of FORK is to take a certain set of pro-
cessors and distribute them over the available tasks.
Given fixed sized machines, the latter approach seems



better suited to exploit the processor resources.

The design of FORK [14] was a rather theoretical
one: Pointers, dynamic arrays, nontrivial data types
and non—structured control flow were sacrificed to fa-
cilitate correctness proofs. In this way, however, the
language became completely unusable. — In order to
provide a full-fledged language for real use, we have
added all the language features which are well-known
from sequential programming. Thus, the new FORK di-
alect Fork95 has become (more or less) a superset of C.
To achieve this goal we decided to extend the ANSI-
C syntax — instead of clinging to the original one.
Which also meant that (for the sequential parts) we
had to adopt C’s philosophy. We introduced the pos-
sibility of locally asynchronous computation to save
synchronization points and to enable more freedom of
choice for the programming model. Furthermore, we
have abandoned the tremendous run time overhead
of virtual processor emulation by limiting the number
of processes to the hardware resources, resulting in a
very lean code generation and run time system.

Fork95 offers two different programming modes:
the synchronous mode (which was the only one in old
FORK) and the asynchronous mode. Each function is
classified as either synchronous or asynchronous. In
synchronous mode, processors form groups that can
be recursively subdivided into subgroups, forming a
tree—like hierarchy of groups. Shared variables and
objects exist once for the group that created them;
private variables and objects exist once for each pro-
cessor. All processors within a group operate syn-
chronously. In the asynchronous mode, the Fork95
run-time library offers important routines for various
kinds of locks, semaphores, barriers, self-balancing
parallel loops, and parallel queues, which are required
for comfortable implementation of asynchronous algo-
rithms. Carefully chosen defaults allow for inclusion of
existing sequential ANSI C sources without any syn-
tactical change.

We will show that Fork95 offers full expressibility
for the implementation of practically relevant paral-
lel algorithms. We do this by examining all known
parallel programming paradigms used for the parallel
solution of real-world problems, and show how these
are supported by the Fork95 language and run time
system.

2 The SB-PRAM from the program-
mer’s view

The SB-PRAM [1] is a lock-step-synchronous, mas-
sively parallel MIMD multiprocessor currently under
construction at Saarbriicken University, with up to
4096 RISC-style processing elements with a common
clock and with a physically shared memory of up to
2GByte. The memory access time is uniform for each
processor and each memory location; it takes one CPU
cycle (i.e., the same time as one integer or floating-
point operation) to store and two cycles to load a 32

bit word. This ideal behaviour of communication and
computation has been achieved by several architec-
tural clues like hashing, latency hiding, “intelligent”
combining network nodes etc. Furthermore, a special
node processor chip [21] had to be designed.

Each processor works on the same node program
(SPMD programming paradigm). The SB-PRAM of-
fers a private address space for each node processor
which is embedded into the shared memory. Each pro-
cessor has 30 general-purpose 32-bit registers. In the
present prototype, all standard data types (also char-
acters) are 32 bit wide. Double—precision floatingpoint
numbers are not supported by hardware so far. The
instruction set is based on that of the Berkeley-RISC-
1 but provides more arithmetic operations! including
integer multiplication and base-2-logarithm. Usually,
these are three—address—instructions (two operands
and one result). Arithmetic operations can only be
carried out on registers. — The SB-PRAM offers
built—in parallel multiprefix operations for integer ad-
dition, maximization, logical and and or which also
take only two cycles.

Because of its architectural properties, the SB-
PRAM is particularly suitable for the implementation
of irregular numerical computations, non-numerical
algorithms, and database applications.

Since the SB-PRAM hardware is not yet available
(a 32-PE-prototype is currently being tested; the full
extension is expected for 1996), we use a simulator
that allows to measure exact program execution times.

We would like to emphasize that the SB-PRAM
is indeed the physical realization of a PRIORITY—
CRCW-PRrAM, the strongest PRAM model known in
theory. What the SB-PRAM cannot offer, of course,
is unlimited storage size, unlimited number of proces-
sors, and unlimited word length — which however, are
too ideal resource requirements for any physically ex-
isting computer.

3 Fork95 language design

Fork95 is based on ANSI C [2]. Additionally, it of-
fers constructs to create parallel processes, to hierar-
chically divide groups of processors into subgroups, to
manage shared and private address subspaces. Fork95
makes the assembly-level synchronicity of the underly-
ing hardware available to the programmer. It further
enables direct access to the hardware-supplied multi-
prefix operations.

3.1 Shared and private variables

The entire shared memory of the PRAM is parti-
tioned — according to the programmer’s wishes —
into private address subspaces (one for each processor)
and a shared address subspace which may be again
dynamically subdivided among the different proces-
sor groups. Accordingly, variables are classified either

IUnfortunately, division for integer as well as for floating-
point numbers has to be realized in software.



as private (pr, this is the default) or as shared (sh),
where “shared” always relates to the processor group
that defined that variable. Private objects exist once
in each processor’s private address subspace, whereas
shared objects exist only once in the shared memory
subspace of the processor group that declared them.

There is a special private variable $ which is ini-
tially set to __PROC_NR__ and a special shared variable
@. @ is meant to hold the current processor group ID,
and $ the current group-relative processor ID, during
program execution. These variables are automatically
saved and restored at group forming operations. How-
ever, the user is responsible to assign reasonable values
to them (e.g., at the fork instruction).

An expression is private if it is not guaranteed to
evaluate to the same value on each processor. We
usually consider an expression to be private if a private
subexpression (e.g., a variable) may occur in it.

If several processors write the same (shared) mem-
ory location in the same cycle, the processor with least
__PROC_NR__ will win? and write its value (PRIORITY—
CRCW-PraM). However, as several other write con-
flict resolution schemes (like ARBITRARY) are also
used in theory, meaningful Fork95 programs should
not be dependent on such specific conflict resolution
schemes; there are better language elements (multi-
prefix instructions, see below) that cover practically
relevant applications for concurrent write.

3.2 Synchronous and asynchronous re-
gions in a Fork95 program

Functions are classified to be either synchronous
(sync) or asynchronous (async). main() is asyn-
chronous by default.

Initially, all processors of the PRAM partition on
which the program has been started by the user ex-
ecute the startup code in parallel. After that, these
processors start execution of the program by calling
function main ().

The statement start(e) stmt; whose shared ex-
pression e evaluates to some integer value k, means
that k processors synchronize and execute stmt simul-
taneously and synchronously, with unique processor
IDs $ numbered successively from 0 to & — 1. If the
expression e is omitted, then all available processors
executing this program are started.® If the value of e
exceeds the number of available processors, a run-time
error occurs, and the program aborts.

The start statement, only permitted in asyn-
chronous mode, switches to synchronous mode for its
body stmt. In synchronous mode, in turn, it is always

2The Fork95 programmer has the possibility to change
_-PROC_NR__ during program execution and thus to influence the
write conflict resolution method within some limits.

3The present implementation allows a start statement to
occur only at the top level of the program, i.e. it should not
occur inside a loop, and there should not more than one start
be active at the same time.

possible to switch to asynchronous mode for the body
of a farm statement:

farm <statement>

Within the farm body, any synchronization is sus-
pended; at the end of a farm environment, the proces-
sors synchronize explicitly within their current group.

To maintain this static classification of code into
synchronous and asynchronous regions, within an
asynchronous region, can be called. In the other way,
calling an async function from a synchronous region
results in an implicit entering of the asynchronous
mode; the programmer receives a warning. Using farm
within an asynchronous region is superfluous and may
even introduce a deadlock (a warning is emitted).

Currently we allow only one level of start, i.e. the
synchronous regions of a program are contiguous. A
generalization of start that allows dynamic nesting
of start ... farm ... start ... is planned.

3.3 The group concept

At each point of program execution in synchronous
mode, Fork95 maintains the invariant that all proces-
sors belonging to the same active processor group are
operating strictly synchronously, i.e., they follow the
same path of control flow and execute the same in-
struction at the same time. Also, all processors within
the same group have access to a common shared ad-
dress subspace. Thus, newly allocated “shared” ob-
jects exist once for each group allocating them.

At the beginning, the started processors form one
single processor group. However, it may be possible
that control flow diverges at branches whose condi-
tional depends on private values. To guarantee the
above invariant, the current group must then be split
into subgroups and maintaining the invariant only
within each of the subgroups.

Shared if or loop conditions do not affect the syn-
chronicity, as the branch taken is the same for all pro-
cessors executing it.

At an if statement, a (potentially) private condi-
tion causes the current processor group to be split into
two subgroups: the processors for which the condition
evaluates to true form the first child group and ex-
ecute the then part while the remaining processors
execute the else part. The available shared address
space of the parent group is subdivided among the new
child groups before the splitting. When all processors
finished the execution of the if statement, the two
subgroups are merged again by explicit synchroniza-
tion of all processors of the parent group. A similar
subgroup construction is required also at loops with
private exit condition. All processors that will execute
the first iteration of the loop enter the child group and
stay therein as long as they iterate. However, at loops
it is not necessary to split the parent group’s shared
memory subspace, since processors that leave the loop
body are just waiting at the end of the loop for the



last processors of their (parent) group to complete loop
execution.

Subgroup construction can, in contrast to the im-
plicit construction at the private if, also be done ex-
plicitly, by the fork statement. Executing

fork (ei; e2; e3) <statement>

means the following: First, the shared expression e;
are evaluated to the number of subgroups to be cre-
ated. Then the current leaf group is split into that
many subgroups. Evaluating e, every processor de-
termines the number of the newly created leaf group
it will be member of. Finally, by evaluating es, the
processor can readjust its current processor number
within the new leaf group. Note that empty sub-
groups (with no processors) are possible; an empty
subgroup’s work is immediately finished, though. It is
on the user’s responsibility that such subgroups make
sense. Continuing, we partition the parent group’s
shared memory subspace into that many equally—
sized slices and assign each of them to one subgroup,
such that each subgroup has its own shared mem-
ory space. Now, each subgroup continues on exe-
cuting <statement>; the processors within each sub-
group work synchronously, but different subgroups can
choose different control flow paths. After the body
<statement> has been completed, the processors of all
subgroups are synchronized; the shared memory sub-
spaces are re-merged, the parent group is reactivated
as the current leaf group, and the statement following
the fork statement is executed synchronously by all
processors of the group.

Thus at each point of program execution, the pro-
cessor groups form a tree-like hierarchy: the start-
ing group is the root, whereas the currently active
groups are the leaves. Only the processors within
a leaf group are guaranteed to operate strictly syn-
chronously. Clearly, if all leaf groups consist of only
one processor, the effect is the same as using the asyn-
chronous context. However, the latter avoids the ex-
pensive time penalty of continued subgroup formation
and throttling of computation by continued shared
memory space fragmentation.

3.4 Pointers and heaps

Fork95 offers pointers, as opposed to its predecessor
FORK. The usage of pointers in Fork95 is as flexible as
in C, since all private address subspaces have been
embedded into the global shared memory of the SB-
PRAM. Thus, shared pointer variables may point to
private objects, and vice versa. The programmer is
responsible for such assignments making sense.

Fork95 supplies two kinds of heaps: a shared heap
and one private heap for each processor. While space
on the private heaps can be allocated by the private
(asynchronous) malloc function known from C, space
on the shared heap is allocated temporarily using
the shared (synchronous) shalloc function. The life
range of objects allocated by shalloc is limited to the

life range of the group in which that shalloc was ex-
ecuted. Thus, such objects are automatically removed
if the group allocating them is released. Supplying a
third variant, a “permanent” version of shalloc, is an
issue of future Fork95 library programming.

Pointers to functions are also supported. However,
special attention must be paid when using private
pointers to functions in a synchronous context. Since
each processor may then call a different function (and
it is statically not known which one), calling a func-
tion using a private pointer in synchronous context
would correspond to a huge switch, opening a sepa-
rate subgroup for each function possibly being called
— a tremendous waste in shared memory space! For
this reason, calls to functions via private pointers au-
tomatically switch to the asynchronous mode if they
are located in synchronous context. Private pointers
may thus only point to async functions.

3.5 Multiprefix instructions

The SB-PRAM supports powerful built-in multi-
prefix instructions which allow the computation of
multiprefix integer addition, maximization, and and
or for up to 4096 processors within 2 CPU cycles.
We have made available these machine instructions
as Fork95 operators (atomic expression operators, not
functions). Clearly, these should only be used in syn-
chronous context. The order of the processors within a
group is determined by their hardcoded absolute pro-
cessor ID __PROC_NR__. For instance, the instruction

k = mpadd( &shmemloc, expression );

first evaluates expressionlocally on each processor
participating in this instruction into a private integer
value e; and then assigns on the processor with i—th
largest __PROC_NR__ the private integer variable k to
the value eg +€; + ...+ €;_1. shmemloc must be a
shared integer variable. After the execution of the
mpadd instruction, shmemloc contains the global sum
>_;¢; of all participating expressions. Thus, mpadd
can as well be “misused” to compute a global sum by
ignoring the value of k.

Unfortunately, these powerful instructions are only
available for integer computations, because of hard-
ware cost considerations. Floatingpoint variants of
mpadd and mpmax clearly would have been of great use
in parallel linear algebra applications [22].

3.6 Useful macros

The following macro from the <fork.h> header
may be used as well in synchronous as in asynchronous
context in order to enhance program understandabil-
ity:

#define forall(i,lb,ub,p) \
for (i=$+(1b) ;i< (ub) ;i+=p)
Thus,
gs = groupsize();
forall(i,1lb,ub,gs) <statement>



executes <statement> within a parallel loop with loop
variable i, ranging from 1b to ub, using all processors
belonging to the current leaf group, if suitable index-
ing $ successively ranging from 0 to groupsize()-1
has been provided by the programmer. In asyn-
chronous context, this is also possible as long as the
programmer guarantees for all required processors to
arrive at that statement.

4 Compilation issues of Fork95

To compile Fork95 programs, we first install a
shared stack in each group’s shared memory subspace,
and a private stack in each processor’s private mem-
ory subspace. A shared stack pointer sps and a pri-
vate stack pointer spp are permanently kept in regis-
ters on each processor. When calling a synchronous
function, a shared procedure frame is allocated on the
group’s shared stack if the callee has shared arguments
or shared local variables. An asynchronous function
never has a shared procedure frame.

4.1 Group frames and synchronization

To keep everything consistent, the compiler builds
shared and private group frames at each group—
forming statement.

A shared group frame is allocated on each group’s
shared memory subspace. It contains the synchroniza-
tion cell, which normally contains the exact number of
processors belonging to this group. At a synchroniza-
tion point, each processor decrements this cell by a
mpadd(..,-1) instruction, and waits until it sees a
zero in the synchronization cell. Thereafter the pro-
cessors are desynchronized by at most 2 clock cycles.
After correcting this, the synchronization cell is re-
stored to its original value. The overhead of this syn-
chronization routine is only 10 clock cycles.

The corresponding private group frame is allocated
on each processor’s private memory subspace. It
mainly contains the current values of the group ID @
and the group-relative processor ID $. Private loops
only build a shared group frame for the group of iter-
ating processors.

Intermixing procedure frames and group frames on
the same stack is not harmful, since subgroup-creating
language constructs like private if and fork are al-
ways properly nested within a function. Thus, sep-
arate stacks for group frames and procedure frames
are not required, preserving scarce memory resources
from additional fragmentation.

4.2 Pointers and heaps

The private heap is installed at the end of the pri-
vate memory subspace of each processor. For each
group, its shared heap is installed at the end of its
shared memory subspace. The pointer eps to its lower
boundary is saved at each subgroup—forming operation
which splits the shared memory subspace further, and
restored after returning to that group. Testing for
shared stack or heap overflow thus just means to com-
pare sps and eps.

4.3 Implementation

A prototype compiler for Fork95 has been imple-
mented. It is partially based on 1lcc 1.9, a one—pass
ANST C—compiler developed by C. Fraser and D. Han-
son [11, 12]. [23]. gives a more detailed description of
the compiler and shows that the overheads introduced
by the different constructs of the language are quite
low.

The compiler generates assembler code which is
then processed into object code in COFF format. The
SB-PRAM-linker plink produces executable code
that runs on the SB-PRAM-simulator pramsim but
should also run on the SB-PRAM as well once it is
available. A window—based source level debugger for
Fork95 is currently in preparation. — Extending the
functionality of asynchronous context programming,
we are also working on a set of routines for self-
balancing parallel loops and parallel queues [28].

5 Parallel programming paradigms
supported by Fork95

For synchronous shared memory parallel environ-
ments, several models for parallel programming mod-
els are widely accepted and could be incorporated into
imperative parallel programming languages:

e strictly synchronous execution: This is the stan-
dard PRAM programming style. The program-
mer can rely on a fixed execution time for each
operation which is the same for all processors at
any time of program execution. Thus, no special
care has to be taken to avoid race conditions be-
cause these should not occur (unless explicitly de-
sired, as in the ARBITRARY CRCW PRAM model).

e farming: Several slave processes are spawned and
work independently on their local tasks. They do
not communicate nor synchronize with each other
during their tasks.

e pipelining and systolic algorithms: Several slave
processes are arranged in a logical network of
stages which solve subproblems and propagate
their partial solutions to subsequent stages. The
network stepwise computes the overall solution
by feeding the input data into it one by another.
The topological structure of the network is usu-
ally a line, grid, or a tree, but may be any directed
graph (usually acyclic). The time to execute one
step of the pipeline is determined by the maxi-
mum execution time of a stage.

e divide and conquer: The problem and the proces-
sor set working on it is recursively divided into
subsets, until either the subproblem is trivial or
the processor subset consists of only one proces-
sor. The partial solutions are computed and com-
bined when returning through the recursion tree.



e data parallelism: The same arithmetical opera-

tion is executed simultaneously on different data,
usually disjoint sections of an array. Execution
need not be synchronous, unless data dependen-
cies may be affected. Typically, data parallelism
is exploited by using a parallel loop. Array syn-
tax, as in Fortran 90, can be used to abbreviate
dataparallel operations on arrays. Sometimes, re-
duction operations like global sum of array ele-
ments, are also considered as dataparallel opera-
tions and supported by many dataparallel pro-
gramming languages like APL [19], Fortran 90
and its successors, and dataparallel C dialects.

geometric parallelism: Each slave process works
on a subproblem of equal size and computational
complexity. Boundary values are to be exchanged
between the processors in regular time intervals.
This scenario, which often occurs in scientific
applications, e.g., at spatial PDE discretization,
could easily profit from synchronous execution in
order to save overhead due to explicit synchro-
nization before boundary exchange. This is a spe-
cial case of data parallelism.

asynchronous sequential processes with partial
synchronization: Most of the time, each slave
process works asynchronously and independently
from the other ones; now and again, however,
some data dependences between processes must
be taken into account. Such computations usu-
ally are arranged using locks for mutual exclu-
sion from shared resources, and by semaphores or
barriers to guarantee data dependencies. A well-
known parallel programming language following
this paradigm is Occam [20] based on CSP [18].

tuple space: This is a programmer—friendly imple-
mentation of the previous item. It is realized in
the LINDA language [7, 8].

parallel prefiz: Parallel Prefix computes for a
given array A[0 : n — 1] and a given binary as-
sociative operator @ the array B[0 : n — 1] with
Bli] = @, ; Alj] using an O(log n) algorithm [26]
on n processors. This is rather a low—level pro-
gramming paradigm and should be provided as
a basic operator (“scan primitive”) in a parallel
programming environment. Global sum, or, and,
max and similar reductions are a special case of
parallel prefix computation. Parallel prefix offers
fast solution of recurrence equations [24]. Nev-
ertheless, many parallel algorithms, also nonnu-
merical ones like sorting, can be formulated using
parallel prefix operators as basic building blocks
[4]. Furthermore, atomic built—in multiprefix op-
erators support atomic fetchéop primitives [13].

message passing is not required in a shared mem-
ory environment. Nevertheless, any message-

passing program could be transformed into an
asynchronous shared—memory program.

We show that Fork95 supports all these parallel
programming paradigms at the same time. We will
also see that it is not necessary to extend the current
language definition by additional constructs to enable
usage of these paradigms.

Strictly synchronous execution is the usual mode we
are applying within the synchronous part of a Fork95
program. As indicated in the last section, this maps
quite directly to the underlying hardware.

Farming can be achieved in asynchronous mode
within the farm body with no additional overhead.
Farming is, clearly, also possible in synchronous mode,
at the expense of subgroup creation at each private
conditional, but there is no reason why farming should
be done in synchronous mode because the single tasks
are independent of each other. If farming is the only
variant of parallelism occurring in the program, the
processes can be spawned using the start statement.

Pipelining through an arbitrary graph can be im-
plemented in a rather straightforward manner:

/*#Pipeline graph consisting of n nodes:*/

struct Node { Data *data;

int *pre;
int stage; }

sh struct Node graph[n];

sync void init_graph(); /*initializes nodes*/

sync void work(); /*specif. work to be donex/

/*Execution of the pipeline with n proc’s:*/

sh int t;

init_graph();

for(t = 0; t < end; t++)

if (t >= graph[$].stage)
work() ;

The data for every node of the graph through which
the data are piped are grouped in structure Node.
This structure contains a pointer to the local data;
a pointer to the vector of predecessors in the graph
together with the integer component stage contain-
ing the number of the round in which the node is go-
ing to be activated. All nodes together are grouped
within the vector graph. For simplicity, let us assume
that the n node pipeline is executed by exactly n pro-
cessors. Then, besides the data structures Data, the
programmer must provide the functions init_graph ()
and work():

Processor j executing init_graph() initializes the
entries of node graph[j]. For this, it especially needs
to compute the predecessors of node j in the graph.
Finally, the value of stage must be computed. In case
the graph is acyclic, one possibility for this might be:

graph[$] .stage = -1; /*initialize stage*/

for(t = 0; t < depth; t++)
if (graph[$].stage < O
&& non_neg(graph[$].pre))
/*value of all predecessors computed*/
graph[$].stage = t;



Initially, all stage entries are initialized with -1. The
stage is determined as the number ¢ of the first iter-
ation where all predecessors already obtained values
> 0 while the current stage still equals —1.

work () specifies the operation to by executed by
processor j at node j. Input data should be read from
the data entries of the nodes graph[i] where i is a
predecessor of j.4

It may happen, though, that the numbers of pro-
cessors and nodes do not match. A reason might be
that we would like to dedicate more than one proces-
sor to each node, or too few processors are available
for the graph. To handle these cases we modify our
generic algorithm as follows:

sh int t;

init_graph();

for(t = 0; t < end; t++)

fork(n; select(t); rename())
if (t >= graph[@].stage)
work() ;

Now a new group is created for every node in the
graph. At the beginning of iteration ¢, each proces-
sor selects the node in whose group it wants to be
member of. Thus, the number of this node can be
accessed through the group number @. At the end of
work (), the groups are removed again to allow for a
synchronization of all processors in the pipeline and a
redistribution at the beginning of the next iteration.

Divide-and-conquer is a natural component of the
synchronous mode of Fork95. A generic divide-and-
conquer algorithm DC may look as follows:

void DC(sh int n; ...)
{ if (trivial(n))
conquer(n, ...);
else {
sh int d = sqrt(n);
fork(d; @=$%d; $=$/d4) {
DC(d, ...);
combine(n, ...);
1y}
If the size n of the given problem is small enough, a
special routine conquer () is called. Otherwise, the
present group is subdivided into a suitable number of
subgroups of processors (in this case, sqrt (an) many)
each one responsible for the parallel and synchronous
solution of one of the subproblems. After their so-
lution, the leaf groups are removed again, and all
prosessors of the original group join together to syn-
chronously combine the partial results.

The last section has shown that the compile-time
overhead to manage this type of programs is quite low.
As an example, a parallel implementation of Strassen’s
algorithm for matrix multiplication has been included
into directory examples of the Fork95 distribution. It

4Note that this generic implementation both covers pipelin-
ing through multidimensional arrays as used by systolic al-
gorithms and all sorts of trees for certain combinatorial
algorithms.

contains two instances of DC, using a fork subdividing
into seven subgroups as well as of a fork subdividing
into two subgroups.

Data parallelism is exploitable both in synchronous
and in asynchronous mode. As shown in the previous
section, we supply macros for parallel loops. A set
of routines that provide a self-balancing parallel loop
for the asynchronous mode is currently in preparation.
mpadd () provides a fast reduction operator for integer
arrays.

Geometric parallelism: see data parallelism.

Asynchronous sequential processes are available by
the farm statement and asynchronous functions. The
Fork95 library contains all required functions for locks,
mutual exclusion, barrier synchronization, semaphores
and parallel queues. It should be no problem to sup-
port equivalents of the basic tuple space operators of
LINDA by corresponding Fork95 routines and macros.
In contrast to distributed—memory implementations of
LiNDA, this would result in more predictable execution
times for the tuple space operators.

Parallel prefiz is directly supported for integer
operands and the operators add, max, and, and or,
since Fork95 makes the corresponding SB-PRAM-
operators accessible as atomic operators at the lan-
guage level. Generalization to arrays of arbitrary size
with linear speedup is straightforward (see the ap-
pendix). Unfortunately, the SB-PRAM designers re-
nounced to support such powerful operators also for
floatingpoint operands. Thus, Fork95 must implement
these in the usual way (time: O((n/p)logn)).

6 Availability of the compiler

The Fork95 compiler including all sources is avail-
able from ftp.informatik.uni-trier.de in direc-
tory /pub/users/Kessler by anonymous ftp. This
distribution also contains documentation, example
programs and a preliminary distribution of the SB-
PRAM system software tools including assembler,
linker, loader and simulator. The Fork95 documen-
tation is also available by www via the URL http://
WWW-wjp.cs.uni-sb.de/ fork95/index.html.
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A Appendix
A.1 Example: Multiprefix sum

The following routine performs a general integer
multiprefix-ADD implementation in Fork95. It takes
time O(n/p) on a p-processor SB-PRAM with built-in
mpadd operator running in O(1) time. This is optimal.
Ounly one additional shared memory cell is required (as
proposed by J. Roehrig). The only precondition is that
group-relative processor ID’s $ must be consecutively
numbered from 0 to groupsize() - 1 (if not, this can
be provided in O(1) time by a mpadd operation).

sync void parallel_prefix_add(
sh int *in, /*operand array*/
sh int n, /*problem sizex/
sh int *out, /*result array*/
sh int initsum) /*global offset*/

sh int p = groupsize();
sh int sum = initsum; /*temp. accum. cellx*/
pr int ij;
/*step over n/p slices of array:*/
for (i=$; i<n; i+=p)
out[i] = mpadd( &sum, in[i] );

Run time results (in SB-PRAM clock cycles):

# processors | cc, n = 10000 | cc, n = 100000
2 430906 4300906

4 215906 2150906

16 54656 538406

64 14406 135322

256 4344 34530

1024 1764 9332

4096 1162 3054

A.2 Example: Divide—and—conquer
/* parallel QUICKSORT from [BDH+91] */

pr int value, pos = 0;
extern sh int a[l]; /*the array to be sortedx/

sync void quicksort( sh int *weight ) {
sh int mid = value;
sh int leftweight = 0, rightweight = 0;
pr int left = (value<mid), right = (value>mid);
if (value != mid)
if (left) quicksort( &leftweight );
else quicksort( &rightweight );
if (value == mid) pos = leftweight + 1;
if (right) pos += 1 + leftweight;
*weight = leftweight + rightweight + 1;
}

main(){
start { /* we need as many processors
as there are array elements to sort */
sh int weight;
value = a[$];
quicksort( &weight );
a[pos-1] = value;

}}



