
Fork�� Language and Compiler for the SB�PRAM

Christoph W� Ke�ler Helmut Seidl

Fachbereich IV � Informatik

Universit�at Trier

D������ Trier	 Germany

e�mail
 kessler�ti�uni�trier�de

Abstract

The SB�PRAM is a lock�step�synchronous� massively parallel multiprocessor currently being
built at Saarbr�ucken University� with up to ���� RISC�style processing elements and with a
�from the programmer�s view	 physically shared memory of up to 
GByte with uniform memory
access time� Because of its architectural properties� the SB�PRAM is particularly suitable for the
implementation of irregular numerical computations� non�numerical algorithms� and database
applications�

Fork� is a redesign of the PRAM language FORK� Fork� is based on ANSI C and o�ers
additional constructs to create parallel processes� hierarchically dividing processor groups into
subgroups� managing shared and private address subspaces� Fork� makes the assembly�level
synchronicity of the underlying hardware available to the programmer at the language level�
Nevertheless� it provides also comfortable facilities for locally asynchronous computation where
desired by the programmer� Altogether� Fork� o�ers full expressibility for the implementation
of practically relevant parallel algorithms�

In this paper we give a short overview on the Fork� language and present a one�pass
compiler� fcc� for Fork��

� Introduction

It seems to be generally accepted that the most convenient machines to write parallel programs for�
are synchronous MIMD �Multiple InstructionMultiple Data� computers with shared memory� well�
known to theoreticians as PRAMs �i�e�� Parallel Random Access Machines�� Although widely believed
to be impossible� a realization of such a machine in hardware� the SB�PRAM� is undertaken by a
project of W�J� Paul at Saarbr�ucken �AKP��� KPS�	
� The shared memory with random access to
any location in one CPU cycle by any processor �Priority�Crcw�Pram� allows for a fast and easy
exchange of data between the processors� while the common clock guarantees deterministic and� if
desired� lock�step�synchronous program execution� Accordingly� a huge amount of algorithms has
been invented for this type of architecture in the last two decades�

Surprisingly enough� not much attempts have been made to develop languages which allow both
to conveniently express algorithms and generate e�cient PRAM�code for them�

One approach of introducing parallelism into languages consists in decorating sequential programs
meant to be executed by ordinary processors with extra primitives for communication resp� access
to shared variables� Several subroutine libraries for this purpose extending C or FORTRAN have been
proposed and implemented on a broad variety of parallel machines� While PVM is based on CSP
�LT�
� and therefore better suited for distributed memory architectures� the P	 library and its
relatives support various concepts of parallel programming� The most basic primitives it provides
for shared memory� are semaphores and locks� Moreover� it provides shared storage allocation and a
�exible monitor mechanism including barrier synchronization �BL��
� �BL�	
� This approach is well
suited if the computations executed by the di�erent threads of the program are �loosely coupled��



i�e�� if the interaction patterns between them are not too complicated� Also� these libraries do not
support a synchronous lockstep mode of program execution even if the target architecture does so�

Attempts to design synchronous languages have been made for the data�parallel programming
paradigm� This type of computation frequently arises in numerical computations� It mainly consists
in the parallel execution of iterations over large arrays� Data parallel imperative languages have
been designed especially to program SIMD �Single Instruction Multiple Data� computers like� e�g��
pipelined vector processors or the CM�� Examples of such languages are Vector C �LS��
 and C�

�RS��
 or its relatives Dataparallel C �HQ��
 and DBC �SG��
�

The limitations of these languages� however� are obvious� There is just one global name space�
Other programming paradigms like a parallel recursive divide�and�conquer style as suggested in
�BDH���
� �Col��
� �dlTK��
� �HR��a
� �HR��b
 are not supported�

The only attempt we are aware of which allows both parallely recursive and synchronous program�
ming are the imperative parallel languages FORK �HSS��
 and ll �LSRG��
� Based on a subset of
Pascal �no jumps�� ll controls parallelism by means of a parallel do�loop which allows a �virtual�
processor to spawn new ones executing the loop body in parallel� Opposed to that� the philosophy
of FORK is to take a certain set of processors and distribute them over the available tasks� Given
�xed sized machines� the latter approach seems better suited to exploit the processor resources�

The design of FORK �HSS��
 was a rather theoretical one� Pointers� dynamic arrays� nontrivial
data types and non�structured control �ow were sacri�ced to facilitate correctness proofs� In this
way� however� the language became completely unusable�

In order to provide a full��edged language for real use� we have added all the language features
which are well�known from sequential programming� Thus� the new FORK dialect Fork�� has be�
come �more or less� a superset of C� To achieve this goal we decided to extend the ANSI�C syntax
� instead of clinging to the original one� Which also meant that �for the sequential parts� we
had to adopt C�s philosophy� We introduced the possibility of locally asynchronous computation
to save synchronization points and to enable more freedom of choice for the programming model�
Furthermore� we have abandoned the tremendous run time overhead of virtual processor emula�
tion by limiting the number of processes to the hardware resources� resulting in a very lean code
generation and run time system�

Fork�� o�ers two di�erent programming modes� the synchronous mode �which was the only one
in old FORK� and the asynchronous mode� Each function is classi�ed as either synchronous or
asynchronous� Within the synchronous mode� processors form groups that can be recursively sub�
divided into subgroups� forming a tree�like hierarchy of groups� Shared variables and objects exist
once for the group that created them� private variables and objects exist once for each processor�
All processors within a group operate synchronously�

In the asynchronous mode� the Fork�� run�time library o�ers important routines for various kinds
of locks� semaphores� barriers� self�balancing parallel loops� and parallel queues� which are required
for comfortable implementation of asynchronous algorithms� Carefully chosen defaults allow for
inclusion of existing sequential ANSI C sources without any syntactical change�

Fork�� o�ers full expressibility for the implementation of practically relevant parallel algorithms
because it supports all known parallel programming paradigms used for the parallel solution of
real�world problems�

In this paper� we will focus on the current implementation of the Fork�� compiler� fcc� for the
SB�PRAM�

The rest of the paper is organized as follows� Section � presents the SB�PRAM architecture
from the programmer�s �and compiler�s� point of view� Section  explains the basic concepts and
mechanisms of Fork�� to control parallel execution� Section 	 describes the compiler and the
runtime environment� The appendix lists some example programs�



� The SB�PRAM from the programmer�s view

The SB�PRAM �AKP��
 is a lock�step�synchronous� massively parallel MIMD multiprocessor cur�
rently under construction at Saarbr�ucken University� with up to 	��� RISC�style processing ele�
ments with a common clock and with a physically shared memory of up to �GByte� The memory
access time is uniform for each processor and each memory location� it takes one CPU cycle �i�e��
the same time as one integer or �oatingpoint operation� to store and two cycles to load a � bit
word� This ideal behaviour of communication and computation has been achieved by several archi�
tectural clues like hashing� latency hiding� �intelligent� combining network nodes etc� Furthermore�
a special node processor chip �KPS�	
 had to be designed�

Each processor works on the same node program �SPMD programming paradigm�� The SB�PRAM
o�ers a private address space for each node processor which is embedded into the shared memory�
Each processor has � general�purpose ��bit registers� In the present prototype� all standard data
types �also characters� are � bit wide� Double�precision �oatingpoint numbers are not supported
by hardware so far� The instruction set is based on that of the Berkeley�RISC�� but provides
more arithmetic operations� including integer multiplication and base���logarithm� Usually� these
are three�address�instructions �two operands and one result�� Arithmetic operations can only be
carried out on registers�

The SB�PRAM o�ers built�in parallel multipre�x operations for integer addition� maximization�
logical and and logical or which also execute within two CPU cycles�

Parallel I�O �to�from local hard disks� and sequential I�O �to�from the host� features have been
added� A single�user� single�tasking operating system is already available� a multi�user and multi�
tasking system is planned for the near future� System software �assembler� linker� loader� has been
completed� as well as an asynchronous C compiler which has been extended by an implementation
of the P	 parallel macro package�

Because of its architectural properties� the SB�PRAM is particularly suitable for the implementation
of irregular numerical computations� non�numerical algorithms� and database applications�

The current university prototype implementation provides a �of course� not very exciting� processor
speed of ���� MFlops� However� this could be easily improved by one or even two orders of
magnitude by using faster chip and interconnection technology and by exploiting the usually large
potential of cycles doing only private computation�

Since the SB�PRAM hardware is not yet available �a ����PE�prototype is to be expected for summer
����� the full extension for ������ we use a simulator that allows to measure exact program execution
times�

We would like to emphasize that the SB�PRAM is in deed the physical realization of a Priority�
CRCW�Pram� the strongest PRAM model known in theory� What the SB�PRAM cannot o�er�
of course� is unlimited storage size� unlimited number of processors� and unlimited word length �
which however� are too ideal resource requirements for any physically existing computer�

� Fork�� Language Design

Fork�� is a redesign of the PRAM language FORK �HSS��
� Fork�� is based on ANSI C �ANS��
�
Additionally� it o�ers constructs to create parallel processes� to hierarchically divide groups of
processors into subgroups� to manage shared and private address subspaces� Fork�� makes the
assembly�level synchronicity of the underlying hardware available to the programmer� It further
enables direct access to the hardware�supplied multipre�x operations�

�Unfortunately� division for integer as well as for �oatingpoint numbers has to be realized in software�



��� Starting Processors in Parallel

Initially� all processors of the PRAM partition on which the program has been started by the user
execute the startup code in parallel� After that� there remains only one processor active which
starts execution of the program by calling function main���

The statement start�e� whose shared expression e evaluates to some integer value k� starts k
processors simultaneously� with unique �absolute� processor IDs called ��PROC�NR�� numbered
successively from � to k � �� If the expression e is omitted� then all available processors executing
this program are started�

��� Shared and Private Variables

The entire shared memory of the PRAM is partitioned � according to the programmer�s wishes �
into private address subspaces �one for each processor� and a shared address subspace� Accordingly�
variables are classi�ed either as private �pr� this is the default� or as shared �sh�� where �shared�
always relates to the processor group that de�ned that variable�

Additionally� there is a special private variable � which is initially set to ��PROC�NR�� and a special
shared variable 	� 	 is meant to hold the current processor group ID� and � the current relative
processor ID �relative to �� during program execution� These variables are automatically saved and
restored at group forming operations� However� the user is responsible to assign reasonable values
to them �e�g�� at the fork�� instruction��

An expression is private if it is not guaranteed to evaluate to the same value on each processor� We
usually consider an expression to be private if at least one private subexpression �e�g�� a variable�
may occur in it�

If several processors write the same �shared� memory location in the same cycle� the processor with
least ��PROC�NR�� will win� and write its value �Priority�CRCW�Pram�� However� as several
other write con�ict resolution schemes �likeArbitrary� are also used in theory� meaningful Fork��
programs should not be dependent on such speci�c con�ict resolution schemes� there are better
language elements �multipre�x instructions� see below� that cover practically relevant applications
for concurrent write�

��� The Group Concept

At each point of program execution� Fork�� maintains the invariant that all processors belonging
to the same processor group are operating strictly synchronously� i�e�� they follow the same path
of control �ow and execute the same instruction at the same time� Also� all processors within the
same group have access to a common shared address subspace� Thus� newly allocated �shared�
objects exist once for each group allocating them�

At the beginning� the started processors form one single processor group� This rule can be relaxed
in two ways� by splitting a group into subgroups and maintaining the invariant only within each
of the subgroups� or by explicitly entering the asynchronous mode via a farm construct

farm 
statement�

Within the farm body� any synchronization is suspended� at the end of a farm environment� the
processors synchronize explicitly within their current group�

Functions are classi�ed to be either synchronous �sync� or asynchronous �async�� Within a farm

and within an async function� only async functions can be called� Calling an async function from
a synchronous context �i�e�� the call being located in a sync function and not within a farm body�
results in an implicit entering of the asynchronous mode� the programmer receives a warning� Using

�The Fork�� programmer has the possibility to change PROC NR during program execution and thus to in�uence

the write con�ict resolution method within some limits�



farm within a farm body or within an async function is super�uous and may even introduce a
deadlock �a warning is emitted��

Shared if or loop conditions do not a�ect the synchronicity� as the branch taken is the same for
all processors executing it�

At an if statement� a �potentially� private condition causes the current processor group to be
split into two subgroups� the processors for which the condition evaluates to true form the �rst
child group and execute the then part while the remaining processors execute the else part� The
available shared address space of the parent group is subdivided among the new child groups before
the splitting� When all processors �nished the execution of the if statement� the two subgroups are
merged again by explicit synchronization of all processors of the parent group� A similar subgroup
construction is required also at loops with private exit condition� All processors that will execute
the �rst iteration of the loop enter the child group and stay therein as long as they iterate� However�
at loops it is not necessary to split the parent group�s shared memory subspace� since processors
that leave the loop body are just waiting at the end of the loop for the last processors of their
�parent� group to complete loop execution�

Subgroup construction can� in contrast to the implicit construction at the private if� also be done
explicitly� by the fork statement� Executing

fork �e�� e�� e�� 
statement�

means the following� First� the shared expression e� are evaluated to the number of subgroups to
be created� Then the current leaf group is split into that many subgroups� Evaluating e�� every
processor determines the number of the newly created leaf group it will be member of� Finally�
by evaluating e�� the processor can readjust its current processor number within the new leaf
group� Note that empty subgroups �with no processors� are possible� an empty subgroup�s work
is immediately �nished� though� It is on the user�s responsibility that such subgroups make sense�
Continuing� we partition the parent group�s shared memory subspace into that many equally�
sized slices and assign each of them to one subgroup� such that each subgroup has its own shared
memory space� Now� each subgroup continues on executing 
statement�� the processors within
each subgroup work synchronously� but di�erent subgroups can choose di�erent control �ow paths�
After the body 
statement� has been completed� the processors of all subgroups are synchronized�
the shared memory subspaces are re�merged� the parent group is reactivated as the current leaf
group� and the statement following the fork statement is executed synchronously by all processors
of the group�

Thus at each point of program execution� the processor groups form a tree�like hierarchy� the
starting group is the root� whereas the currently active groups are the leaves� Only the processors
within a leaf group are guaranteed to operate strictly synchronously� Clearly� if all leaf groups
consist of only one processor� the e�ect is the same as using the asynchronous context� However�
the latter avoids the expensive time penalty of continued subgroup formation and throttling of
computation by continued shared memory space fragmentation�

��� Pointers and Heaps

Fork�� o�ers pointers� as opposed to its predecessor FORK� The usage of pointers in Fork�� is
as �exible as in C� since all private address subspaces have been embedded into the global shared
memory of the SB�PRAM� Thus� shared pointer variables may point to private objects� and vice
versa� The programmer is responsible for such assignments making sense�

Fork�� supplies two kinds of heaps� a shared heap and one private heap for each processor� While
space on the private heaps can be allocated by the private �asynchronous� malloc function known
from C� space on the shared heap is allocated temporally using the shared �synchronous� shalloc
function� The life range of objects allocated by shalloc is limited to the life range of the group
in which that shalloc was executed� Thus� such objects are automatically removed if the group



allocating them is released� Supplying a third variant� a �permanent� version of shalloc� is an
issue of future Fork�� library programming�

Pointers to functions are also supported� However� special attention must be paid when using
private pointers to functions in a synchronous context� Since each processor may then call a
di�erent function �and it is statically not known which one�� calling a function using a private
pointer in synchronous context would correspond to a huge switch� opening a separate subgroup
for each function possibly being called � a tremendous waste in shared memory space� For this
reason� calls to functions via private pointers automatically switch to the asynchronous mode if
they are located in synchronous context� Private pointers may thus only point to async functions�

��� Multipre�x Instructions

The SB�PRAM supports powerful built�in multipre�x instructions which allow to compute multi�
pre�x integer addition� maximization� and and or for up to 	��� processors within � CPU cycles�
We have made available these machine instructions as Fork�� operators �atomic expression opera�
tors� not functions�� Clearly� these should only be used in synchronous context� The order of the
processors within a group is determined by their hardcoded absolute processor ID ��PROC�NR���
For instance� the instruction

k � mpadd� shmemloc� expression ��

�rst evaluates expression locally on each processor participating in this instruction into a private
integer value ej and then assigns on the processor with i�th largest ��PROC�NR�� the private integer
variable k to the value e� � e� � � � � � ei��� shmemloc must be a shared integer variable� After
the execution of the mpadd instruction� shmemloc contains the global sum

P
j ej of all participating

expressions� Thus� mpadd can as well be �misused� to compute a global sum by ignoring the value
of k�

Unfortunately� these powerful instructions are only available for integer computations� because of
hardware cost considerations� Floatingpoint variants of mpadd and mpmax clearly would have been
of great use in parallel linear algebra applications �Ke �	
�

��� Useful Macros

The following macro from the 
fork�h� header may be used as well in synchronous as in asyn�
chronous context in order to enhance program understandability�

�define forall�i�lb�ub�p� �
for�i����lb��i
�ub��i��p�

Thus�

gs � groupsize���
forall�i�lb�ub�gs� 
statement�

executes 
statement� within a parallel loop with loop variable i� ranging from lb to ub� using all
processors belonging to the current leaf group� if suitable indexing � successively ranging from � to
groupsize�� has been provided by the programmer� In asynchronous context� this is also possible
as long as the programmer guarantees for all required processors to arrive at that statement�

��� Caveats in Fork	� Programming

����� Spaghetti Jumping

All non�structured statements a�ecting control �ow �goto� longjmp� break� return� continue�
are dangerous within a synchronous environment since the jumping processors may not enter or
leave groups on the normal way �via subgroup construction or subgroup merge��



For jumps of type break� continue� and return� the target group is statically known� it is a
predecessor of the current leaf group in the group hierarchy tree� In this case� the compiler can
provide a safe implementation even for the synchronous context�

For a goto jump� however� the target group may not yet have been created at the time of exe�
cuting the jump� Even worse� the target group may be unknown at compile time� Jumps across
synchronization points usually will introduce a deadlock� For this reason� goto jumps are under
the programmer�s responsibility� However� as long as source and destination of a goto are within
the same asynchronous context� there is no danger of deadlock�

����� Shared Memory Fragmentation

The reader may already have noticed that it is not wise to have more fork or private if statements
on the recursive branch of a recursive procedure �like parallel depth��rst�search� for instance� than
absolutely necessary� Otherwise� after only very few recursion steps� the remaining shared memory
fraction of each subgroup has reached an impracticably small size thus resulting in early stack
over�ow�

� Compilation Issues of Fork��

To compile Fork�� programs� we �rst install a shared stack in each group�s shared memory subspace�
and a private stack in each processor�s private memory subspace� A shared stack pointer sps and
a private stack pointer spp are permanently kept in registers on each processor�

As in common C compilers� a procedure frame is allocated on each processor�s private stack� holding
private arguments �pointed to by a private argument pointer app�� saved registers� and private local
variables� pointed to by a private frame pointer fpp� In special cases� up to 	 private arguments
can be passed in registers�

When calling a synchronous function� a shared procedure frame is allocated on the group�s shared
stack if the callee has shared arguments �pointed to by aps� or shared local variables �pointed to
by fps�� An asynchronous function never has a shared procedure frame�

��� Fast Start of Processors

Each processor has got an inactivity bit �shadow bit� which� if set� cancels all global store and
multipre�x operations of that processor �push operations are� though� admitted�� Also the I�O
routines test the shadow bit to mask their activity� Thus� starting and stopping an arbitrary
number of available processors is done on�the��y within a few CPU cycles by only adjusting their
shadow bits�

��� Group Frames and Synchronization

To keep everything consistent� the compiler builds shared and private group frames at each group�
forming statement�

A shared group frame is allocated on each group�s shared memory subspace� It contains the syn�
chronization cell� which normally contains the exact number of processors belonging to this group�
At a synchronization point� each processor decrements �see Figure �� this cell by a mpadd�������

instruction� and waits until it sees a zero in the synchronization cell� Thereafter the processors are
desynchronized by at most � clock cycles� After correcting this� the synchronization cell is restored
to its original value� The overhead of this synchronization routine is only �� clock cycles�

The corresponding private group frame is allocated on each processor�s private memory subspace�
It mainly contains the current values of the group ID 	 and the group�relative processor ID ��



�globl forklib�sync
forklib�sync� ��no parameter� uses r��� r�	��
bmc 	 ��force next modulo 	 ��
getlo 
��r�	 ��load constant 
� 	��
mpadd gps���r�	 ��decr� sync cell ���
nop ��delay
slot mpadd 	��
nop ��modulo �� ���

FORKLIB�SYNCLOOP�
ldg gps���r�	 ��load sync cell 	��
getlo ��r�� ��load constant � ���
add r�	�	�r�	 ��compare with zero 	��
bne FORKLIB�SYNCLOOP �� until zero seen ���

ldg gps���r�	 ��load sync cell 	��
mpadd gps���r�� ��repair sync cell ���
add r�	�	�r�	 ��compare with zero 	��
bne FORKLIB�SYNCHRON ��late wave� bypass���
nop ��delay early wave 	��
nop ��delay early wave ���
FORKLIB�SYNCHRON�
return ��sync� finished 	��
nop ��delay
slot return ���

Figure �� The synchronization routine in fcc�
as proposed by J�org Keller �Saarbr�ucken Uni�
versity�� The modulo �ag is a globally visible
bit in the status register which is inverted af�
ter each machine cycle� thus it can be used as
a semaphore to separate reading and writing
accesses to the same memory location� The
bmc instruction causes the processors to enter
the SYNCLOOP loop only if the modulo �ag
is �� Because the SYNCLOOP loop has length
	� all processors that are inside leave the loop
�as soon as they see a zero in the synchroniza�
tion cell� in two waves which are separated by
two machine cycles� This delay is corrected in
the last part of the routine� Processors that
belong to the late wave see already a num�
ber di�erent from zero in the synchronization
cell� because the processors of the early wave
already incremented them� When returning�
all processors are exactly synchronous�

Private loops only build a shared group frame for the group of iterating processors� A private
group frame is not necessary� as there is usually no need to change the values for 	 and ��

Intermixing procedure frames and group frames on the same stack is not harmful� since subgroup�
creating language constructs like private if and fork are always properly nested within a function�
Thus� separate stacks for group frames and procedure frames are not required� preserving scarce
memory resources from additional fragmentation�

��� Pointers and Heaps

The private heap is installed at the end of the private memory subspace of each processor� For
each group� its shared heap is installed at the end of its shared memory subspace� The pointer
eps to its lower boundary is saved at each subgroup�forming operation which splits the shared
memory subspace further� and restored after returning to that group� Testing for shared stack or
heap over�ow thus just means to compare sps and eps�

��� Example
 Translation of private if statements

As an illustration for the compilation of subgroup�creating constructs� we pick the if statement
with a private condition e�

if �e� statement� else statement�

It is translated into the following pseudocode to be executed by each processor of the current
group�

��� divide the remaining free shared memory space of the current group �located between shared
stack pointer and shared heap pointer� into two equally�sized blocks B� and B�

��� evaluate e into a register reg

�� allocate a new private group frame on the private stack� copy the old values of � and 	 to
their new location�

�	� if �reg !! �� goto elselabel�

��� set shared stack pointer and shared heap pointer to the limits of B�



Table �� Overheads introduced by the dif�
ferent constructs of the language� Divi�
sion has to be implemented in software�
therefore the huge �and varying� number
in the last line� Also� in a synchronous
context� extra synchronization has to oc�
cur afterwards� The cost of calls clearly
can be reduced by passing arguments in
registers �this is standard for most library
functions�� The cost of ifs can be reduced
drastically whenever at most one of the
branches contains function calls�

construct� overhead in SB
PRAM clock cycles�
synchronize� tsync � ��
startup� �� � �� jprivate �data sectionj
start� �
loop� �� � ��iterations � tsync

if� �
 � tsync

fork� �� � tdivision � tsync

farm� tsync

call� synchr�� �� ���used regs	 � ��private args	
�
���shared args	 � tsync

call� asynchr�� �� ���used regs	 � ��private args	
malloc�shalloc� �
division� tdivision � �
 � � � ��� �data dep�	

��� allocate a new shared group frame on that new shared stack

��� determine current �sub�group size by mpadd�synccell���

��� execute statement�

��� goto finishedlabel

���� elselabel� set shared stack pointer and shared heap pointer to the limits of B�

���� allocate a new shared group frame on that new shared stack

���� determine current �sub�group size by mpadd�synccell���

��� execute statement�

��	� finishedlabel� remove shared and private group frame� restore shared stack pointer� heap
pointer� and the group pointers� call the synchronization routine �Figure ��

Important optimizations �as �K�ap��� Wel��
 did for the old FORK standard� will address waste of
memory in the splitting step ��rst item�� For instance� if there is no else part� splitting and
generation of new group frames is not necessary� A private group frame is also not required if � and
	 are not rede�ned in statement� resp� statement�� If the memory requirements of one branch
are statically known� all remaining memory can be left to the other branch�

In the presence of an else part� the synchronization could be saved if the number of machine cycles
to be executed in both branches is statically known� then the shorter branch can be padded by a
sequence or loop of nops�

Special care has to be taken for break or continue statements occurring in statement� or
statement�� in these cases� the private group frame has to be removed� the synchronization cell of
the parent group has to be decremented� and the pointers have to be restored as in the last item
above� before jumping out of the branch�

��� Implementation

A �rst version of a compiler for Fork�� has been implemented� It is partially based on lcc

���� a one�pass ANSI C�compiler developed by Chris Fraser and David Hanson at Princeton� NY
�FH��a� FH��b� FH��
�

Table � shows the overheads introduced by the di�erent constructs of the language�

The compiler generates assembler code which is processed by the SB�PRAM�assembler prass into
object code in COFF format� The SB�PRAM�linker plink produces executable code that runs on
the SB�PRAM�simulator pramsim but should also run on the SB�PRAM as well once it is available�
A window�based source level debugger for Fork�� is currently in preparation�



��� Limitations of the Compiler

Conditional expressions e"l � r in synchronous mode do � unlike the private if statement � not
build group frames� As a private condition e may introduce a deadlock� a warning is emitted in
this case� This is due to the strange construction of expression DAGs in the lcc� Nevertheless�
this does not restrict the programmer � he can use the if statement instead�

The same holds for switch statements in synchronous mode� Currently� no group frames are
provided� Thus� a private selector may introduce a deadlock �warning is given�� If a synchronous
switch over a private selector cannot be avoided� the programmer should replace it by a �if possible�
balanced� if cascade�

Attention must be paid if continue is used in a loop� If between the continue and the end of
the loop body some synchronization will take place �e�g�� at the end of a private if� of a private
loop� of a sync function call or of a farm�� a deadlock may be introduced� This problem will
disappear in a future release of fcc by enabling the user to indicate such situations a priori by
specifying a compiler option that introduces an extra shared group frame for each loop� A general
implementation of continue is not sensible for a one�pass�compiler like fcc�

The C library is not yet fully implemented� We have provided some important routines e�g� for
screen output� string manipulation� and mathematical functions� Extending the functionality of
asynchronous context programming� we are also working on a set of primitives to handle self�
balancing parallel loops and parallel queues �R�oh��
�

� Availability of the compiler

The Fork�� compiler including all sources is available from ftp�informatik�uni�trier�de in
directory �pub�users�Kessler by anonymous ftp� This distribution also contains documentation�
example programs and a preliminary distribution of the SB�PRAM system software tools including
assembler� linker� loader and simulator� The Fork�� documentation is also available by www via
the URL http���www�wjp�cs�uni�sb�de�fork���index�html�

References

�AKP��� F� Abolhassan� J� Keller� andW�J� Paul� On Physical Realizations of the Theoretical PRAMModel�
Technical Report 
������� Sonderforschungsbereich �
� VLSI Entwurfsmethoden und Parallelit�at�
Universit�at Saarbr�ucken� �����

�ANS��� ANSI American National Standard Institute� Inc�� New York� American National Standards for
Information Systems� Programming Language C� ANSI X���������� �����

�BDH���� P�C�P� Bhatt� K� Diks� T� Hagerup� V�C� Prasad� S� Saxena� and T� Radzik� Improved Deter�
ministic Parallel Integer Sorting� Information and Computation� ��� �����

�BL�
� R� Butler and E�L� Lusk� User�s Guide to the P� Parallel Programming System� Technical Report
ANL��
���� Argonne National Laboratory� October ���
�

�BL��� R� Butler and E�L� Lusk� Monitors� Messages� and Clusters� The P� Parallel Programming System�
Journal of Parallel Computing� 
���	������� April �����

�Col��� M�I� Cole� Algorithmic Sceletons� Structured Management of Parallel Computation� Pitman and
MIT Press� �����

�dlTK�
� P� de la Torre and C�P� Kruskal� Towards a Single Model of E�cient Computation in Real Parallel
Machines� Future Generation Computer Systems� ��������� ���
�

�FH��a� C� W� Fraser and D� R� Hanson� A code generation interface for ANSI C� Software�Practice �
Experience� 
���	��������� Sept� �����

�FH��b� C� W� Fraser and D� R� Hanson� A retargetable compiler for ANSI C� SIGPLAN Notices� 
����	�
��
��� Oct� �����



�FH�� C� W� Fraser and D� R� Hanson� A Retargetable C Compiler� Design and Implementation� Benjamin
Cummings Publishing Company� ����

�HQ��� P�J� Hatcher and M�J� Quinn� Dataparallel Programming on MIMD Computers� MIT�Press� �����

�HR�
a� T� Heywood and S� Ranka� A Practical Hierarchical Model of Parallel Computation� Part I� The
Model� Journal of Parallel and Distributed Programming� ���
�
�
�
� ���
�

�HR�
b� T� Heywood and S� Ranka� A Practical Hierarchical Model of Parallel Computation� Part II� Binary
Tree and FFT Algorithms� Journal of Parallel and Distributed Programming� ���
���
��� ���
�

�HSS�
� T� Hagerup� A� Schmitt� and H� Seidl� FORK� A High�Level Language for PRAMs� Future
Generation Computer Systems� ���������� ���
�

�K�ap�
� Karin K�appner� Analysen zur �ubersetzung von FORK� Teil �� Master thesis� Universit�at
Saarbr�ucken� ���
�

�Ke���� Christoph W� Ke�ler� Automatische Parallelisierung numerischer Programme durch Mustererken�
nung� PhD thesis� Universit�at Saarbr�ucken� �����

�KPS��� J�org Keller� Wolfgang J� Paul� and Dieter Scheerer� Realization of PRAMs� Processor Design� In
Proc� WDAG��� �th Int� Workshop on Distributed Algorithms� Springer Lecture Notes in Computer
Science vol� �	
� pages ���
�� �����

�LS�� K��C Li and H� Schwetman� Vector C� A Vector Processing Language� Journal of Parallel and
Distributed Computing� 
���
����� ����

�LSRG�� C� Le�on� F� Sande� C� Rodr�iguez� and F� Garc�ia� A PRAM Oriented Language� In Euromicro
Workshop on Parallel and Distributed Processing� pages ��
����� ����

�LT��� Oak Ridge National Laboratory and University of Tennessee� Parallel Virtual Machine Reference
Manual� Version ��
� Technical report� August �����

�R�oh��� Jochen R�ohrig� title to be announced �in german language	� Master thesis� Universit�at Saarbr�ucken�
to appear �����

�RS��� J� Rose and G� Steele� C�� An Extended C Language for Data Parallel Programming� Technical
Report PL ���� Thinking Machines Corporation� �����

�SG�
� Judith Schlesinger and Maya Gokhale� DBC Reference Manual� Technical Report TR��
�����
Supercomputing Research Center� ���
�

�Str��� V� Strassen� Numerische Mathematik� volume ��� �����

�Wel�
� Markus Welter� Analysen zur �ubersetzung von FORK� Teil 
� Master thesis� Universit�at
Saarbr�ucken� ���
�

A Appendix

A�� Example
 Multipre�x�Sum

The following routine performs a general integer multipre�x�ADD implementation in Fork��� It
takes time O�n�p� on a p�processor SB�PRAM with built�in mpadd operator running in O��� time�
This is optimal� Only one additional shared memory cell is required �as proposed by J� Roehrig��
The only precondition is that group�relative processor ID�s � must be consecutively numbered from
� to groupsize�� � �� If they are not� this can be provided in O��� time by a mpadd operation�

sync void parallel�prefix�add�
sh int �in� ��operand array��
sh int n� ��problem size��
sh int �out� ��result array��
sh int initsum ��global offset��

�
sh int p � groupsize��
sh int sum � initsum�

��temporary accumulator cell��
pr int i�

��step over n�p slices of array���
for �i��� i�n� i��p

out�i� � mpadd� �sum� in�i� �
�

Run time results �in SB�PRAM clock cycles� for
the parallel pre�x example�
� processors cc� n � ����� cc� n � ������


 ������ �������
� 
���� 
�����
� ������ ������
�� ��� �����
�
 
��

 
����
�� ����� ���


�
� ���� ����

� ���� ����
�
 
�
� �����
��
� ���� ���


��� ���� ���
���� ���
 ���



A�� Example
 Divide�and�Conquer

As illustration for the application of the fork statement� we have implemented Strassen�s recursive
matrix multiplication algorithm �Str��
� where at the main divide�and�conquer phase we solve the
� subproblems in parallel by subdividing the current processor group into � subgroups�

sh int �A� �B� �C�
sh int N � ��� �� matrix extent� must be a power of � ��

main�	 

pr int i� j� p�
start ����	 
 �� �� ��

A � �int �	 shalloc�N�N	�
B � �int �	 shalloc�N�N	�
C � �int �	 shalloc�N�N	�
p � groupsize�	�
farm init�matrices�	�
strassen�mult� A� N� B� N� C� N� N 	�
farm output�array� C� N 	� ��print the resulting array��

�
�

sync void add�
sh int �a� sh int sa� �� matrix and its allocated extent ��
sh int �b� sh int sb�
sh int �c� sh int sc�
sh int n 	 �� problem size ��


 �� n x n � add two arrays a� b� ��
pr int i� j�
sh int p � groupsize�	�
farm
for�i��� i�n� i��p	 �� parallel loop ��

for �j��� j�n� j��	 

c�i�sc � j� � a�i�sa � j� � b�i�sb � j��

�
�

sync void inv� sh int �a� sh int sa� sh int �c� sh int sc� sh int n 	



pr int i� j�
sh int p � groupsize�	�
farm
for�i��� i�n� i��p	 �� parallel loop ��

for �j��� j�n� j��	
c�i�sc�j� � � a�i�sa�j��

�

async void mult�directly� int �a� int sa� int �b� int sb� int �c� int sc� int n 	



pr int i� j� k� ��sequential matrix multiplication��
pr int val�

for�i��� i�n� i��	
for �j��� j�n� j��	 


val � ��
for �k��� k�n� k��	

val �� a�i � k�n� � b�k � j�n��
c�i�n � j� � val�

�
�

�� comp��	� ���� comp�	 install Strassen�s set of formulae� ��

sync void comp�� sh int �a��� sh int �a��� sh int sa�
sh int �b��� sh int �b��� sh int sb�
sh int �q�� sh int ndiv� 	



sh int �t� � �int �	 shalloc�ndiv� � ndiv�	�
sh int �t� � �int �	 shalloc�ndiv� � ndiv�	�
add� a��� sa� a��� sa� t�� ndiv�� ndiv� 	�
add� b��� sb� b��� sb� t�� ndiv�� ndiv� 	�
strassen�mult� t�� ndiv�� t�� ndiv�� q�� ndiv�� ndiv� 	�

�

� ��� � �� comp��	� ���� comp�	 work in the same way ��



sync void strassen�mult�
sh int �a� �� operand array� allocated size sa x sa� extent n x n ��
sh int sa�
sh int �b� �� operand array� length n x n ��
sh int sb�
sh int �c� �� result array� length n x n ��
sh int sc�
sh int n 	 �� problem size ��



sh int ndiv� � n����
sh int �a��� �a��� �a��� �a��� �b��� �b��� �b��� �b��� �c��� �c��� �c��� �c���
sh int �q�� �q�� �q�� �q�� �q�� �q�� �q�
sh int �t��� �t��� �t��� �t���
sh int p � groupsize�	�

farm if �p �� �	 
 �� no more processors available� ��
mult�directly� a� sa� b� sb� c� sc� n 	�
return�

�

if �n���	 
 �� the trivial case ��
�c � �a � �b�
farm prI� �c� � 	�
return�

�

a�� � a� a�� � a � ndiv��
a�� � a � sa�ndiv�� a�� � a � sa�ndiv� � ndiv��
b�� � b� b�� � b � ndiv��
b�� � b � sb�ndiv�� b�� � b � sb�ndiv� � ndiv��
c�� � c� c�� � c � ndiv��
c�� � c � sc�ndiv�� c�� � c � sc�ndiv� � ndiv��

q� � �int �	 shalloc�ndiv� � ndiv�	�
� ��� same for q�� ���� q ��� �

�� explicitly open  subgroups� ��

fork � � � � ��� ���� 	 
 �� the ��th group computes q
����� ��
switch ��	 
 �� no additional group frame construction ��

case �� comp�� a��� a��� sa� b��� b��� sb� q�� ndiv� 	� break�
case �� comp�� a��� a��� sa� b��� sb� q�� ndiv� 	� break�
case �� comp�� a��� sa� b��� b��� sb� q�� ndiv� 	� break�
case �� comp�� a��� sa� b��� b��� sb� q�� ndiv� 	� break�
case �� comp�� a��� a��� sa� b��� sb� q�� ndiv� 	� break�
case �� comp�� a��� a��� sa� b��� b��� sb� q�� ndiv� 	� break�
case �� comp� a��� a��� sa� b��� b��� sb� q� ndiv� 	� break�

�
� �� end of fork ��

�� explicitly reopen � subgroups� ��

fork� �� � � ���� � � ��� 	
if �����	 
 �� shared if condition ��

�� the first subgroup computes c�� and c�� ��
t�� � �int �	 shalloc�ndiv� � ndiv�	�
t�� � �int �	 shalloc�ndiv� � ndiv�	�
inv� q�� ndiv�� t��� ndiv�� ndiv� 	�
add� t��� ndiv�� q� ndiv�� t��� ndiv�� ndiv� 	�
add� t��� ndiv�� q�� ndiv�� t��� ndiv�� ndiv� 	�
add� t��� ndiv�� q�� ndiv�� c��� sc� ndiv� 	�
add� q�� ndiv�� q�� ndiv�� c��� sc� ndiv� 	�

�
else 
 �� the second subgroup computes c�� and c�� ��

���� similar as for c�� and c�� ��� �
�

�


